ECE 4750 Computer Architecture, Fall 2024
Lab 1: Iterative Integer Multiplier

School of Electrical and Computer Engineering
Cornell University

revision: 2024-08-27-10-50

The first lab assignment is a warmup lab where you will design two implementations of an inte-
ger iterative multiplier: the baseline design is a fixed-latency implementation that always takes the
same number of cycles, and the alternative design is a variable-latency implementation that exploits
properties of the input operands to reduce the execution time. You are required to implement the
baseline and alternative designs, verify the designs using an effective testing strategy, and perform
an evaluation comparing the two implementations. The milestone for this lab is to complete the
baseline multiplier design along with an initial set of directed tests. You should consult the lab
logistics document for more information about the expectations for all lab assignments and how
they will be assessed.

This lab is designed to give you experience with:

¢ the Verilog hardware description language;

¢ abstraction levels including functional- and register-transfer-level modeling;

¢ design principles including modularity, hierarchy, and encapsulation;

* design patterns including streaming interfaces, control/datapath split, and FSM control;

¢ agile design methodologies including incremental development and test-driven development.

Your experience in this lab assignment will create a solid foundation for completing the rest of the
lab assignments ultimately culminating in the implementation of a complete multicore processor.

This handout assumes that you have read and understand the course tutorials. You should have
already used the ece4750-1ab-admin script to create or join a GitHub group. To get started, login
to an ecelinux server, source the setup script, and clone your lab group’s remote repository from
GitHub:

% source setup-ece4750.sh

% mkdir -p ${HOME}/ece4750

% cd ${HOME}/ece4750

% git clone git@github.com:cornell-ece4750/lab-groupXX

where XX is your group number. You should never fork your lab group’s remote repository! If you
need to work in isolation then use a branch within your lab group’s remote repository. If you have
already cloned your lab group’s remote repository, then use git pull to ensure you have any recent
updates before running all of the tests. You can run all of the tests in the lab like this:

% cd ${HOME}/ece4750/1lab-groupXX
% git pull --rebase

% mkdir -p sim/build

% cd sim/build

% pytest ../labl_imul

ECE 4750 Computer Architecture, Fall 2024 Lab 1: Iterative Integer Multiplier

All of the tests should pass except for the tests related to the iterative multipliers you will be imple-
menting in this lab. For this lab you will be working in the 1ab1_imul subproject which includes the
following files:

e IntMulFL.py — FL multiplier

® IntMulBase.v — Verilog RTL fixed-latency multiplier

e IntMulBase.py — Python wrapper for testing

* IntMulAlt.v — Verilog RTL variable-latency multiplier

e IntMulAlt.py — Pythnon wrapper for testing

® imul-sim — Multiplier simulator for evalution

e __init__.py — Package setup

* test/IntMulFL_test.py — FL multiplier unit tests

® test/IntMulBase_test.py — RTL fixed-latency multiplier unit tests

* test/IntMulAlt_test.py — RTL variable-latency multiplier unit tests
® test/imul_sim_test.py — Test to make sure multiplier simulator works
* test/__init__.py — Test package setup

1. Introduction

You learned about basic digital logic design in your previous coursework, and in this warmup lab we
will put this knowledge into practice by building multiple implementations of an integer multiplier.
Although it is certainly possible to design a single-cycle combinational integer multiplier, such an
implementation is likely to be on the critical path in an aggressive design. Later in the course we will
learn about pipelining as a technique to improve cycle time (i.e., clock frequency) while maintaining
high throughput, but in this lab we take a different approach. Our designs will iteratively calculate
the multiplication using a series of add and shift operations. The baseline design always uses a fixed
number of steps, while the variable latency design is able to improve performance by exploiting
structure in the input operands. The iterative approach will enable improved cycle time compared
to a single-cycle design, but at reduced throughput (as measured in average cycles per transaction).

