
1

ECE 4750 Computer Architecture, Fall 2024

Topic 9: Advanced Processors
Memory Disambiguation

Prof. Anne Bracy

Modified from slides developed by Drew Hilton (Duke University)
and Milo Martin (Google)

Dynamically Scheduling Memory Insns
Options for hardware:

1. Hold loads until all prior stores execute (conservative)
2. Execute loads as soon as possible, detect violations (aggressive)

• When a store executes, it checks if any later loads executed too
early (to same address). If so, flush pipeline

ECE 4750 (Bracy): Handling Memory Instructions 2

Before
a: LW x2,4(sp)
b: LW x3,8(sp)
c: ADD x1,x3,x2 //stalls
d: SW x1,0(sp)
e: LW x5,0(x8)
f: LW x6,4(x8)
g: SUB x4,x5,x6 //stalls
h: SW x4,8(x8)

Improvement (?)
a: LW x2,4(sp)
b: LW x3,8(sp)
e: LW x5,0(x8)
c: ADD x1,x3,x2
f: LW x6,4(x8)
d: SW x1,0(sp)
g: SUB x4,x5,x6
h: SW x4,8(x8)

Reorder to

avoid stalls? x8 not pending
and it's good to

give loads a head
start

No one waits for
a store, so good
choice to fill the
slot between f&g

Dynamically Scheduling Memory Insns
Options for hardware:

1. Hold loads until all prior stores execute (conservative)
2. Execute loads as soon as possible, detect violations (aggressive)

• When a store executes, it checks if any later loads executed too
early (to same address). If so, flush pipeline

ECE 4750 (Bracy): Handling Memory Instructions 3

Before
a: LW x2,4(sp)
b: LW x3,8(sp)
c: ADD x1,x3,x2 //stalls
d: SW x1,0(sp)
e: LW x5,0(x8)
f: LW x6,4(x8)
g: SUB x4,x5,x6 //stalls
h: SW x4,8(x8)

Improvement (?)
a: LW x2,4(sp)
b: LW x3,8(sp)
e: LW x5,0(x8)
c: ADD x1,x3,x2
f: LW x6,4(x8)
d: SW x1,0(sp)
g: sub x4,x5,x6
h: SW x4,8(x8)

// x8==sp?

// r8+4==sp?

Is this legal?

possible RAW
memory

dependence?

Backwards

arrows! L

Might not know at
compile time.
Cannot tell by

inspecting register
names.

Memory Forwarding
• Stores write cache at commit

• Commit is in-order, delayed by all instructions
• Allows stores to be “undone” on exceptions, branch

mis-predictions, etc.

• Loads read cache
• Early execution of loads is critical

• Forwarding
• Allow store → load communication before commit
• Conceptually like register bypassing, but different

implementation
• Why? Addresses unknown until execute

ECE 4750 (Bracy): Handling Memory Instructions 4

Forwarding: Store Queue
Store Queue
• Holds all in-flight stores
• searchable by address
• Age logic: determine

youngest matching store
older than load

Store execution
• Write Store Queue

• Address + Data
Load execution
• Search SQ

• Match? Forward
• Read D$

ECE 4750 (Bracy): Handling Memory Instructions 5

valueaddress
================

age

Data cache

head

tail

load position
address

data in
data out

Store Queue (SQ)

Load scheduling
Store→Load Forwarding:
• Get value from executed (but not comitted) store to load

Example: suppose ∃ is a RAW memory dependence between d & e
d: SW x1,0(sp)
e: LW x5,0(x8)

d:
• Writes the Store Queue @ Execute (address and value)
• Doesn’t write to the cache until commit
e:
• Checks the Store Queue @ Execute

• sees address match between d & e
• Value forwarded to e

• just like register bypassing
• e doesn't even need to go to the cache!

