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Problem 1. Short Answer

Part 1.A Qualitatively Analyzing Locality

Consider the following C function which uses a lookup table (lut) to convert an array of integers
(src) into an array of characters (dest). The function assumes that the src array only contains
numbers in the range 0–9. Assume the numbers in the src are uniform randomly distributed, and
that the size of the src and dest arrays is specified with size argument. Note that each element in
the look-up table is a char which requires a single byte of storage. For this problem, assume that
the source and destination arrays contain on the order of hundreds of thousands of elements..

1 void num2char( char* dest, int* src, int n )
2 {
3 char lut[10] = { ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’ };
4 for ( int i = 0; i < n; i++ )
5 dest[i] = lut[ src[i] ];
6 }

In the table below, circle a number suggesting how much temporal/spatial locality is present in
the given memory access stream. Use 0 to indicate no locality and 5 to indicate very significant
locality. Provide a brief explanation of your answers.

Spatial locality in instruction stream 0 1 2 3 4 5
Temporal locality in instruction stream 0 1 2 3 4 5

Spatial locality in accesses to array src 0 1 2 3 4 5
Temporal locality in accesses to array src 0 1 2 3 4 5

Spatial locality in accesses to array dest 0 1 2 3 4 5
Temporal locality in accesses to array dest 0 1 2 3 4 5

Spatial locality in accesses to array lut 0 1 2 3 4 5
Temporal locality in accesses to array lut 0 1 2 3 4 5
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Part 1.B Linear Page Tables and TLBs

Consider the small-scale page-based memory translation system shown below. The memory sys-
tem uses byte addresses, 16-bit virtual addresses (i.e., we have 64KB of virtual memory), 20-bit
physical addresses (i.e., we have 1MB of physical memory), 4 KB pages, and two-entry fully asso-
ciative translation-lookaside buffers (TLBs) with LRU replacement.

Assume program A was running for some amount of time, was context swapped by the operating
system so that program B could run, and is now being context swapped back onto the processor.
This means that some amount of physical memory has already been allocated to program A and
the page table is already initialized and stored in physical memory. However, since a context swap
flushes the TLBs, all entries in both TLBs are now invalidated. The figure shows the state of the
system when we restart execution of program A. The page table starts at address 0xfffc0. L1 page-
table entries (PTEs) are four bytes: a valid bit, 11 bits that are always zero, and 20 bits for a physical
address that points to the corresponding L2 page-table. L2 PTEs are four bytes: a valid bit, 23 bits
that are always zero, and eight bits for the physical page number. A page-table base register is
already initialized to point to the base of the page table.
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Assume the following instructions are the first instructions executed after program A is context
swapped back onto the processor. Assume x2 is initially 0xe100, x4 is initially 0xe200, and x6 is
initially 0xf100.

1 0x1100 lw x1, 0(x2) # assume x2 is initially 0xe100
2 0x1104 lw x3, 0(x4) # assume x4 is initially 0xe200
3 0x1108 add x5, x1, x3
4 0x110c sw x5, 0(x6) # assume x6 is initially 0xf100

Fill in the following two tables to show the state of both the instruction and data TLB during the
given instruction sequence. We use a dash (–) to indicate an invalid TLB entry (recall that all TLB
entries are initially invalid). Fill in the VPN and page offset for each memory transaction before
updating the VPN and PPN of each TLB entry after each memory transaction. Indicate which
accesses result in a TLB miss or hit. Indicate the total number of memory accesses for each memory
transaction (i.e., include any accesses to the page tables and the actual access corresponding to the
memory transaction). You only need to fill in elements in the table when the value changes! Remember that
the TLB entries should reflect the state of the TLB before the corresponding transaction on that row executes!

