
ECE 4750 Computer Architecture

Topic 4: Fundamental Memory Microarchitecture

http://www.csl.cornell.edu/courses/ece4750
School of Electrical and Computer Engineering

Cornell University

revision: 2024-10-18-15-57

List of Problems

1 Impact of Cache Access Time and Replacement Policy 2

1.A Miss Rate Analysis . 3

1.B Sequential Tag Check then Memory Access . 5

1.C Parallel Read Hit Path . 7

1.D Pipelined Write Hit Path . 7

1.E Average Memory Access Latency . 9

ECE 4750 Computer Architecture Topic 4: Fundamental Memory Microarchitecture

Problem 1. Impact of Cache Access Time and Replacement Policy

In this problem, we will be comparing various microarchitectures for a simple data cache. For all
parts, the memory requests use a 32-bit byte address, although you should assume that all ad-
dresses are word aligned. Since words are four bytes, this means the bottom two bits of the address
will always be zero. All caches contain exactly eight cache lines, and each cache line contains four
words (i.e., each cache line is 16 bytes long). Thus the total cache capacity is 8 × 16 B = 128 B.

Some parts of this problem require you to identify the critical path of a specific microarchitecture.
Figure 1 lists simplified delay equations for the cache hardware components. These delay equations
are parameterized by the size of each component. Delay is measured in normalized gate delays,
where 1 τ is the delay of a single inverter driving four identical inverters. To simplify things, as-
sume that the delay of a component is always the same regardless of the order in which different
inputs arrive at a component. More specifically, the delay of a write access is the same regardless
of whether the address or write enable arrives before the write data or vice versa. Also assume that
we are using combinational memories (i.e., the address is set and the data is returned on the same
cycle). Note that the dxe notation denotes the ceiling operator, i.e., the value x rounded up to the
next largest integer.

As discussed in lecture, you should always assume a single read/write port for the data memories
(i.e., we can only do a single access per cycle, it is not possible to both read and write the data
memory in the same cycle). The data memories in all cache microarchitectures have the following
ports:

• line select : one-hot encoding of which line to read/write
• write data : 16 B of write data
• read data : 16 B of read data
• write enable : one bit indicating if we should actually write the write data
• word write enable : two-bit encoding of which word to write

Component Delay (τ) Comment

register read 1 delay from clock edge to data out

register write 1 setup time constraint

n-input AND gate n− 1 simple logic gate

n-input OR gate n− 1 simple logic gate

n-to-m decoder 3 + 2n 3 for fixed overhead, 2n for logic

n-bit comparator 3 + 2dlog _2(n)e 3 for initial XOR gate, 2dlog _2(n)e for OR tree

n-input m-bit mux 3dlog _2(n)e+ dm/8e 3dlog _2(n)e for tree-based muxing logic,
dm/8e for interconnect

n×m memory access 10 + d(n + m)/16e n rows and m bits per row, 10 for fixed
overhead and bitcell access,
d(n + m)/16e to drive word and bit lines

Figure 1: Simplified and Parameterized Delay Equations for Cache Components

2

ECE 4750 Computer Architecture Topic 4: Fundamental Memory Microarchitecture

Part 1.A Miss Rate Analysis

We start by studying the miss rate for a direct-mapped and two-way set-associative caches when
processing the same sequence of memory requests. We will consider both LRU and FIFO replace-
ment policies for the set-associative cache. The miss rate is independent of how we order the tag
check with respect to the data access, so this part can apply to either of the cache microarchitectures
discussed in the next parts. Remember, both caches have exactly eight cache lines, and each cache
line contains four words. All caches begin with every line invalidated.

We will be using the following sequence of 20 memory requests. The addresses are specified as
hexadecimal byte addresses. Assume that each request is to read a single aligned word of data, so
the least significant two bits are always zero.

0x024, 0x030, 0x07c, 0x070, 0x100, 0x110, 0x204, 0x214, 0x308, 0x110,
0x114, 0x118, 0x11c, 0x410, 0x110, 0x510, 0x110, 0x610, 0x110, 0x710

To illustrate how the cache contents change over time, we will be using a table similar to the ones
in Figures 2–4 with one column for each tag in the tag array and one row for each memory request.
The contents of each cell in the table should indicate the tag of the cache line currently located at
that location in the cache before the transaction has executed. Assume the set index bits are positioned
in the address as shown in Figures 6 and 7. Use a dash (–) to indicate an invalid cache line. You
only need to fill in elements in the table when the value changes! To get you started, we have filled
in the three tables in Figures 2–4 correctly for the first three memory requests. Study these first
few memory requests to understand how to fill out the rest of the table. Each table should have
a total of 21 rows, one for each memory request and one at the end in case you need to show a
final state update. Remember that the tag entries should always reflect the state of the tag array before
the corresponding transaction on that row executes! After filling in the table, also enter the number of
misses and the miss rate at the bottom of the table.

