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1. Processor Microarchitectural Design Patterns 1.2. Transactions and Steps

1. Processor Microarchitectural Design Patterns

Time
Program

=
Instructions

Program
× Avg Cycles

Instruction
× Time

Cycle

• Instructions / program depends on source code, compiler, ISA
• Avg cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time

Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ≈1 short

1.1. Transactions and Steps

• We can think of each instruction as a transaction
• Executing a transaction involves a sequence of steps

add addi mul lw sw jal jr bne

Fetch Instruction 3 3 3 3 3 3 3 3

Decode Instruction 3 3 3 3 3 3 3 3

Read Register File 3 3 3 3 3 3 3

Register Arithmetic 3 3 3 3 3 3

Read Memory 3

Write Memory 3

Write Register File 3 3 3 3 3

Update PC 3 3 3 3 3 3 3 3
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1. Processor Microarchitectural Design Patterns1.2. Microarchitecture: Control/Datapath Split

1.2. Microarchitecture: Control/Datapath Split

Control Signals Status Signals

Control Unit
 

Datapath
 

imem
req_val

imem
req

imem
resp

 

dmem
req_val

dmem
req

dmem
resp

Memory
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2. TinyRV1 Single-Cycle Processor 2.1. High-Level Idea for Single-Cycle Processors

2. TinyRV1 Single-Cycle Processor

Time
Program

=
Instructions

Program
× Avg Cycles

Instruction
× Time

Cycle

• Instructions / program depends on source code, compiler, ISA
• Avg cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time

Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ≈1 short

Technology Constraints

• Assume technology where
logic is not too expensive, so
we do not need to overly
minimize the number of
registers and combinational
logic

• Assume multi-ported register
file with a reasonable number
of ports is feasible

• Assume a dual-ported
combinational memory

Control Status

Control Unit
 

Datapath
 

<1 cycle
combinational

Memory
 

regfile

imem
req

imem
resp

dmem
req

dmem
resp
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2. TinyRV1 Single-Cycle Processor 2.1. High-Level Idea for Single-Cycle Processors

2.1. High-Level Idea for Single-Cycle Processors

add addi mul lw sw jal jr bne

Fetch Instruction 3 3 3 3 3 3 3 3

Decode Instruction 3 3 3 3 3 3 3 3

Read Register File 3 3 3 3 3 3 3

Register Arithmetic 3 3 3 3 3 3

Read Memory 3

Write Memory 3

Write Register File 3 3 3 3 3

Update PC 3 3 3 3 3 3 3 3

Fetch
Inst

lw

Decode
Inst

Reg
Arith

Read
Mem

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

add

Decode
Inst

Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PC

jal

S
in
g
le
-C
y
cl
e

Write
Reg
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2. TinyRV1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

2.2. Single-Cycle Processor Datapath

pc

regfile
(read)

regfile
(write)

0000000 000rs1rs2 rd 0110011

067111214151920242531ADD

add rd, rs1, rs2

R[rd] ← R[rs1] + R[rs2]
PC ← PC + 4  

pc

regfile
(read)

regfile
(write)

000rs1 rd 0010011

06711121415192031

imm

ADDI

addi rd, rs1, imm

R[rd] ← R[rs1] + sext(imm)
PC ← PC + 4  
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2. TinyRV1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

Implementing ADD and ADDI Instructions

pc

regfile
(read)

regfile
(write)

pc_plus4

+4

al
u

ir[24:20]

ir[19:15]

imemreq.
addr

To control unit

imemresp.
data

ir[11:7]

op2_sel

imm
genir[31:7]

pc

regfile
(read)

regfile
(write)

pc_plus4

+4

al
u

ir[24:20]

ir[19:15]

imemreq.
addr

To control unit

imemresp.
data

ir[11:7]

op2_sel

imm
genir[31:7]

m
u

l

wb_sel

0000001 000rs1rs2 rd 0110011

067111214151920242531MUL

mul rd, rs1, rs2

R[rd] ← R[rs1] × R[rs2]
PC ← PC + 4  
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2. TinyRV1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

pc

regfile
(read)

regfile
(write)

pc_plus4

+4

al
u

ir[24:20]

ir[19:15]

imemreq.
addr

To control unit

imemresp.
data

ir[11:7]

op2_sel

imm
genir[31:7]

m
u

l

wb_sel

dmemreq.
addr

dmemresp.
data

010rs1 rd 0000011

06711121415192031

imm

LW

lw rd, imm(rs1)

R[rd] ← M[ R[rs1] + sext(imm) ]
PC ← PC + 4

pc

regfile
(read)

regfile
(write)

pc_plus4

+4

al
u

ir[24:20]

ir[19:15]

imemreq.
addr

To control unit

imemresp.
data

ir[11:7]

op2_sel

imm
genir[31:7]

m
u

l

wb_sel

dmemreq.
addr

dmemresp.
data

dmemreq.
data

imm_type

rf_wen

010rs1 imm 0100011

06711121415192031

imm rs2

2425SW

sw rs2, imm(rs1)

M[ R[rs1] + sext(imm) ] ← R[rs2]
PC ← PC + 4

imm = { inst[31:25], inst[11:7] }
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2. TinyRV1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

pc

regfile
(read)

regfile
(write)

pc_plus4

+4

al
u

ir[24:20]

ir[19:15]

imemreq.
addr

To control unit

imemresp.
data

ir[11:7]

op2_sel

imm
genir[31:7]

m
u

l

wb_sel

dmemreq.
addr

dmemresp.
data

dmemreq.
data

imm_type

rf_wen

+
pc_sel

jalbr_targ

alu_func

rd 1101111

067111231

imm

JAL

jal rd, imm

R[rd] ← PC + 4
PC ← PC + sext(imm)

imm = { inst[31], inst[19:12],
inst[20], inst[30:21], 0 }

pc

regfile
(read)

regfile
(write)

pc_plus4

+4

al
u

ir[24:20]

ir[19:15]

imemreq.
addr

To control unit

imemresp.
data

ir[11:7]

op2_sel

imm
genir[31:7]

m
u

l

wb_sel

dmemreq.
addr

dmemresp.
data

dmemreq.
data

imm_type

rf_wen

+

pc_sel

jalbr_targ

alu_func

jr_targ

000rs1 1100111

06711121415192031

00000000000000000

JR

jr rs1

PC ← R[rs1]
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2. TinyRV1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

pc

regfile
(read)

regfile
(write)

pc_plus4

+4

al
u

ir[24:20]

ir[19:15]

imemreq.
addr

To control unit

imemresp.
data

ir[11:7]

op2_sel

imm
genir[31:7]

m
u

l

wb_sel

dmemreq.
addr

dmemresp.
data

dmemreq.
data

imm_type

rf_wen

+
pc_sel

jalbr_targ

alu_func

jr_targ

eq

001rs1 1100011

06711121415192031

rs2

2425

immimm

BNE

bne rs1, rs2, imm

if ( R[rs1] != R[rs2] )  PC ← PC + sext(imm)
else                                  PC ← PC + 4
 

imm = { inst[31], inst[7],
inst[30:25], inst[11:8], 0 }
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2. TinyRV1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