Virtual Total Instruction TLB
Transaction Page Num Mem TLB Way 0 TLB Way 1

Address VPN Offset m/h Accesses VPN PPN VPN PPN

– – – –

In
st

ru
ct

io
n

T
LB

Virtual Total Data TLB
Transaction Page Num Mem TLB Way 0 TLB Way 1

Address VPN Offset m/h Accesses VPN PPN VPN PPN

– – – –

D
at

a
T

LB
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Part 1.C Linear Page Tables, Two-Level Page Tables, and TLBs

Consider three different page-based memory management units (MMUs): the MMU-1L design
uses a linear page table with no TLB; the MMU-2L design uses a two-level page table with no TLB;
and the MMU-TLB design uses a TLB to cache translations from a two-level page table. In all three
designs, the root of the current page table is stored in a page-table base register, while the rest of
the page table is stored in physical memory. For this problem, assume that there are no TLB misses
or virtual memory page faults.

Calculate the total number of memory accesses required to fetch and execute a single lw in-
struction using each of the three MMU designs. Remember that you must account for memory
accesses due to both the instruction fetch and the actual data memory access. Show your work,
explain your answers, and answer the final comparison question show below.

. How many memory accesses are required with the MMU-1L design?

. How many memory accesses are required with the MMU-2L design?

. How many memory accesses are required with the MMU-TLB design?

. Briefly compare the MMU-1L and MMU-2L designs in terms of the number of memory accesses
and the required space overhead.
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Problem 2. Augmenting L1 Cache with a L1.5 Cache

In this problem, you will explore the two memory systems shown in Figures 1 and 2. The baseline
design in Figure 1 uses a standard direct-mapped cache, while the alternative design in Figure 2
adds an L1.5 cache in between the L1 cache and main memory. For this problem we will only focus
on read transactions. In both designs, the L1 cache uses the following configuration:

• L1 Total Capacity : 256B cache
• L1 Cache Line Size : 16B cache lines
• L1 Num Cache Lines : 16
• L1 Hit Latency : 2 cycles
• L1 Style : direct mapped

As illustrated in Figure 1, an L1 miss in the baseline design results in a miss penalty of 10 cycles.
The L1.5 cache is a small fully associative cache with the following configuration:

• L1.5 Total Capacity : 32B cache
• L1.5 Cache Line Size : 16B cache lines
• L1.5 Num Cache Lines : 2
• L1.5 Hit Latency : 1 cycle
• L1.5 Style : fully associative
• L1.5 Replacement Policy : LRU

We are calling the second cache a L1.5 cache instead of an L2 cache because the L1.5 is actually
smaller than the L1; usually L2 caches are larger than the L1. On an L1 miss in the alternative
design, we will first check to see if there is a hit in the L1.5 cache before accessing main memory.
If there is a hit in the L1.5 cache then we do not need to access main memory and we can directly
bring the desired cache line into the L1 cache. If we miss in both the L1 and L1.5 caches, then we
bring the cache line into both the L1.5 cache and the L1 cache. As illustrated in Figure 2, the L1 miss
penalty in the alternative design depends on whether or not this L1 miss hits in the L1.5 cache or
also misses in the L1.5 cache. If the L1 miss hits in the L1.5 cache, then the L1 miss penalty is simply
the L1.5 hit latency (i.e., one cycle). If the L1 miss also misses in the L1.5 cache, then the L1 miss
penalty increases to 11 cycles.

We will examine these two memory systems as they execute the following transaction sequence.
All caches initially start with every cache line invalidated, and each access reads four bytes at the
given address. There are no write accesses, so there are no evictions. Assume that the transaction
pattern repeats such that the entire transaction sequence includes thousands of transactions.

