
Topic 10:
Side Channels, Meltdown,

and Spectre, Oh My!
ECE 4750 Computer Architecture

Prof. Anne Bracy

Based on slides by D. Zagieboylo, M. Hill, K. Sekniqi

• An extra way to learn information about a program’s execution

• Usually a way for an attacker to bypass security mechanisms

Side Channels

• An extra way to learn information about a program’s execution

• Usually a way for an attacker to bypass security mechanisms

• Power consumption
• Electromagnetic Radiation
• Responsiveness / Faults
• Timing

Side Channels

• Timing attacks are a BIG concern:

• Can be executed remotely
• Hard to prevent all secret-dependent timing
• Small differences can be amplified with

repetition
• Very stealthy

What influences a program’s execution time?
• Dynamic instruction count
• Which branches get executed

• Cycles per instruction
• Variable latency instructions (e.g., division)
• TLB Hit or Miss (Page Fault)
• Cache Hit or Miss
• Correct vs. Incorrect Speculation

• Clock frequency
• DVFS (Dynamic Voltage-Frequency Scaling)

4

Timing Side Channels

• very common side channel
• Fast/easy to execute
• High signal to noise (don’t have to repeat much to be sure it worked)

• How it works: Prime + Probe:
1. Setup cache state
2. Run victim
3. Time memory accesses

“Which cache set did the victim access?”

5

Cache Timing Channel

6

Prime + Probe Example
//Attacker: (e.g., user process)
char arr[N_CACHE_SETS*LINE_SIZE];
for (int i = 0; i < N_CACHE_SETS; i++) {
 arr[i*LINE_SIZE] = 0;
}

idx Tag
63 ????
62 ????
61 ????
... ...
2 ????
1 ????
0 ????&arr[0]

&arr[1]

&arr[0]

&arr[61]

&arr[62]

&arr[63]

Cache is now completely
filled with attacker's array.

7

Prime + Probe Example
//Attacker: (e.g., user process)
char arr[N_CACHE_SETS*LINE_SIZE];
for (int i = 0; i < N_CACHE_SETS; i++) {
 arr[i*LINE_SIZE] = 0;
}
//Call Victim Code (e.g., via syscall)
 ...
 victim[secret] = data;
 ...

idx Tag
63 ????
62 ????
61 ????
... ...
2 ????
1 ????
0 ???&arr[0]

&arr[1]

&arr[0]

&arr[62]

&arr[63]

&victim[secret]

8

Prime + Probe Example
//Attacker: (e.g., user process)
char arr[N_CACHE_SETS*LINE_SIZE];
for (int i = 0; i < N_CACHE_SETS; i++) {
 arr[i*LINE_SIZE] = 0;
}
//Call Victim Code (e.g., via syscall)
 ...
 victim[secret] = data;
 ...
//Return to Attacker:
for (int i = 0; i < N_CACHE_SETS; i++) {
 time_start();
 arr[i*LINE_SIZE] = 0;
 time_end();
}

idx Tag
63 ????
62 ????
61 ????
... ...
2 ????
1 ????
0 ???&arr[0]

&arr[1]

&arr[0]

&arr[62]

&arr[63]

&victim[secret]

&arr[0]

&arr[1]

&arr[0]

&arr[61]

&arr[62]

&arr[63]

Hit

Hit

Hit

Hit

Hit

MISS

9

Prime + Probe Example
Cache Hit (Fast!)
• Victim was not here
Cache MISS (Slow)
• Attacker learns index bits of secret

memory address
&victim[secret] is 0x???? 3f ??
Can be helpful:
• if you already know &victim
• or if you only need to limit the number

of possibilities for secret

idx Tag
63 ????
62 ????
61 ????
... ...
2 ????
1 ????
0 ???&arr[0]

&arr[1]

&arr[0]

&arr[62]

&arr[63]

&victim[secret]

&arr[0]

&arr[1]

&arr[0]

&arr[61]

&arr[62]

&arr[63]

Hit

Hit

Hit

Hit

Hit

MISS

In reality, more complicated
• Multi-level caches
• Associativity
• Hardware Prefetchers
• Virtual Memory (Address Translation)
• Non-secret memory accesses (noise)
Can still execute $ timing attacks
• Reverse Engineering of HW
• Repeated execution of attack
• Statistical analysis
• Other attacks (e.g., Flush+Reload)

10

Cache Timing Channels
Solutions?