3

ECE 4750 Computer Architecture Topic 4: Fundamental Memory Microarchitecture

Transaction
Address tag idx m/h L0 L1 L2 L3 L4 L5 L6 L7

0x024 0x00 0x2 m – – – – – – – –

0x030 0x00 0x3 m 0x00

0x07c 0x00 0x7 m 0x00

0x070 0x00 0x7 h 0x00

0x100 ...

Number of Misses =

Miss Rate =

Figure 2: Direct-Mapped Cache Contents Over Time

Transaction Set 0 Set 1 Set 2 Set 3

Address tag idx m/h U Way 0 Way 1 U Way 0 Way 1 U Way 0 Way 1 U Way 0 Way 1

0x024 0x00 0x2 m - – – - – – - – – - – –

0x030 0x00 0x3 m 0 0x00

0x07c 0x01 0x3 m 0 0x00

0x070 0x01 0x3 h 1 0x01

0x100

Number of Misses =

Miss Rate =

Figure 3: Two-Way Set-Associative Cache Contents Over Time with LRU Replacement

Transaction Set 0 Set 1 Set 2 Set 3

Address tag idx m/h Way 0 Way 1 Way 0 Way 1 Way 0 Way 1 Way 0 Way 1

0x024 0x00 0x2 m – – – – – – – –

0x030 0x00 0x3 m 0x00

0x07c 0x01 0x3 m 0x00

0x070 0x01 0x3 h 0x01

0x100

Number of Misses =

Miss Rate =

Figure 4: Two-Way Set-Associative Cache Contents Over Time with FIFO Replacement

4

ECE 4750 Computer Architecture Topic 4: Fundamental Memory Microarchitecture

Part 1.B Sequential Tag Check then Memory Access

Figure 6 illustrates two cache microarchitectures that serialize the tag check before data access. This
means that for both reads and writes, the cache completely finishes the tag check and accesses the
data memory only on a cache hit. Figure 6(a) is for a directed-mapped cache, while Figure 6(b) is
for a two-way set-associative cache.

We now want to determine the critical path and cycle time in units of τ for each cache microarchi-
tecture. As an example, Figure 5 shows the critical path and cycle time for the directed-mapped
cache in Figure 6(a). Spend some time understanding the microarchitectural diagrams in Figure 6
and the example read/write access time table in Figure 5 before continuing to work on this prob-
lem. Note that the tag is 25 bits, but each row of the tag memory requires 26 bits since it must also
include a valid bit. Also note that even for reads we have to wait for the delay though the wen_and
gate because we are assuming that we must wait for the last input to the data memory to stabilize
before the delay of the data memory begins.

Create a table similar to the one shown in Figure 5 which identifies the critical path and cycle
time in units of τ for the two-way set-associative cache in Figure 6(b). Compare the cycle times
of the two cache microarchitectures. What is the primary reason one microarchitecture is slower
than the other microarchitecture?

Component Delay Equation Delay (τ)

addr_reg_M0 1 1
tag_decoder 3 + 2 · 3 9
tag_mem 10 + d(8 + 26)/16e 13
tag_cmp 3 + 2dlog _2(25)e 13
tag_and 1 1
wen_and 1 1
data_mem 10 + d(8 + 128)/16e 19
rdata_mux 3dlog _2(4)e+ d32/8e 10
rdata_reg_M1 1 1

Total 68

addr_reg_M0 1 1
tag_decoder 3 + 2 · 3 9
tag_mem 10 + d(8 + 26)/16e 13
tag_cmp 3 + 2dlog _2(25)e 13
tag_and 1 1
wen_and 1 1
data_mem 10 + d(8 + 128)/16e 19

Total 57

Figure 5: Critical Path and Cycle Time for Direct-Mapped Cache with Serialized Tag Check
before Data Access – Corresponds to cache microarchitecture in Figure 6(a), top path is for reads,
while bottom path is for writes. Reads are the critical path.

5

ECE 4750 Computer Architecture Topic 4: Fundamental Memory Microarchitecture

word
write

enable

write enable

=

v

tag

tag 00offidx

25b 3b 2b

addr_
reg_M0

rdwr_
reg_M0

wdata_
reg_M0

tag_mem tag_cmp

tag_and
tag_decoder

data_
decoder

data_mem

rdata_
mux

hit_
reg_M1

rdata_
reg_M1

wen_and

write data

read
data

offtagidx idxoff

(a) Direct-Mapped Cache

word
write

enable

write enable

=

v

tag =

tag 00offidx

26b 2b 2b

1b

Way 0 Way 1

idx off

addr_
reg_M0

rdwr_
reg_M0

wdata_
reg_M0

tag_mem
tag_cmp

tag_and
tag_

decoder

data_
decoder

data_mem

rdata_
mux

hit_
reg_M1

rdata_
reg_M1

tag_or

wen_and

write data

read
data

tagtag idx idxoff

(b) Two-Way Set-Associative Cache

Figure 6: Cache Microarchitectures for Sequential Tag Check then Data Access

6

ECE 4750 Computer Architecture Topic 4: Fundamental Memory Microarchitecture

Part 1.C Parallel Read Hit Path

Figure 7 illustrates two cache microarchitures with parallel read hit paths and pipelined write hit
paths. This means that for a single read request, the tag check is done in parallel with the data
memory read access, while for a single write request the tag check is done in stage M0 and the
data memory write access is done in stage M1. Figure 7(a) is for a directed-mapped cache, while
Figure 7(b) is for a two-way set-associative cache. Spend some time understanding this microar-
chitectural diagram before continuing to work on this problem.