1 0x1010, 0x2024, 0x3010, 0x2024,
2 0x1010, 0x2024, 0x3010, 0x2024,
3 0x1010, 0x2024, 0x3010, 0x2024, ...
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Figure 1: Baseline Design with L1 Cache
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Figure 2: Alternative Design with L1 and L1.5 Caches

L1 Hit Latency L1 Miss Penalty AMAL
Part Microarchitecture (cycles) L1 Miss Rate L1.5 Miss Rate (cycles) (cycles)

2.A L1 2 n/a

2.B L1 + L1.5 2

Figure 3: Memory Performance for Entire Sequence of Thousands of Transactions
on Two Different Microarchitectures
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Part 2.A Performance with L1 Cache (Weight: ×2)

In this part, we will estimate the average memory access latency in cycles for the transaction se-
quence shown above executing on the baseline design with just an L1 cache. Fill in the following
table to illustrate how the state of the L1 cache changes over time. Since there are 16 lines in the
L1 cache, you must specify the appropriate line index at the top of each column in the given boxes.
The latency column should indicate the total number of cycles required for that transaction. Use
a dash symbol (–) to indicate if the corresponding state is invalid. If the state of a cache line does
not change, then you can leave the corresponding entry blank. All addresses should be in hex. All
state should reflect the state before the transaction on that row executes! Fill in the appropriate row of
the table in Figure 3 considering the entire transaction sequence which includes thousands of
transactions. Please clearly explain how you calculate the miss rate and the miss penalty. You
must show your work and state any assumptions. The L1 miss rate is for the L1 cache in isolation
(ignoring what happens in the L1.5 cache).

L1 Cache

Transaction Set Index latency

Address tag idx m/h 0 (cycles)

0x1010

0x2024

0x3010

0x2024

0x1010

0x2024

0x3010

0x2024

0x1010

0x2024

0x3010

0x2024

...
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Part 2.B Performance with L1 Cache and L1.5 Cache (Weight: ×2)

In this part, we will estimate the average memory access latency in cycles for the transaction se-
quence shown above executing on the alternative design with an L1 cache and L1.5 cache. Fill in
the following table to illustrate how the state of the L1 and L1.5 caches change over time. Since
there are 16 lines in the L1 cache, you must specify the appropriate line index at the top of each
column in the given boxes. The latency column should indicate the total number of cycles required
for that transaction. Use a dash symbol (–) to indicate if the corresponding state is invalid. If the
state of a cache line does not change, then you can leave the corresponding entry blank. All ad-
dresses should be in hex. All state should reflect the state before the transaction on that row executes! Fill
in the appropriate row of the table in Figure 3 considering the thousands of transactions. Please
clearly explain how you calculate the miss rate and the miss penalty. You must show your work
and state any assumptions.

L1 Cache L1.5 Cache

Transaction Set Index Way Number latency

Address tag idx m/h 0 m/h 0 1 (cycles)

0x1010

0x2024

0x3010

0x2024

0x1010

0x2024

0x3010

0x2024

0x1010

0x2024

0x3010

0x2024

...
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Problem 3. TinyRV1 Instruction Cache

In this problem, we will be exploring adding an instruction cache to an TinyRV1 FSM processor.
We will be using the TinyRV1 assembly program shown in Figure 4. The first column shows the
instruction address for each instruction. Note that these addresses are byte addresses. The value
of x1 is initially 64, meaning that there are 64 iterations in the loop. In this problem, we will be
considering the execution of this loop with a direct-mapped instruction cache microarchitecture
with eight 16 B cache lines. This means each cache line can hold four instructions and the bottom
four bits of an instruction address are the block offset. Hint: The first instruction in Figure 4 (i.e., addi
x1, x1, -1), is in the middle of a cache line.

Part 3.A Categorizing Cache Misses

Create a table like the one shown in Figure 4. In the appropriate column, write compulsory,
conflict, or capacity next to each instruction which misses in the instruction cache to indicate the
type of instruction cache misses that occur in the first and second iteration of the loop. Assume that
the instruction cache is initially completely empty.

Part 3.B Average Memory Access Latency

Calculate the instruction cache miss rate for 64 iterations of the loop. Calculate the average
instruction cache memory access latency in cycles for 64 iterations of the loop. Assume the hit
time is one cycle and that the miss penalty is 15 cycles. You must show your work, especially the
various components of the average memory access latency. Remark on which kind of miss is
dominating the average memory access latency.