ECE 4750 (Bracy): Handling Memory Instructions 6

Load scheduling
Store→Load Forwarding:
• Get value from executed (but not comitted) store to load
Load Scheduling:
• Determine when load can execute with regard to older stores

Example:

d: SW x1,0(sp)
e: LW x5,0(x8)

Suppose d hasn't even been issued yet (waiting on x1)
Do we let instruction e issue?
• What do we even know @ issue?

ECE 4750 (Bracy): Handling Memory Instructions 7

Conservative Load scheduling
• Loads can only issue when all older stores have executed
• Some architectures: split store address / store data

• Only require known address
• Advantage: always safe
• Disadvantage: performance (limits out-of-orderness)

ECE 4750 (Bracy): Handling Memory Instructions 8

Load Speculation
• Speculation requires two things…..

• Detection of mis-speculations
• How can we do this?

• Recovery from mis-speculations
• Squash from branches

– Any instruction fetched after the mis-predicted
branch gets squashed

• Squash from offending load
– Any instruction depending on the output of the

load gets squashed

ECE 4750 (Bracy): Handling Memory Instructions 9

Load Queue
• Detects LW ordering violations
• Execute load: write addr to LQ

• Also note any store
forwarded from

• Execute store: search LQ
• Younger load with same

addr?
• Didn’t forward from younger

store?

ECE 4750 (Bracy): Handling Memory Instructions 10

================

Data Cache

head

tail

load queue (LQ)

address
================

tail

head

age

store
position

flush?

SQ

Store Queue + Load Queue
• Store Queue: handles forwarding

• Written by stores (@ execute)
• Searched by loads (@ execute)
• Read SQ when you write to the data cache (@ commit)

• Load Queue: detects ordering violations
• Written by loads (@ execute)
• Searched by stores (@ execute)

• Both together
• Allows aggressive load scheduling

• Stores don’t constrain load execution
ECE 4750 (Bracy): Handling Memory Instructions 11

Example (cycles 1-4)

• 2 wide, aggressive scheduling
• issue 1 load per cycle
• loads take 3 cycles to complete

ECE 4750 (Bracy): Handling Memory Instructions 12

Decode Issue Complete Commit

LW x2,4(sp)

LW x3,8(sp)

ADD x1,x3,x2

SW x1,0(sp)

LW x5,0(x8)

LW x6,4(x8)

SUB x4,x5,x6

SW x4,8(x8)

1

2

3

4

5

6

7

8

Cycle 4:
Speculatively execute #5
before the store (#4).

1

1

2

2
2

3

3
3

4

4
4

5

6

7

Example (cycles 4, load execution)

ECE 4750 (Bracy): Handling Memory Instructions 13

Decode Issue Complete Commit

LW x2,4(sp)

LW x3,8(sp)

ADD x1,x3,x2

SW x1,0(sp)

LW x5,0(x8)

LW x6,4(x8)

SUB x4,x5,x6

SW x4,8(x8)

1

2

3

4

5

6

7

8

1

1

2

2
2

3

3
3

4

4
4

5

6

7

Once insn 5's address is calculated (call it address X):

• Check SQ for completed, uncommitted stores to address X
 "before I go to memory, are there any stores about to write to address X? If so,
give me the value and I can avoid going to memory!"

• Write entry in LQ: insn 5 (address X) just loaded data from
memory / from insn n in the SQ

Example (cycle 5)

• 2 wide, aggressive scheduling
• issue 1 load per cycle
• loads take 3 cycles to complete

ECE 4750 (Bracy): Handling Memory Instructions 14

Decode Issue Complete Commit

LW x2,4(sp) 1 2 5

LW x3,8(sp) 1 3 6

ADD x1,x3,x2 2

SW x1,0(sp) 2

LW x5,0(x8) 3 4 7

LW x6,4(x8) 3

SUB x4,x5,x6 4

SW x4,8(x8) 4

1

2

3

4

5

6

7

8

Speculatively execute #6
before the store (#4).