We have provided you with a functional-level (FL) model of an integer multiplier as shown in
Figure 1. You can find this FL implementation in IntMulFL.py and the associated unit tests in
test/IntMulFL_test.py. This implementation always takes a single-cycle and uses a higher-level
modeling style compared to the register-transfer-level (RTL) modeling you will be using in your

1 def imul(a, b):
2 result = 0
3 for i in range(32):

4 if b & 0x1 ==
64 32 5 result += a
istream_msg —4 —~4» ostream_ms
] -8 \, e -msg 6 a=a<<1
istream_val X » ostream_val , b=b> 1
istream_rdy«——f \— ostream_rdy s return result

Figure 2: Iterative Multipli-
Figure 1: Functional-Level Implementation of Integer Mult- cation Algorithm - Iteratively
plier — Input and output use latency-insensitive val/rdy inter- use shifts and subtractions to
faces. The input message includes two 32-bit operands; output calculate the partial-products
message is a 32-bit result. Clock and reset signals are not shown. over time.

ECE 4750 Computer Architecture, Fall 2024 Lab 1: Iterative Integer Multiplier

designs. These varying levels of modeling (i.e., FL versus RTL) are an example of abstraction. The
interfaces for all three designs (i.e., FL model, fixed-latency RTL model, and variable-latency RTL
model) are identical. Each multiplier should take as input a 64-bit message with two fields con-
taining the 32-bit operands. All implementations should treat the input operands and the result as
two’s complement numbers and thus should be able to handle both signed and unsigned multipli-
cation. In addition, both the input and output interface use the val/rdy microprotocol to control
when new inputs can be sent to the multiplier and when the multiplier has a new result ready to be
consumed. This is an example of the encapsulation design principle in general, and more specifically
the latency-insensitive stream interface design pattern. We are hiding implementation details (i.e., the
multiplier latency) from the interface using the val/rdy microprotocol. Another module should be
able to send messages to the multiplier and never explicitly be concerned with how many cycles the
implementation takes to execute a multiply transaction and return the result message.

2. Baseline Design

The baseline design for this lab assignment is a fixed-latency iterative integer multiplier. As with all
of the baseline designs in this course, we provide sufficient details in the lab handout such that your
primary focus is simply on implementing the design. Figure 2 illustrates the iterative multiplication
algorithm using “pseudocode” which is really executable Python code. Try out this algorithm on
your own and make sure you understand how it works before starting to implement the baseline
design. Note that while this Python code will work fine with positive integers it will produce what
looks like very large numbers when multiplying negative numbers. This is due to the fact that Python
provides infinitely sized integers, with negative numbers being represented in two’s complement
with an infinite number of ones extending towards the most-significant bit. It is relatively straight-
forward to handle negative numbers in Python by explicitly checking the sign-bit and adding some
additional masking and two’s complement conversion logic. Since the real hardware will not need
to do this it is not shown in the algorithm.

We will be decomposing the baseline design into two separate modules: the datapath which has
paths for moving data through various arithmetic blocks, muxes, and registers; and the control unit
which is in charge of managing the movement of data through the datapath. This decomposition is
an example of the modular design principle in general, and more specifically the control/datapath split
design pattern. Your datapath module, control unit module, as well as the parent module that connects
the datapath and control unit together should all be placed in a single file (i.e., IntMulBase.v).

The datapath for the baseline design is shown in Figure 3. The blue signals represent control/status
signals for communicating between the datapath and the control unit. Your datapath module should
instantiate a child module for each of the blocks in the datapath diagram; in other words, you must
use a structural design style in the datapath. Although you are free to develop your own modules to
use in the datapath, we recommend using the ones provided for you in the vc subdirectory.

Note that while you should implement the datapath by structurally composing child modules, those
child modules themselves can simply use RTL modeling. For example, you do not need to explic-
itly model an adder with gates, simply instantiate an adder module which uses the + operator in a
combinational concurrent block. Again in your final design, there should be a one-to-one correspon-
dence between the datapath diagram and the structural implementation in your code. This recursive
modular decomposition is an example of the hierarchy design principle.