Part 3.C Set-Associativity

Qualitatively, predict how the cache performance would change if we replace the eight-entry,
direct-mapped cache with an eight-entry, two-way, set-associative cache. Both caches have a
one-cycle hit latency. What kind of misses would be present with this kind of cache microarchi-
tecture?

Addr Instruction Iteration 1 Iteration 2

loop:

0x108 addi x1, x1, -1

0x10c addi x2, x2, 1

0x110 jal x0, foo

...

foo:

0x218 addi x6, x6, 1

0x21c bne x1, x0, loop

Figure 4: Example TinyRV1 Assembly Loop
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Problem 4. Page-Based Memory Translation

In this problem, we will be exploring a small-scale page-based memory translation system that
uses 4 KB pages, a two-level page-table, and a two-entry translation-lookaside buffer (TLB). For all
parts, we will assume that all addresses are byte addresses, virtual addresses are 16 bits (i.e., we
have 64KB of virtual memory), and physical addresses are 20 bits (i.e., we have 1MB of physical
memory). We have more physical memory than virtual memory to enable multiple programs to be
resident in physical memory at the same time. While these small memory spaces are not realistic,
they will help simplify the problem.

Assume program A was running for some amount of time, was context swapped by the operating
system so that program B could run, and is now being context swapped back onto the processor.
This means that some amount of physical memory has already been allocated to program A and
the two-level page table is already initialized and stored in physical memory. However, since a
context swap flushes the TLB, all entries in the TLB are now invalidated. Figure 5 shows the state
of the system when we restart execution of program A. Note that only five virtual pages have been
allocated to program A; the remaining 11 virtual pages are unallocated. The L1 page table and each
L2 page table has four entries. The page tables are stored at the very top of the physical memory
address space. The L1 page table starts at address 0xffff0 and the L2 page tables are directly
below the L1 page table. All page-table entries (PTEs) are assumed to be four bytes: one valid bit,

Virtual Address
Space

Virtual
Page 1

0x0000

0x1000

0x2000

0x3000

0xe000

0xf000

0xffff

Virtual
Page 2

Virtual
Page 3

Virtual
Page 14

Virtual
Page 15

0x0000

0x1000

0xffff

code

data

heap

stack

0xfffff
Page

Tables

Physical
Page 0

Physical
Page 1

Physical
Page 4

Physical
Page 7

Physical
Page 5

0xff000

0x08000

0x07000

0x06000

0x05000

0x04000

0x03000

0x02000

0x01000

0x00000

Physical Address
Space

Virtual Address
Space Usage

0xfffff

0xffff0

0xfffe0

0xfffd0

0xfffc0

0xfffb0

Page
Tables

L1 Page
Table

L2 Page
Table

L2 Page
Table

L2 Page
Table

L2 Page
Table

4B Page Table Entry

Page Table
Base Register

0xffff0

Instruction
TLB

Data
TLB

V VPN PPN

TLB Entry

Register-Based
Architectural

State

Not
Alloc

Not
Alloc

Not
Alloc

1b

V 00000 ... 00000 PPN

4B Page Table Entry

23b 8b

Figure 5: Small-Scale Page-Based Memory Translation System
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11 bits that are always zero, and 20 bits for a physical address. A page-table base register is already
initialized to point to the base of the L1 page table.

Part 4.A Two-Level Page Tables

A two-level page table is a space-efficient way to
translate virtual addresses to physical addresses.
The L1 page table entries point to L2 page tables,
and the L2 page table entries point to the corre-
sponding page in physical memory. The virtual
address is used to “walk” the page table. Some
bits of the virtual address are used to index into
the L1 page table, different bits of the virtual ad-
dress are used to index into the L2 page table,
and finally the page offset bits are used to index
into the physical page. Clearly indicate which
bits of the virtual address are used for: (a) the
page offset, (b) the virtual page number, (c) in-
dexing into the L1 page table, and (d) indexing
into the L2 page table.