For this part we will focus just on the parallel read hit path for both the direct-mapped and set-
associative caches. Create two tables similar to the one shown in Figure 5 which identifies the
critical path and cycle time in units of τ for just the parallel read hit paths. Note that since the tag
check and the data memory read access are done in parallel, you will need to examine both of these
paths to determine which one is in fact the critical path. Compare the cycle times of the two cache
microarchitectures. What is the primary reason one microarchitecture is slower than the other
microarchitecture?

Part 1.D Pipelined Write Hit Path

For this part we will focus just on the pipelined write hit path for both the direct-mapped and set-
associative caches shown in Figure 7. Create two tables similar to the one shown in Figure 5 which
identifies the critical path and cycle time in units of τ for just the pipelined write hit path. Note
that since the tag check and the data memory write access happen in two different stages, you will
need to examine both of these paths to determine which one is in fact the critical path. Compare the
cycle times of the two cache microarchitectures. What is the primary reason one microarchitecture
is slower than the other microarchitecture?

7

ECE 4750 Computer Architecture Topic 4: Fundamental Memory Microarchitecture

=

v

tag

tag 00offidx

25b 3b 2b

addr_
reg_M0

rdwr_
reg_M0

wdata_
reg_M0

tag_mem
tag_cmp

tag_and
tag_decoder

data_
decoder

data_mem

rdata_
mux

hit_
reg_Mx

rdata_
reg_Mx

addr_
reg_M1

wen_
reg_M1

wdata_reg_M1

addr_
mux

hit_
reg_M1

offtagidx idxoff

0

word
write

enable

write enable

write data

read
data

hit_
mux

wen_
mux

wen_and

(a) Direct-Mapped Cache

tag 00offidx

26b 2b 2b

addr_
reg_M0

rdwr_
reg_M0

wdata_
reg_M0

data_
decoder

data_mem

rdata_
mux

hit_
reg_Mx

rdata_
reg_Mx

wdata_
reg_M1

=

v

tag =

Way 0 Way 1

tag_mem
tag_cmp

tag_
and

tag_
decoder

Way
0

Way
1

way_
mux

tag_or

addr_
reg_M1

addr_
mux

offidxoff
word
write

enable

idxoff

wen_reg_M1

0

wen_
mux

wen_
and 0

idxidx tag tag

hit_
reg_M1

hit_
mux

write
data

read
data

(b) Two-Way Set-Associative Cache

Figure 7: Cache Microarchitectures for Parallel Reads and Pipelined Writes

8

ECE 4750 Computer Architecture Topic 4: Fundamental Memory Microarchitecture

Part 1.E Average Memory Access Latency

Cache performance is impacted by many factors. In this part, we put together the access time anal-
ysis from Parts 1.B-1.D and the miss rate analysis from Part 1.A to determine the average memory
access latency for six different cache configurations. Our goal is to determine which configuration
achieves the lowest average memory access latency for the sequence of memory requests given in
Part 1.A. Remember that the average memory access latency is defined as:

Avg Mem Access Latency = Hit Time + (Miss Rate ×Miss Penalty)

For this problem you can assume the miss penalty is 300τ. Create a table similar to the one in
Figure 8. Fill in the hit time in τ. Use Parts 1.B-1.D, miss rate (use Part 1.A), and the average
memory access time in τ for each of the six configurations. The sequence of memory requests
under consideration consists only of read requests, so the hit time is always one cycle. Assume the
cache hit path is the critical path for the entire processor, and thus sets the cycle time. Since the
replacement policy impacts the miss path, you can assume it has no impact on the critical path.
Note that the critical path will be different for each microarchitecture. For a microarchitecture
that serializes the tag check before data access, the critical path was determined in Part 1.B. For
a microarchitecture with a parallel read hit path and a pipelined write hit path, the critical path
will either be through the read hit path (Part 1.C) or the write hit path (Part 1.D), whichever is
longest. Remember that for the write hit path, you need to consider the longer of the two pipeline
stages. Which configuration has the lowest average memory access time? How general is your
conclusion? Can we safely say that we should always choose this configuration regardless of the
application requirements and/or technology constraints?

Hit Miss Miss
Replacement Time Rate Penalty AMAL

Associativity µarch Policy (τ) (ratio) (τ) (τ)

Direct Mapped Seq n/a 68 300

2-way Set Assoc Seq LRU 300

2-way Set Assoc Seq FIFO 300

Direct Mapped PP n/a 300

2-way Set Assoc PP LRU 300

2-way Set Assoc PP FIFO 300

Figure 8: Average Memory Access Latency for Six Cache Configurations – Seq = serialize tag
check before data access, PP = parallel read hit path and pipelined write hit path, AMAL = average
memory access latency

9