The control unit for the baseline design should use the simple finite-state-machine shown in Figure 4.
The IDLE state is responsible for consuming the message from the input interface and placing the
input operands into the input registers; the CALC state is responsible for iteratively using adds and

ECE 4750 Computer Architecture, Fall 2024 Lab 1: Iterative Integer Multiplier

=) b_mux_sel

= b_reg b_lsb

® > 1

g .

| >> listream_val

E _2£Z
"SI
E k] (counter < 32) | istream_val

| a_mux_sel && (b[0] ==1)

% a_reg /add,shift
£
RE2) <<

32b

gl63:32] |
8
RN
\4 \4
v

§| (counter < 32)
& result add && (b[0] == 0)
% mux_sel result_ > \ mux_sel counter = 32 / shift
= reg o5
>+ £ lostream_rdy
> [
0 32b | £
s L& ostream_rdy
result_en %ob e 2

Figure 3: Datapath for Fixed-Latency Iterative Integer Figure 4: Control FSM for Fixed-
Multiplier — All datpath components are 32-bits wide. Latency Iterative Integer Multiplier
Shifters are constant one-bit shifters. We use registered in- - Hybrid Moore/Mealy FSM with
puts with a minimal of logic before the registers. Mealy transitions in the CALC state.

shifts to calculate the multiplication; and the DONE state is responsible for sending the message out
the output interface. Note that if you implement the FSM exactly as shown each multiply should
take 35 cycles: one for the IDLE state, 32 for iterative calculation, one cycle to realize the calculation
is done, and one cycle for the DONE state. The extra cycle to realize the calculation is done is because
we are not using Mealy transitions from the CALC to DONE states. We need to wait for the counter to
reach 32 and then we move into the idle state. It is relatively straight-forward to eliminate this extra
bubble (although not required). Your control unit should be structured into three parts: a sequential
concurrent block for just the state element, a combinational concurrent block for state transitions,
and a combinational concurrent block for state outputs. You will probably want to use a counter to
keep track of the 32 cycles required for the iterative calcluation in the CALC state. The control unit
for your iterative multiplier is an example of the finite-state-machine design pattern.

You may want to consider implementing a simpler version of the fixed-latency integer multiplier
before trying to implement the fully featured design. For example, you could implement a version
of the multiplier that does not handle the val/rdy signals correctly and test this without src/sink
delays. Once you have the simpler version working and passing the tests, then you could add the
additional complexity required to handle the val/rdy signals correctly. This is an example of an
incremental development design methodology.

3. Alternative Design

The fixed-latency iterative integer multiplier should always take 35 cycles to compute the result.
While it is possible to optimize away the cycle to realize the calculation is done and to eliminate the
IDLE/DONE states, fundamentally this algorithm is limited by the 32 cycles required for the iterative

ECE 4750 Computer Architecture, Fall 2024 Lab 1: Iterative Integer Multiplier

calculation. For your alternative design you should implement a variable latency iterative multiplier,
which takes advantage of the structure in some pairs of input operands. More specifically, if an input
operand has many consecutive zeros we don’t need to shift one bit per cycle; instead we can shift the
B register multiple bits in one step and directly jump to the next required addition. You should try to
be reasonably aggressive in terms of improving the performance, but do not try to squeeze too much
logic into a single clock period. Your critical path should not be longer than an adder plus some
muxing, or a shifter and some muxing. A critical path with an adder, a shifter, and some muxing
might be acceptable, but this will certainly result in a longer cycle time (i.e., lower clock frequency)
so you must discuss these trade-offs qualitatively in your lab report.

As with all of the alternative designs in this course, we simply sketch out the requirements and you
are responsible for both the design and the actual implementation. Your implementation should
leverage the design principles, patterns, and methodologies you used for the baseline design. We
have provided the top-level module interface for your variable latency multiplier design in the file
IntMulAltVRTL.v. Most of your code for the alternative design should be placed in these files. We
strongly suggest refactoring any logic to check for patterns in the inputs into its own file/model so
that you can unit test it.