5 8

Again, check SQ and put entry in LQ

Example (cycle 6)

• 2 wide, aggressive scheduling
• issue 1 load per cycle
• loads take 3 cycles to complete

ECE 4750 (Bracy): Handling Memory Instructions 15

Decode Issue Complete Commit

LW x2,4(sp) 1 2 5 6
LW x3,8(sp) 1 3 6
ADD x1,x3,x2 2 6 7

SW x1,0(sp) 2
LW x5,0(x8) 3 4 7

LW x6,4(x8) 3 5 8

SUB x4,x5,x6 4
SW x4,8(x8) 4

1

2

3

4

5

6

7

8

Insn 3 finally wakes up and
is selected to issue

Example (cycle 7)

• 2 wide, aggressive scheduling
• issue 1 load per cycle
• loads take 3 cycles to complete

ECE 4750 (Bracy): Handling Memory Instructions 16

Decode Issue Complete Commit

LW x2,4(sp) 1 2 5 6
LW x3,8(sp) 1 3 6 7
ADD x1,x3,x2 2 6 7
SW x1,0(sp) 2 7
LW x5,0(x8) 3 4 7
LW x6,4(x8) 3 5
SUB x4,x5,x6 4
SW x4,8(x8) 4

1

2

3

4

5

6

7

8

Insn 4 wakes up and is
selected to issue

Example (cycle 7, store execution)

ECE 4750 (Bracy): Handling Memory Instructions 17

Decode Issue Complete Commit

LW x2,4(sp) 1 2 5 6
LW x3,8(sp) 1 3 6 7
ADD x1,x3,x2 2 6 7
SW x1,0(sp) 2 7
LW x5,0(x8) 3 4 7
LW x6,4(x8) 3 5
SUB x4,x5,x6 4
SW x4,8(x8) 4

1

2

3

4

5

6

7

8
Once insn 4's address is calculated (call it address Y):

• Check LQ for loads that might have speculatively executed
 "are there any younger loads that read from address Y? If so, they should have
gotten their values from insn 4 – squash them and give them my value!"

• Write entry in SQ: insn 4 writes data D to address Y @ commit

Example (cycle 9)

• 2 wide, aggressive scheduling
• issue 1 load per cycle
• loads take 3 cycles to complete

ECE 4750 (Bracy): Handling Memory Instructions 18

Decode Issue Complete Commit

LW x2,4(sp) 1 2 5 6
LW x3,8(sp) 1 3 6 7
ADD x1,x3,x2 2 6 7 8
SW x1,0(sp) 2 7 8 9
LW x5,0(x8) 3 4 7 9
LW x6,4(x8) 3 5 8
SUB x4,x5,x6 4 8 9
SW x4,8(x8) 4 9

1

2

3

4

5

6

7

8

Insn 8 wakes up and is
selected to issue

Again, check LQ and put entry in SQ

Example (cycle 11)

• 2 wide, aggressive scheduling
• issue 1 load per cycle
• loads take 3 cycles to complete

ECE 4750 (Bracy): Handling Memory Instructions 19

Decode Issue Complete Commit

LW x2,4(sp) 1 2 5 6
LW x3,8(sp) 1 3 6 7
ADD x1,x3,x2 2 6 7 8
SW x1,0(sp) 2 7 8 9
LW x5,0(x8) 3 4 7 9
LW x6,4(x8) 3 5 8 10
SUB x4,x5,x6 4 8 9 10
SW x4,8(x8) 4 9 10 11

1

2

3

4

5

6

7

8

TaDa! Out of Order with
memory instructions!

Aggressive Load Scheduling
• Allows loads to issue before older stores

• Increases out-of-orderness
+ When no conflict, increases performance
- Conflict à may end up squashing a lot of instructions

• High performance processors will learn which loads
should issue early and which loads should wait.

ECE 4750 (Bracy): Handling Memory Instructions 20