Adding a New Auto-Incrementing Load Instruction

Draw on the datapath diagram what paths we need to use as well as
any new paths we will need to add in order to implement the following
auto-incrementing load instruction.

pc

regfile
(read)

regfile
(write)

pc_plus4

+4

al
u

ir[24:20]

ir[19:15]

imemreq.
addr

To control unit

imemresp.
data

ir[11:7]

op2_sel

imm
genir[31:7]

m
u

l

wb_sel

dmemreq.
addr

dmemresp.
data

dmemreq.
data

imm_type

rf_wen

+

pc_sel

jalbr_targ

alu_func

jr_targ

eq

000rs1 rd 0001011

06711121415192031

imm

LW.AI

lw.ai rd, imm(rs1)

R[rd] ← M[ R[rs1] + sext(imm) ]
R[rs1] ← R[rs1] + 4
PC ← PC + 4
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2. TinyRV1 Single-Cycle Processor 2.3. Single-Cycle Processor Control Unit

2.3. Single-Cycle Processor Control Unit

imem dmem
pc imm op2 alu wb rf req req

inst sel type sel func sel wen val val

add pc+4 – rf + alu 1 1 0

addi

mul pc+4 – – – mul 1 1 0

lw pc+4 i imm + mem 1 1 1

sw

jal

jr jr – – – – 0 1 0

bne

Need to factor eq status signal into pc_sel signal for BNE!

2.4. Analyzing Performance

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

• Instructions / program depends on source code, compiler, ISA
• Cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation
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2. TinyRV1 Single-Cycle Processor 2.4. Analyzing Performance

Estimating cycle time

There are many paths through the design that start at a state element
and end at a state element. The “critical path” is the longest path across
all of these paths. We can usually use a simple first-order static timing
estimate to estimate the cycle time (i.e., the clock period and thus also
the clock frequency).

pc

regfile
(read)

regfile
(write)

pc_plus4

+4

al
u

ir[24:20]

ir[19:15]

imemreq.
addr

To control unit

imemresp.
data

ir[11:7]

op2_sel

imm
genir[31:7]

m
u

l

wb_sel

dmemreq.
addr

dmemresp.
data

dmemreq.
data

imm_type

rf_wen

+

pc_sel

jalbr_targ

alu_func

jr_targ

eq

• register read = 1τ

• register write = 1τ

• regfile read = 10τ

• regfile write = 10τ

• memory read = 20τ

• memory write = 20τ

• +4 unit = 4τ

• immgen = 2τ

• mux = 3τ

• multiplier = 20τ

• alu = 10τ

• adder = 8τ
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2. TinyRV1 Single-Cycle Processor 2.4. Analyzing Performance

Estimating execution time

Using our first-order equation for processor performance, how long in
units of τ will it take to execute the vector-vector add example
assuming n is 64?

loop:
lw x5, 0(x12)
lw x6, 0(x13)
add x7, x5, x6
sw x7, 0(x11)
addi x12, x12, 4
addi x13, x13, 4
addi x11, x11, 4
addi x14, x14, -1
bne x14, x0, loop
jr x1

Using our first-order equation for processor performance, how long in
units of τ will it take to execute the mystery program assuming n is 64
and that we find a match on the last element.

addi x5, x0, 0
loop:
lw x6, 0(x12)
bne x6, x14, foo
addi x10, x5, 0
jr x1

foo:
addi x12, x12, 4
addi x5, x5, 1
bne x5, x13, loop
addi x10, x0, -1
jr x1

Topic 2: Processor Microarchitecture 15



3. TinyRV1 FSM Processor 3.1. High-Level Idea for FSM Processors

3. TinyRV1 FSM Processor

Time
Program

=
Instructions

Program
× Avg Cycles

Instruction
× Time

Cycle

• Instructions / program depends on source code, compiler, ISA
• Avg cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time

Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ≈1 short

Technology Constraints

• Assume legacy technology
where logic is expensive, so
we want to minimize the
number of registers and
combinational logic

• Assume an (unrealistic)
combinational memory

• Assume multi-ported register
files and memories are too
expensive, these structures
can only have a single
read/write port

Control Status

Control Unit
 

Datapath
 

<1 cycle
combinational

Memory
 

regfile

mem
req

mem
resp
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3. TinyRV1 FSM Processor 3.1. High-Level Idea for FSM Processors

3.1. High-Level Idea for FSM Processors

add addi mul lw sw jal jr bne

Fetch Instruction 3 3 3 3 3 3 3 3

Decode Instruction 3 3 3 3 3 3 3 3

Read Register File 3 3 3 3 3 3 3

Register Arithmetic 3 3 3 3 3 3

Read Memory 3

Write Memory 3

Write Register File 3 3 3 3 3

Update PC 3 3 3 3 3 3 3 3

Fetch
Inst

lw

Decode
Inst

Reg
Arith

Read
Mem

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

add

Decode
Inst

Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PC

jal

S
in
g
le
-C
y
cl
e

Write
Reg

jal

Fetch
Inst

lw

Decode
Inst

Reg
Arith

Read
Mem

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

add

Decode
Inst

Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PCF

S
M

Write
Reg

3.2. FSM Processor Datapath

Implementing an FSM datapath requires thinking about the required
FSM states, but we will defer discussion of how to implement the
control logic to the next section.
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3. TinyRV1 FSM Processor 3.2. FSM Processor Datapath