• Add more noise
(you’ll lose the arms race usually)

• Partition Cache
(doesn’t help if victim & attacker
are in same user-space process -
costs efficiency)

• Avoid secret-dependent LW/SW
(hard (or impossible) to do)

• 2018
• Meltdown & Spectre – [Jann Horn, Google Project Zero]

 Also , independently, Paul Kocher
• Both are microarchitectural attacks that allow the user to exploit speculative

execution to learn secret data

• Make $ timing channels super easy to exploit – nearly NO statistical analysis
necessary, can pick any address you want to leak

• Meltdown affects almost every Intel chip made since 1995, and some ARM chips
Spectre affects Everychip, Everywhere, All at once.

• Intel® pushes out several microcode (HW) patches that…don’t work and cause BSOD

• OS, Compiler & Browser Mitigations (KPTI, SLH, Retpoline) start to be rolled out

11

Recent Events – Transient Execution Attacks

1

Meltdown and Spectre Security Bug

• 2018
• Meltdown & Spectre – [Jann Horn, Google Project Zero]

 Also , independently, Paul Kocher
• 2019

• Spectre Variants (Speculative Store Bypass, Foreshadow, Zombieload)
continue to haunt us

• Numerous new microarchitectural designs to avoid Spectre are proposed at high
profile research conferences

• No new word from Intel, AMD, ARM, etc. on Spectre-secure designs

• 2020-2022
• Even more Spectre attacks. Old defenses broken. New defenses proposed. Repeat.

13

Recent Events – Transient Execution Attacks

1

Meltdown and Spectre Security Bug

• 2018
• Meltdown & Spectre – [Jann Horn, Google Project Zero]

 Also , independently, Paul Kocher
• 2018-19

• OS patches for Meltdown released
• Chipmakers plan to fix Meltdown in future HW
• SW patches for Spectre_v1 & v2 developed.

Mostly unused outside Google Chrome & Cryptographic libraries

• 2020-2022
• Spectre patches gain more traction, incorporated into LLVM
• More variants discovered, highlights need for new design, not just adhoc patches
• Still an open problem, the attack-defense vicious cycle continues.

14

Recent Events – Transient Execution Attacks

1

Meltdown and Spectre Security Bug

15

Background on Memory space
The virtual address space of each process
contains user-level memory and OS memory.

This is convenient for handling exceptions and
making system calls (just change to privileged
mode and start fetching OS code).

User-level process cannot load from OS
memory. This is a permission violation.

0xfffffffc

0x00000000 reserved

User-space memory

OS Memory 1

Meltdown and Spectre Security Bug

16

Background on Memory Checks

àTLB detects illegal memory violation
àinstruction will throws an exception
àseg fault kills the processWHEN does

detection & suppression happen??
EARLY: AMD seems to suppress at TLB access
LATE: Intel seems to suppress after cache access
• Architectural state not changed
• Micro-architectural state is changed!

x = *target_addr; // user-level code
0xfffffffc

0x00000000 reserved

User-space memory

OS Memory
target_addr

1

Meltdown and Spectre Security Bug

Dynamically Scheduled Processors
• Fetch & Decode instructions in order
• Execute Out-of-Order
• Commit In-Order

17

Meltdown – In Detail
1

Meltdown and Spectre Security Bug

Fetch Decode ROB

MEM Unit
MEM Unit

MEM Unit
MEM Unit

ALU
ALU

ALU
ALU

Mul/Div
Mul/Div

Mul/Div
Mul/Div

ROB Write
Back

18

Fetch Decode ROB

MEM Unit
MEM Unit

MEM Unit
MEM Unit

ALU
ALU

ALU
ALU

Mul/Div
Mul/Div

Mul/Div
Mul/Div

ROB Write
Back

1) If this
Instruction
causes an
exception

Dynamically Scheduled Processors
2) Squash all these instructions

1

Meltdown and Spectre Security Bug

Meltdown – In Detail

19

Fetch Decode ROB

MEM Unit
MEM Unit

MEM Unit
MEM Unit

ALU
ALU

ALU
ALU

Mul/Div
Mul/Div

Mul/Div
Mul/Div

ROB Write
Back

Meltdown Vulnerability
• Illegal Memory Load still updates $
• If illegal load is squashed,

process gets to keep running
(no segfault)