The L1 page table has four PTEs, and there are
four L2 page tables each with four PTEs for a
total of 20 PTEs. As discussed in lecture, these
page tables are stored in physical memory. Cre-
ate a table similar to the one shown in Figure 6
which shows the contents of physical memory
where the page tables for program A reside. We
have provided one page-table entry for the L1
page-table to get you started.

As an aside, we probably should not have pre-
allocated all five page tables! As you will see,
only a subset of these page tables actually need
to be allocated, so by pre-allocating all five pages
we have mitigated the key advantage of a two-
level page table compared to a one-level page ta-
ble. Please note that if all of the PTEs in a L2 page
table are invalid then then there should not be a
valid PTE entry in the L1 page table pointing to
this L2 page table. In other words, let’s try and
capture the idea that we would not really need
to allocate L2 page tables for which all entries
are invalid.

Page-Table Entry

Paddr Valid Ptr or PPN

0xffffc

0xffff8

0xffff4

0xffff0 1 0xfffb0

0xfffec

0xfffe8

0xfffe4

0xfffe0

0xfffdc

0xfffd8

0xfffd4

0xfffd0

0xfffcc

0xfffc8

0xfffc4

0xfffc0

0xfffbc

0xfffb8

0xfffb4

0xfffb0

Figure 6: Contents of Physical Memory
with Page Tables
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Part 4.B Translation-Lookaside Buffer

A two-level page table requires two additional memory accesses for every instruction or data mem-
ory request. A translation-lookaside buffer (TLB) can be used to cache translations and provide
single-cycle mappings between virtual to physical addresses. Each TLB entry includes a valid bit,
virtual page number (VPN), and physical page number (PPN). TLBs are usually flushed on a con-
text swap. This is one step in implementing memory protection. Flushing the TLB prevents one
program from accidentally using an old translation in the TLB to access physical memory allocated
to a different program. Unfortunately, this results in TLB misses when a program restarts execution.

We will assume that program A was in the middle of copying a large amount of data from the
stack to the heap when it was context swapped. Now that program A is restarting, it will continue
copying the data from the stack to the heap. This results in the following address stream:

0xeff4, 0x2ff0, 0xeff8, 0x2ff4, 0xeffc, 0x2ff8, 0xf000,
0x2ffc, 0xf004, 0x3000, 0xf008, 0x3004, 0xf00c, 0x3008

We will be focusing on a two-entry, fully associative TLB exclusively for data memory accesses
(i.e., instruction memory accesses use a different TLB). Assume the TLB uses a least-recently used
replacement policy. Create a table similar to the one shown in Figure 7 which shows the state of
the TLB during the given sequence of data memory request transactions. To get you started, we
have filled in the table for the first transaction. Use a dash (–) to indicate an invalid TLB entry (recall
that all TLB entries are initially invalid). Fill in the VPN and page offset for each transaction before
updating the VPN and PPN of each TLB entry after each transaction. Indicate which accesses result
in a TLB miss or hit. Indicate the total number of memory accesses for each transaction (i.e., include
any accesses to the page tables and the actual access corresponding to the memory transaction).
Include the total number of TLB misses and the TLB miss rate in your table. You only need to fill in
elements in the table when the value changes! Remember that the TLB entries should always reflect the state
of the TLB before the corresponding transaction on that row executes!

Total
Transaction Page Num Mem TLB Way 0 TLB Way 1

Address VPN Offset m/h Accesses VPN PPN VPN PPN

0xeff4 0xe 0xff4 m 3 – – – –

0x2ff0 ... 0xe 0x07

0xeff8 ...

Number of Misses =

Miss Rate =

Figure 7: TLB Contents Over Time
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