Implementing Fetch Sequence

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

F0

F1

F2

(pseudo-control-signal syntax)
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3. TinyRV1 FSM Processor 3.2. FSM Processor Datapath

Implementing ADD Instruction

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func
 

alu

rf_addr
_sel

rs1
rs2
rd

A + 4
 

+4:
  A + B+:

F0

F1

F2

A0

A1

A2

(pseudo-control-signal syntax)
add rd, rs1, rs2
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3. TinyRV1 FSM Processor 3.2. FSM Processor Datapath

Full Datapath for TinyRV1 FSM Processor

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func
 

alu

rf_addr
_sel

rs1
rs2
rd

A + 4
 

+4:
  A + B+:

sext
imm

immgen_
bus_en

>>

b_sel

>>
C

c_sel
c_en

x0

A +? B
 

+?:
 

memreq.
data

WD

wd_en

imm_
type

imm gen
 

imm
gen

 

A == Bcmp:

sext(IR[31:20])i: 
sext({IR[31:25],IR[11:7]})s:
sext({IR[31],IR[7],IR[30:25],IR[11:8],0})b:
sext({IR[31],IR[19:12],IR[20],IR[30:21],0})j:

alu_
bus_en

eq

A − 4
 

−4:
 

F0

F1

F2

A0

A1

A2

AI0

AI1

AI2

M0

M1

M2

M35

M3

L0

L1

L2

L3

S0

S1

S2

S3

JA0

JA1

JA2

JR0 B0

B1

B2

B3

B4

B5

ADDI Pseudo-Control-Signal
Fragment

addi rd, rs1, imm
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3. TinyRV1 FSM Processor 3.2. FSM Processor Datapath

MUL Instruction

mul rd, rs1, rs2

M0: A← RF[x0]
M1: B← RF[rs1]
M2: C← RF[rs2]
M3: A← A +? B;

B← B << 1; C← C >> 1
M4: A← A +? B;

B← B << 1; C← C >> 1
...

M35: RF[rd]← A +? B; goto F0

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func
 

alu

rf_addr
_sel

rs1
rs2
rd

A + 4
 

+4:
  A + B+:

sext
imm

immgen_
bus_en

>>

b_sel

>>
C

c_sel
c_en

x0

A +? B
 

+?:
 

memreq.
data

WD

wd_en

imm_
type

imm gen
 

imm
gen

 

A == Bcmp:

sext(IR[31:20])i: 
sext({IR[31:25],IR[11:7]})s:
sext({IR[31],IR[7],IR[30:25],IR[11:8],0})b:
sext({IR[31],IR[19:12],IR[20],IR[30:21],0})j:

alu_
bus_en

eq

A − 4
 

−4:
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3. TinyRV1 FSM Processor 3.2. FSM Processor Datapath

LW Instruction

lw rd, imm(rs1)

L0: A← RF[rs1]
L1: B← sext(imm_i)
L2: memreq.addr← A + B
L3: RF[rd]← RD; goto F0

SW Instruction

sw rs2, imm(rs1)

S0: WD← RF[rs2]
S1: A← RF[rs1]
S2: B← sext(imm_s)
S3: memreq.addr← A + B; goto F0

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func
 

alu

rf_addr
_sel

rs1
rs2
rd

A + 4
 

+4:
  A + B+:

sext
imm

immgen_
bus_en

>>

b_sel

>>
C

c_sel
c_en

x0

A +? B
 

+?:
 

memreq.
data

WD

wd_en

imm_
type

imm gen
 

imm
gen

 

A == Bcmp:

sext(IR[31:20])i: 
sext({IR[31:25],IR[11:7]})s:
sext({IR[31],IR[7],IR[30:25],IR[11:8],0})b:
sext({IR[31],IR[19:12],IR[20],IR[30:21],0})j:

alu_
bus_en

eq

A − 4
 

−4:
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3. TinyRV1 FSM Processor 3.2. FSM Processor Datapath

JAL Instruction

jal rd, imm

JA0: RF[rd]← PC
JA1: B← sext(imm_j)
JA2: PC← A + B; goto F0

JR Instruction

jr rs1

JR0: PC← RF[rs1]; goto F0

BNE Instruction

bne rs1, rs2, imm

B0: A← RF[rs1]
B1: B← RF[rs2]
B2: B← sext(imm_b);

if A == B goto F0
B3: A← PC
B4: A← A − 4
B5: PC← A + B; goto F0
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3. TinyRV1 FSM Processor 3.2. FSM Processor Datapath

Adding a Complex Instruction

FSM processors simplify adding complex instructions. New instructions
usually do not require datapath modifications, only additional states.

add.mm rd, rs1, rs2

M[ R[rd] ]←M[ R[rs1] ] + M[ R[rs2] ]

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func
 

alu

rf_addr
_sel

rs1
rs2
rd

A + 4
 

+4:
  A + B+:

sext
imm

immgen_
bus_en

>>

b_sel

>>
C

c_sel
c_en

x0

A +? B
 

+?:
 

memreq.
data

WD

wd_en

imm_
type

imm gen
 

imm
gen

 

A == Bcmp:

sext(IR[31:20])i: 
sext({IR[31:25],IR[11:7]})s:
sext({IR[31],IR[7],IR[30:25],IR[11:8],0})b:
sext({IR[31],IR[19:12],IR[20],IR[30:21],0})j:

alu_
bus_en

eq

A − 4
 

−4:
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3. TinyRV1 FSM Processor 3.2. FSM Processor Datapath

Adding a New Auto-Incrementing Load Instruction

Implement the following auto-incrementing load instruction using
pseudo-control-signal syntax. Modify the datapath if necessary.

lw.ai rd, imm(rs1)

R[rd]←M[ R[rs1] + sext(imm_i) ]; R[rs1]← R[rs1] + 4

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func
 

alu

rf_addr
_sel

rs1
rs2
rd

A + 4
 

+4:
  A + B+:

sext
imm

immgen_
bus_en

>>

b_sel

>>
C

c_sel
c_en

x0

A +? B
 

+?:
 

memreq.
data

WD

wd_en

imm_
type

imm gen
 

imm
gen

 

A == Bcmp:

sext(IR[31:20])i: 
sext({IR[31:25],IR[11:7]})s:
sext({IR[31],IR[7],IR[30:25],IR[11:8],0})b:
sext({IR[31],IR[19:12],IR[20],IR[30:21],0})j:

alu_
bus_en

eq

A − 4
 

−4:
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3. TinyRV1 FSM Processor 3.3. FSM Processor Control Unit