1

Meltdown and Spectre Security Bug

Meltdown – In Detail

20

Meltdown – In Detail
• Meltdown Vulnerability

• Illegal Memory Load still updates $
• If illegal load is squashed,

process gets to keep running
(no segfault)

1. syscall();

2. x = *target_addr;

3. y = probe[x*4096];

4. //another thread executes $ timing attack
(prime+probe)to learn some bits of x

0xfffffffc

0x00000000 reserved

User-space memory

OS Memory
target_addr

probe

probe[x*4096]

1

Meltdown and Spectre Security Bug

ß causes PC+4 etc. to be squashed

ß Executes OoO, value available in
bypass network

ß dependent load updates $

21

Meltdown Consequences
• User process can easily read all of OS Memory
• Solution: unmap most of OS memory from PT
• Syscalls take longer to handle

• Trap to OS
• Trap handler loads OS page table, flushes TLB
• Handle trap
• Loads User page table, flushes TLB
• Return to User

• 5% overhead most programs
• 30% for syscall-heavy programs

0xfffffffc

0x00000000 reserved

User-space memory

OS Memory

probe

1

Meltdown and Spectre Security Bug

Bounds-check-bypass
• Extremely common check
• Speculation allows body to

temporarily execute when
a >= xarray_len
• Speculative execution

modifies $ state
(just like meltdown)
• Attacker can read arbitrary

(user space) memory via
$ timing channel

22

Spectre in 1 Slide

unsigned int a;
if (a < xarray_len) {

 b = x[a];
 z = *b;
}

// Should only execute if x[a] is in bounds

• Exploits out-of-order execution
after exceptions
• Illegal memory accesses after an

exception still update $
• Breaks Kernel Isolation:

Allows user process to read any
part of OS’s memory (if mapped)

• Exploits speculative execution across
branches
• Attacker manipulates branch predictor

to speculatively execute target
instructions
• Breaks software sandboxing:

Allows user process to violate
application-level isolation (within a
single process)

23Miessler Blog (https://danielmiessler.com/blog/simple-explanation-difference-meltdown-spectre/)

both leak data through $ timing channel

software &
hardware fixes exist

scary

https://danielmiessler.com/blog/simple-explanation-difference-meltdown-spectre/

Takeaways for Computer Architects

24

Architecture: timing-independent functional behavior of a computer
Micro-architecture: implementation techniques to performance
 These choices have consequences!

What if a computer that is architecturally correct can leak protected
information via its micro-architecture?

Perhaps our definition of “architecturally correct” needs re-thinking…

Some References
New York Times: https://www.nytimes.com/2018/01/03/business/computer-flaws.html

Meltdown paper: https://meltdownattack.com/meltdown.pdf
Spectre paper: https://spectreattack.com/spectre.pdf

A blog separating the two bugs: https://danielmiessler.com/blog/simple-explanation-
difference-meltdown-spectre/

Google Blog: https://security.googleblog.com/2018/01/todays-cpu-vulnerability-what-you-
need.html and https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html

Industry News Sources: https://arstechnica.com/gadgets/2018/01/whats-behind-the-
intel-design-flaw-forcing-numerous-patches/ and
https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/

25

https://www.nytimes.com/2018/01/03/business/computer-flaws.html
https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf
https://danielmiessler.com/blog/simple-explanation-difference-meltdown-spectre/
https://danielmiessler.com/blog/simple-explanation-difference-meltdown-spectre/
https://security.googleblog.com/2018/01/todays-cpu-vulnerability-what-you-need.html
https://security.googleblog.com/2018/01/todays-cpu-vulnerability-what-you-need.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://arstechnica.com/gadgets/2018/01/whats-behind-the-intel-design-flaw-forcing-numerous-patches/
https://arstechnica.com/gadgets/2018/01/whats-behind-the-intel-design-flaw-forcing-numerous-patches/
https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/