4. Testing Strategy

We provide you one directed test for your multiplier, and you are responsible for developing the
rest of the verification. Writing tests is one of the most important and challenging parts of computer
architecture. Designers often spend far more time designing tests than they do designing the actual
hardware. You will want to initially write tests using the FL. model. Once these tests are working
on the FL model, you can move on to testing the baseline and alternative designs. Our emphasis on
testing and more specifically on writing the tests first in order to motivate a specific implementation
is an example of the test-driven design methodology.

The following commands illustrate how to run the tests for the entire project, how to run just the tests
for this lab, and how to run just the tests for the FL. model, baseline design, and alternative design.

% cd ${HOME}/ece4750/1lab-groupXX/sim/build

% pytest ..

% pytest ../labl_imul

% pytest ../labl_imul/test/IntMulFL_test.py

% pytest ../labl_imul/test/IntMulBase_test.py
% pytest ../labl_imul/test/IntMulAlt_test.py

You will add your directed tests to IntMulFL_test.py. Since this harness is shared across the FL
model, the baseline design, and the alternative design you can write your tests once and reuse them
to test all three models. You will be adding many more test cases. Do not just make the given test
case larger. Some suggestions for what you might want to test are listed below. Each of these would
probably be a separate test case.

¢ Combinations of multiplying zero, one, and negative one
¢ Small negative numbers x small positive numbers

* Small positive numbers x small negative numbers

¢ Small negative numbers x small negative numbers

¢ Large positive numbers X large positive numbers

¢ Large positive numbers x large negative numbers

¢ Large negative numbers x large positive numbers

ECE 4750 Computer Architecture, Fall 2024 Lab 1: Iterative Integer Multiplier

¢ Large negative numbers x large negative numbers

* Multiplying numbers with the low order bits masked off

* Multiplying numbers with middle bits masked off

* Multiplying sparse numbers with many zeros but few ones

¢ Multiplying dense numbers with many ones but few zeros

¢ Tests specifically designed to trigger corner cases in your alternative design
¢ Testing all or some of the above using source and sink delays

Once you have finished writing your directed tests you should move on to writing random tests.
Each random test should be a separate test case. You will want to use both zero and non-zero src/sink
delays in the test source and sink with your random testing. The kinds of random testing should
be similar in spirit to the directed testing discussed above. You might want to consider randomly
generating 32b values and then masking off different bits to create different variations. For example,
you can mask off the low bits, the high bits, the low and high bits, or just randomly force some bits
to zero or one to create numbers with more or less zeros.

In addition to testing the design as a whole, if you added any new datapath or control components
you must write unit tests for these new components!

5. Evaluation

Once you have verified the functionality of the baseline and alternate design, you should then use
the provided simulator to evaluate these two designs. You can run the simulator like this:

% cd ${HOME}/ece4750/lab-groupXX/sim/build

% ../labl_imul/imul-sim --impl base --input small

% ../labl_imul/imul-sim --impl base --input small --stats

% ../labl_imul/imul-sim --impl base --input small --trace --dump-vcd

The simulator will display the total number of cycles to execute the specified input dataset. You
should study the line traces (with the --trace option) and possibly the waveforms (with the --dump-vcd
option) to understand the reason why each design performs as it does on the various patterns.

We only provide a single random dataset for evaluating your design, but clearly this is not suffi-
cient. You will need to use more datasets to make a compelling comparative evaluation of how your
baseline and alternative design perform, especially since the alternative design has data-dependent
behavior. We recommend maybe six or so datasets for evaluation. Obviously these datasets need
to be carefully chosen to highlight the differences between the baseline and alternative designs. We
actually recommend you reuse some of the random datasets you already developed for verification.

Acknowledgments

This lab was created by Christopher Batten, Shreesha Srinath, and Ji Kim as part of the course ECE
4750 Computer Architecture at Cornell University.