3.3. FSM Processor Control Unit

F0

F1

F2

A0

A1

A2

AI0

AI1

AI2

M0

M1

M2

M35

M3

L0

L1

L2

L3

S0

S1

S2

S3

JA0

JA1

JA2

JR0 B0

B1

B2

B3

B4

B5

Hardwired control unit:
high-performance, but inflexible

Hardwired FSM

State

Control
Signal
Logic

State
Transition

Logic

Control Signals
(22)

Status Signals
(1)
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3. TinyRV1 FSM Processor 3.3. FSM Processor Control Unit

Control signal output table for hardwired control unit

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func
 

alu

rf_addr
_sel

rs1
rs2
rd

A + 4
 

+4:
  A + B+:

sext
imm

immgen_
bus_en

>>

b_sel

>>
C

c_sel
c_en

x0

A +? B
 

+?:
 

memreq.
data

WD

wd_en

imm_
type

imm gen
 

imm
gen

 

A == Bcmp:

sext(IR[31:20])i: 
sext({IR[31:25],IR[11:7]})s:
sext({IR[31],IR[7],IR[30:25],IR[11:8],0})b:
sext({IR[31],IR[19:12],IR[20],IR[30:21],0})j:

alu_
bus_en

eq

A − 4
 

−4:
 

F0: memreq.addr← PC; A← PC
F1: IR← RD
F2: PC← A + 4; goto inst

A0: A← RF[rs1]
A1: B← RF[rs2]
A2: RF[rd]← A + B; goto F0

Bus Enables Register Enables Mux Func RF MReq

state pc ig alu rf rd pc ir a b c wd b c ig alu sel wen val op

F0 1 0 0 0 0 0 0 1 0 0 0 – – – – – 0 1 r

F1 0 0 0 0 1 0 1 0 0 0 0 – – – – – 0 0 –

F2 0 0 1 0 0 1 0 0 0 0 0 – – – +4 – 0 0 –

A0

A1

A2
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3. TinyRV1 FSM Processor 3.4. Analyzing Performance

3.4. Analyzing Performance

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

Estimating cycle time

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func
 

alu

rf_addr
_sel

rs1
rs2
rd

A + 4
 

+4:
  A + B+:

sext
imm

immgen_
bus_en

>>

b_sel

>>
C

c_sel
c_en

x0

A +? B
 

+?:
 

memreq.
data

WD

wd_en

imm_
type

imm gen
 

imm
gen

 

A == Bcmp:

sext(IR[31:20])i: 
sext({IR[31:25],IR[11:7]})s:
sext({IR[31],IR[7],IR[30:25],IR[11:8],0})b:
sext({IR[31],IR[19:12],IR[20],IR[30:21],0})j:

alu_
bus_en

eq

A − 4
 

−4:
 

• register read/write = 1τ

• regfile read/write = 10τ

• mem read/write = 20τ

• immgen = 2τ

• mux = 3τ

• alu = 10τ

• 1b shifter = 1τ

• tri-state buf = 1τ

Topic 2: Processor Microarchitecture 28



3. TinyRV1 FSM Processor 3.4. Analyzing Performance

Estimating execution time

Using our first-order equation for processor performance, how long in
units of τ will it take to execute the vector-vector add example
assuming n is 64?

loop:
lw x5, 0(x12)
lw x6, 0(x13)
add x7, x5, x6
sw x7, 0(x11)
addi x12, x12, 4
addi x13, x13, 4
addi x11, x11, 4
addi x14, x14, -1
bne x14, x0, loop
jr x1

Using our first-order equation for processor performance, how long in
units of τ will it take to execute the mystery program assuming n is 64
and that we find a match on the last element.

addi x5, x0, 0
loop:
lw x6, 0(x12)
bne x6, x14, foo
addi x10, x5, 0
jr x1

foo:
addi x12, x12, 4
addi x5, x5, 1
bne x5, x13, loop
addi x10, x0, -1
jr x1
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4. TinyRV1 Pipelined Processor 4.1. High-Level Idea for Pipelined Processors

4. TinyRV1 Pipelined Processor

Time
Program

=
Instructions

Program
× Avg Cycles

Instruction
× Time

Cycle

• Instructions / program depends on source code, compiler, ISA
• Avg cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time

Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ≈1 short

Technology Constraints

• Assume modern technology
where logic is cheap and fast
(e.g., fast integer ALU)

• Assume multi-ported register
files with a reasonable
number of ports are feasible

• Assume small amount of very
fast memory (I & D caches)
backed by large, slower
memory

Control Status

Control Unit
 

Datapath
 

<1 cycle
combinational

Memory
 

regfile

imem
req

imem
resp

dmem
req

dmem
resp
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4. TinyRV1 Pipelined Processor 4.1. High-Level Idea for Pipelined Processors

4.1. High-Level Idea for Pipelined Processors

• Anne, Brian, Cathy, and Dave each have one load of clothes
• Washing, drying, folding, and storing each take 30 minutes

7pm 8pm 9pm 10pm 11pm 12am 1am 2am 3am

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Pipelined Laundry with Slow Dryers

Anne's
Load

7pm 8pm 9pm

Ben's
Load

Cathy's
Load

Dave's
Load

7pm 8pm 9pm 10pm 11pm

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Fixed Time-Slot Laundry

Pipelined Laundry
10pm 12am

Pipelining lessons

• Multiple transactions operate simultaneously using different resources
• Pipelining does not help the transaction latency
• Pipelining does help the transaction throughput
• Potential speedup is proportional to the number of pipeline stages
• Potential speedup is limited by the slowest pipeline stage
• Potential speedup is reduced by time to fill the pipeline
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4. TinyRV1 Pipelined Processor 4.1. High-Level Idea for Pipelined Processors

Applying pipelining to processors

add addi mul lw sw jal jr bne

Fetch Instruction 3 3 3 3 3 3 3 3

Decode Instruction 3 3 3 3 3 3 3 3

Read Registers 3 3 3 3 3 3 3

Register Arithmetic 3 3 3 3 3 3

Read Memory 3

Write Memory 3

Write Registers 3 3 3 3 3

Update PC 3 3 3 3 3 3 3 3

Fetch
Inst

lw

Decode
Inst

Reg
Arith

Read
Mem

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

add

Decode
Inst

Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PC

jal

S
in
g
le
-C
y
cl
e

Write
Reg

jal

Fetch
Inst

lw

Decode
Inst

Reg
Arith

Read
Mem

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

add

Decode
Inst

Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PCF

S
M

Write
Reg

Fetch
Inst

lw

Decode
Inst

Reg
Arith

Read
Mem

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PC

add

jal

P
ip
el
in
ed

Write
Reg
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4. TinyRV1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

4.2. Pipelined Processor Datapath and Control Unit
• Incrementally develop an unpipelined datapath
• Keep data flowing from left to right
• Position control signal table early in the diagram
• Divide datapath/control into stages by inserting pipeline registers
• Keep the pipeline stages roughly balanced
• Forward arrows should avoid “skipping” pipeline registers
• Backward arrows will need careful consideration

pc_plus4

result_sel_X

ir[31:0]

jr

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen
a
lu

m
u

l

op1_sel_D

+

alu_fn_X
op2_sel_D

pc_sel_F

jbtarg

imemreq.
addr

imemresp.
data

dmemreq.
addr

dmemreq.
data

dmemresp.
data

F D X M W

F D X M W

F D X M W

addi x1, x2, 1

addi x3, x4, 1

addi x5, x6, 1
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4. TinyRV1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

Adding a new auto-incrementing load instruction

Draw on the above datapath diagram what paths we need to use as well
as any new paths we will need to add in order to implement the
following auto-incrementing load instruction.

lw.ai rd, imm(rs1)

R[rd]←M[ R[rs1] + sext(imm) ]; R[rs1]← R[rs1] + 4

pc_plus4

result_sel_X

ir[31:0]

jr

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen
a
lu

m
u

l

op1_sel_D

+

alu_fn_X
op2_sel_D

pc_sel_F

jbtarg

ir_FD

result
_XM

F Stage D Stage X Stage M Stage W Stage

cs_DX cs_XM cs_MW

sd_XM

result
_XM

result
_MW

pc_F pc_FD

val_DX val_XM val_MWval_FD

val_F

Control
Logic

Control
Logic

Control
Logic

op1_DX

sd_DX

btarg_DX

op2_DX

always pc_plus4

btarg
jtarg
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4. TinyRV1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

Pipeline diagrams

addi x1, x2, 1

addi x3, x4, 1

addi x5, x6, 1

What would be the total execution time if these three instructions were
repeated 10 times?

Hazards occur when instructions interact with each other in pipeline

• RAW Data Hazards: An instruction depends on a data value
produced by an earlier instruction

• Control Hazards: Whether or not an instruction should be executed
depends on a control decision made by an earlier instruction

• Structural Hazards: An instruction in the pipeline needs a resource
being used by another instruction in the pipeline

• WAW and WAR Name Hazards: An instruction in the pipeline is
writing a register that an earlier instruction in the pipeline is either
writing or reading

Some solutions: Stalling and squashing instructions

• Stalling: An instruction originates a stall due to a hazard, causing all
instructions earlier in the pipeline to also stall. When the hazard is
resolved, the instruction no longer needs to stall and the pipeline
starts flowing again.

• Squashing: An instruction originates a squash due to a hazard, and
squashes all previous instructions in the pipeline (but not itself). We
restart the pipeline to begin executing a new instruction sequence.
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4. TinyRV1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

Control logic with no stalling and no squashing

Stage A
Datapath
Logic

Stage B
Datapath
Logic

Stage C
Datapath
Logic

Stage A
Control
Logic

Stage B
Control
Logic

Stage C
Control
Logic

always_ff @( posedge clk )
if ( reset )

val_B <= 0
else

val_B <= next_val_A

next_val_B = val_B

Control logic with stalling and no squashing

Stage A
Control
Logic

Stage A
Datapath

Logic

Stage B
Control
Logic

Stage C
Control
Logic

Stage B
Datapath

Logic

Stage C
Datapath

Logic

control, ostall signals

reg_en_B

val_B
next_
val_B

reg_en_B = !stall_B

always_ff @( posedge clk )
if ( reset )

val_B <= 0
else if ( reg_en_B )

val_B <= next_val_A

ostall_B = val_B && ( ostall_hazard1_B || ostall_hazard2_B )

stall_B = val_B && ( ostall_B || ostall_C || ... )

next_val_B = val_B && !stall_B

ostall_B Originating stall due to hazards detected in B stage.

stall_B Should we actually stall B stage? Factors in ostalls due to hazards
and ostalls from later pipeline stages.

next_val_B Only send transaction to next stage if transaction in B stage is valid
and we are not stalling B stage.
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4. TinyRV1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

Control logic with stalling and squashing

Stage A
Control
Logic

Stage A
Datapath

Logic

Stage B
Control
Logic

Stage C
Control
Logic

Stage B
Datapath

Logic

Stage C
Datapath

Logic

control, ostall signals

reg_en_B

val_B
next_
val_B

control, ostall, osquash signals

reg_en_B = !stall_B
|| squash_B

always_ff @( posedge clk )
if ( reset )

val_B <= 0
else if ( reg_en_B )

val_B <= next_val_A

ostall_B = val_B && ( ostall_hazard1_B || ostall_hazard2_B )

stall_B = val_B && ( ostall_B || ostall_C || ... )

osquash_B = val_B && !stall_B && ( osquash_hazard1_B || ... )

squash_B = val_B && ( osquash_C || ... )

next_val_B = val_B && !stall_B && !squash_B

ostall_B Originating stall due to hazards detected in B stage.

stall_B Should we actually stall B stage? Factors in ostalls due to hazards
and ostalls from later pipeline stages.

osquash_B Originating squash due to hazards detected in B stage. If this stage
is stalling, do not originate a squash.

squash_B Should we squash B stage? Factors in the originating squashes
from later pipeline stages. An originating squash from B stage
means to squash all stages earlier than B, so osquash_B is not
factored into squash_B.

next_val_B Only send transaction to next stage if transaction in B stage is valid
and we are not stalling or squashing B stage.
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5. Pipeline Hazards: RAW Data Hazards

5. Pipeline Hazards: RAW Data Hazards

RAW data hazards occur when one instruction depends on a data value
produced by a preceding instruction still in the pipeline. We use
architectural dependency arrows to illustrate RAW dependencies in
assembly code sequences.

addi x1, x2, 1

addi x3, x1, 1

addi x4, x3, 1

Using pipeline diagrams to illustrate RAW hazards

We use microarchitectural dependency arrows to illustrate RAW
hazards on pipeline diagrams.

F D X M W

F D X M W

F D X M W

addi x1, x2, 1

addi x3, x1, 1

addi x4, x3, 1

addi x1, x2, 1

addi x3, x1, 1

addi x4, x3, 1
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5. Pipeline Hazards: RAW Data Hazards

Approaches to resolving data hazards

• Expose in Instruction Set Architecture: Expose data hazards in ISA
forcing compiler to explicitly avoid scheduling instructions that
would create hazards (i.e., software scheduling for correctness)

• Hardware Scheduling: Hardware dynamically schedules
instructions to avoid RAW hazards, potentially allowing
instructions to execute out of order

• Hardware Stalling: Hardware includes control logic that freezes
later instructions until earlier instruction has finished producing
data value; software scheduling can still be used to avoid stalling
(i.e., software scheduling for performance)

• Hardware Bypassing/Forwarding: Hardware allows values to be
sent from an earlier instruction to a later instruction before the
earlier instruction has left the pipeline (sometimes called forwarding)

• Hardware Speculation: Hardware guesses that there is no hazard
and allows later instructions to potentially read invalid data; detects
when there is a problem, squashes and then re-executes instructions
that operated on invalid data
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5. Pipeline Hazards: RAW Data Hazards 5.1. Expose in Instruction Set Architecture

5.1. Expose in Instruction Set Architecture

Insert nops to delay read of earlier
write. These nops count as real
instructions increasing
instructions per program.

addi x1, x2, 1
nop
nop
nop
addi x3, x1, 1
nop
nop
nop
addi x4, x3, 1

Insert independent instructions to
delay read of earlier write, and
only use nops if there is not
enough useful work

addi x1, x2, 1
addi x6, x7, 1
addi x8, x9, 1
nop
addi x3, x1, 1
nop
nop
nop
addi x4, x3, 1

Pipeline diagram showing exposing RAW data hazards in the ISA

addi x1, x2, 1

addi x6, x7, 1

addi x8, x9, 1

nop

addi x3, x1, 1

nop

nop

nop

addi x4, x3, 1

Note: If hazard is exposed in ISA, software scheduling is required for
correctness! A scheduling mistake can cause undefined behavior.
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5. Pipeline Hazards: RAW Data Hazards 5.2. Hardware Stalling

5.2. Hardware Stalling

Hardware includes control logic that freezes later instructions (in front
of pipeline) until earlier instruction (in back of pipeline) has finished
producing data value.

Pipeline diagram showing hardware stalling for RAW data hazards

addi x1, x2, 1

addi x3, x1, 1

addi x4, x3, 1

Note: Software scheduling is not required for correctness, but can
improve performance! Programmer or compiler schedules independent
instructions to reduce the number of cycles spent stalling.

Modifications to datapath/control to support hardware stalling
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5. Pipeline Hazards: RAW Data Hazards 5.3. Hardware Bypassing/Forwarding

Deriving the stall signal

add addi mul lw sw jal jr bne

rs1_en

rs2_en

rf_wen

ostall_waddr_X_rs1_D =
val_D && rs1_en_D && val_X && rf_wen_X

&& (inst_rs1_D == rf_waddr_X) && (rf_waddr_X != 0)

ostall_waddr_M_rs1_D =
val_D && rs1_en_D && val_M && rf_wen_M

&& (inst_rs1_D == rf_waddr_M) && (rf_waddr_M != 0)

ostall_waddr_W_rs1_D =
val_D && rs1_en_D && val_W && rf_wen_W

&& (inst_rs1_D == rf_waddr_W) && (rf_waddr_W != 0)

... similar for ostall signals for rs2 source register ...

ostall_D = val_D
&& ( ostall_waddr_X_rs1_D || ostall_waddr_X_rs2_D

|| ostall_waddr_M_rs1_D || ostall_waddr_M_rs2_D
|| ostall_waddr_W_rs1_D || ostall_waddr_W_rs2_D )

5.3. Hardware Bypassing/Forwarding

Hardware allows values to be sent from an earlier instruction (in back
of pipeline) to a later instruction (in front of pipeline) before the earlier
instruction has left the pipeline. Sometimes called “forwarding”.
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5. Pipeline Hazards: RAW Data Hazards 5.3. Hardware Bypassing/Forwarding

Pipeline diagram showing hardware bypassing for RAW data hazards

addi x1, x2, 1

addi x3, x1, 1

addi x4, x3, 1

Adding single bypass path to support limited hardware bypassing
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Deriving the bypass and stall signals

ostall_waddr_X_rs1_D = 0
bypass_waddr_X_rs1_D =

val_D && rs1_en_D && val_X && rf_wen_X
&& (inst_rs1_D == rf_waddr_X) && (rf_waddr_X != 0)

Topic 2: Processor Microarchitecture 43



5. Pipeline Hazards: RAW Data Hazards 5.3. Hardware Bypassing/Forwarding

Pipeline diagram showing multiple hardware bypass paths
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jr x6

Adding all bypass path to support full hardware bypassing
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5. Pipeline Hazards: RAW Data Hazards 5.3. Hardware Bypassing/Forwarding

Handling load-use RAW dependencies

ALU-use latency is only one cycle, but load-use latency is two cycles.

lw x1, 0(x2)

addi x3, x1, 1

lw x1, 0(x2)

addi x3, x1, 1

ostall_load_use_X_rs1_D =
val_D && rs1_en_D && val_X && rf_wen_X

&& (inst_rs1_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X == lw)

ostall_load_use_X_rs2_D =
val_D && rs2_en_D && val_X && rf_wen_X

&& (inst_rs2_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X == lw)

ostall_D =
val_D && ( ostall_load_use_X_rs1_D || ostall_load_use_X_rs2_D )

bypass_waddr_X_rs1_D =
val_D && rs1_en_D && val_X && rf_wen_X

&& (inst_rs1_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X != lw)

bypass_waddr_X_rs2_D =
val_D && rs2_en_D && val_X && rf_wen_X

&& (inst_rs2_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X != lw)
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5. Pipeline Hazards: RAW Data Hazards 5.4. RAW Data Hazards Through Memory

Pipeline diagram for simple assembly sequence

Draw a pipeline diagram illustrating how the following assembly
sequence would execute on a fully bypassed pipelined TinyRV1
processor. Include microarchitectural dependency arrows to illustrate
how data is transferred along various bypass paths.

lw x1, 0(x2)

lw x3, 0(x4)

add x5, x1, x3

sw x5, 0(x6)

addi x2, x2, 4

addi x4, x4, 4

addi x6, x6, 4

addi x7, x7, -1

bne x7, x0, loop

5.4. RAW Data Hazards Through Memory

So far we have only studied RAW data hazards through registers, but
we must also carefully consider RAW data hazards through memory.

sw x1, 0(x2)
lw x3, 0(x4) # RAW dependency occurs if R[x2] == R[x4]

sw x1, 0(x2)

lw x3, 0(x4)

Topic 2: Processor Microarchitecture 46



6. Pipeline Hazards: Control Hazards

6. Pipeline Hazards: Control Hazards

Control hazards occur when whether or not an instruction should be
executed depends on a control decision made by an earlier instruction
We use architectural dependency arrows to illustrate control
dependencies in assembly code sequences.

Static Instr Sequence

addi x1, x0, 1
jal x0, foo
opA
opB

foo: addi x2, x3, 1
bne x0, x1, bar
opC
opD
opE

bar: addi x4, x5, 1

Dynamic Instr Sequence

addi x1, x0, 1
jal x0, foo
addi x2, x3, 1
bne x0, x1, bar
addi x4, x5, 1

Using pipeline diagrams to illustrate control hazards

We use microarchitectural dependency arrows to illustrate control
hazards on pipeline diagrams.

addi x1, x0, 1

jal x0, foo

addi x2, x3, 1

bne x0, x1, bar

addi x4, x5, 1
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6. Pipeline Hazards: Control Hazards 6.1. Expose in Instruction Set Architecture

The jump resolution latency and branch resolution latency are the
number of cycles we need to delay the fetch of the next instruction in
order to avoid any kind of control hazard. Jump resolution latency is
two cycles, and branch resolution latency is three cycles.

addi x1, x0, 1

jal x0, foo

addi x2, x3, 1

bne x0, x1, bar

addi x4, x5, 1

Approaches to resolving control hazards

• Expose in Instruction Set Architecture: Expose control hazards in
ISA forcing compiler to explicitly avoid scheduling instructions that
would create hazards (i.e., software scheduling for correctness)

• Software Predication: Programmer or compiler converts control
flow into data flow by using instructions that conditionally execute
based on a data value

• Hardware Speculation: Hardware guesses which way the control
flow will go and potentially fetches incorrect instructions; detects
when there is a problem and re-executes instructions that are along
the correct control flow

• Software Hints: Programmer or compiler provides hints about
whether a conditional branch will be taken or not taken, and
hardware can use these hints for more efficient hardware speculation
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6. Pipeline Hazards: Control Hazards 6.1. Expose in Instruction Set Architecture

6.1. Expose in Instruction Set Architecture

Expose branch delay slots as part of the instruction set. Branch delay
slots are instructions that follow a jump or branch and are always
executed regardless of whether a jump or branch is taken or not taken.
Compiler tries to insert useful instructions, otherwise inserts nops.

addi x1, x0, 1
jal x0, foo
nop
opA
opB

foo: addi x2, x3, 1
bne x0, x1, bar
nop
nop
opC
opD
opE

bar: addi x4, x5, 1

Assume we modify the TinyRV1
instruction set to specify that JAL,
and JR instructions have a
single-instruction branch delay
slot (i.e., one instruction after a
JAL and JR is always executed)
and the BNE instruction has a
two-instruction branch delay slot
(i.e., two instructions after a BNE
are always executed).

Pipeline diagram showing using branch delay slots for control hazards

addi x1, x0, 1

jal x0, foo

nop

addi x2, x3, 1

bne x0, x1, bar

nop

nop

addi x4, x5, 1
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6. Pipeline Hazards: Control Hazards 6.2. Hardware Speculation

6.2. Hardware Speculation

Hardware guesses which way the control flow will go and potentially
fetches incorrect instructions; detects when there is a problem and
re-executes instructions the instructions that are along the correct
control flow. For now, we will only consider a simple branch prediction
scheme where the hardware always predicts not taken.

Pipeline diagram when branch is not taken

addi x1, x0, 1

jal x0, foo

opA

addi x2, x3, 1

bne x0, x1, bar

opC

opD

Pipeline diagram when branch is taken

addi x1, x0, 1

jal x0, foo

opA

addi x2, x3, 1

bne x0, x1, bar

opC

opD

addi x4, x5, 1
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6. Pipeline Hazards: Control Hazards 6.2. Hardware Speculation

Modifications to datapath/control to support hardware speculation
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Deriving the squash signals

osquash_j_D = (op_D == jal) || (op_D == jr)
osquash_br_X = (op_X == bne) && !eq_X

Our generic stall/squash scheme gives priority to squashes over stalls.

osquash_D = val_D && !stall_D && osquash_j_D
squash_D = val_D && osquash_X

osquash_X = val_D && !stall_X && osquash_br_X
squash_X = 0

Important: PC select logic must give priority to older instructions
(i.e., prioritize branches over jumps)! Good quiz question?
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6. Pipeline Hazards: Control Hazards 6.2. Hardware Speculation

Pipeline diagram for simple assembly sequence

Draw a pipeline diagram illustrating how the following assembly
sequence would execute on a fully bypassed pipelined TinyRV1
processor that uses hardware speculation which always predicts
not-taken. Unlike the “standard” TinyRV1 processor, you should also
assume that we add a single-instruction branch delay slot to the
instruction set. So this processor will partially expose the control
hazard in the instruction, but also use hardware speculation. Include
microarchitectural dependency arrows to illustrate both data and
control flow.

addi x1, x2, 1
bne x0, x3, foo # assume R[rs] != 0
addi x4, x5, 1 # instruction is in branch delay slot
addi x6, x7, 1
...

foo:
add x8, x1, x4
addi x9, x1, 1
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

6.3. Interrupts and Exceptions

Interrupts and exceptions alter the normal control flow of the program.
They are caused by an external or internal event that needs to be
processed by the system, and these events are usually unexpected or
rare from the program’s point of view.

• Asynchronous Interrupts

– Input/output device needs to be serviced
– Timer has expired
– Power distruption or hardware failure

• Synchronous Exceptions

– Undefined opcode, privileged instruction
– Arithmetic overflow, floating-point exception
– Misaligned memory access for instruction fetch or data access
– Memory protection violation
– Virtual memory page faults
– System calls (traps) to jump into the operating system kernel

Interrupts and Exception Semantics

• Interrupts are asynchronous with respect to the program, so the
microarchitecture can decide when to service the interrupt

• Exceptions are synchronous with respect to the program, so they
must be handled immediately
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

• To handle an interrupt or exception the hardware/software must:

– Stop program at current instruction (I), ensure previous insts finished
– Save cause of interrupt or exception in privileged arch state
– Save the PC of the instruction I in a special register (EPC)
– Switch to privileged mode
– Set the PC to the address of either the interrupt or the exception handler
– Disable interrupts
– Save the user architectural state
– Check the type of interrupt or exception

– Handle the interrupt or exception

– Enable interrupts
– Switch to user mode
– Set the PC to EPC if I should be restarted
– Potentially set PC to EPC+4 if we should skip I

Handling a misaligned data address and syscall exceptions

Static Instr Sequence

addi x1, x0, 0x2001
lw x2, 0(x1)
syscall
opB
opC
...

exception_hander:
opD # disable interrupts
opE # save user registers
opF # check exception type
opG # handle exception
opH # enable interrupts
addi EPC, EPC, 4
eret

Dynamic Instr Sequence

addi x1, x0, 0x2001
lw x2, 0(x1) (excep)
opD
opE
opF
opG
opH
addi EPC, EPC, 4
eret
syscall (excep)
opD
opE
opF
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

Interrupts and Exceptions in a RISC-V Pipelined Processor

F D X M W

Inst Address
Exceptions

Illegal
Instruction

Arithmetic
Overflow

Data Address
Exceptions

• How should we handle a single instruction which generates
multiple exceptions in different stages as it goes down the pipeline?

– Exceptions in earlier pipeline stages override later exceptions for a given
instruction

• How should we handle multiple instructions generating exceptions
in different stages at the same or different times?

– We always want the execution to appear as if we have completely
executed one instruction before going onto the next instruction

– So we want to process the exception corresponding to the earliest
instruction in program order first

– Hold exception flags in pipeline until commit point

– Commit point is after all exceptions could be generated but before any
architectural state has been updated

– To handle an exception at the commit point: update cause and EPC,
squash all stages before the commit point, and set PC to exception handler

• How and where to handle external asynchronous interrupts?

– Inject asynchronous interrupts at the commit point

– Asynchronous interrupts will then naturally override exceptions caused
by instructions earlier in the pipeline
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

Modifications to datapath/control to support exceptions
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Deriving the squash signals

osquash_j_D = (op_D == jal) || (op_D == jr)
osquash_br_X = (op_X == bne) && !eq_X
osquash_xcept_M = exception_M

Control logic needs to redirect the front end of the pipeline just like for a
jump or branch. Again, squashes take priority over stalls, and PC select
logic must give priority to older instructions (i.e., priortize exceptions,
over branches, over jumps)!
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

Pipeline diagram of exception handling

addi x1, x0, 0x2001
lw x2, 0(x1) # assume causes misaligned address exception
syscall # causes a syscall exception
opB
opC
...

exception_hander:
opD # disable interrupts
opE # save user registers
opF # check exception type
opG # handle exception
opH # enable interrupts
addi EPC, EPC, 4
eret
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7. Pipeline Hazards: Structural Hazards

7. Pipeline Hazards: Structural Hazards

Structural hazards occur when an instruction in the pipeline needs a
resource being used by another instruction in the pipeline. The TinyRV1
processor pipeline is specifically designed to avoid structural hazards.

Let’s introduce a structural hazard by allowing instructions that do not
do any real work in the M stage (i.e., non-memory instructions) to
effectively skip that stage. This would require adding an extra path
which “skips over” the pipeline reigster between the X and M stages
and connects directly to the writeback mux at the end of the M stage.
For non-memory instructions we set wb_sel_M to choose the value from
the end of the X stage, while for memory instructions we set wb_sel_M
to choose the value coming back from memory.
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7. Pipeline Hazards: Structural Hazards 7.1. Expose in Instruction Set Architecture

Using pipeline diagrams to illustrate structural hazards

We use structural dependency arrows to illustrate structural hazards.

addi x1, x2, 1

addi x3, x4, 1

lw x5, 0(x6)

addi x7, x8, 1

Note that the key shared resources that are causing the structural
hazard are the pipeline registers at the end of the M stage. We cannot
write these pipeline registers with the transaction that is in the X stage
and also the transaction that is the M stage at the same time.

Approaches to resolving structural hazards

• Expose in Instruction Set Architecture: Expose structural hazards in
ISA forcing compiler to explicitly avoid scheduling instructions that
would create hazards (i.e., software scheduling for correctness)

• Hardware Stalling: Hardware includes control logic that freezes
later instructions until earlier instruction has finished using the
shared resource; software scheduling can still be used to avoid
stalling (i.e., software scheduling for performance)

• Hardware Duplication: Add more hardware so that each instruction
can access separate resources at the same time

7.1. Expose in Instruction Set Architecture
Insert independent instructions or nops to delay non-memory
instructions if they follow a LW or SW instruction.
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7. Pipeline Hazards: Structural Hazards 7.2. Hardware Stalling

Pipeline diagram showing exposing structural hazards in the ISA

addi x1, x2, 1

addi x3, x4, 1

lw x5, 0(x6)

nop

addi x7, x8, 1

7.2. Hardware Stalling
Hardware includes control logic that stalls a non-memory instruction if
it follows a LW or SW instruction.

Pipeline diagram showing hardware stalling for structural hazards

addi x1, x2, 1

addi x3, x4, 1

lw x5, 0(x6)

addi x7, x8, 1

Deriving the stall signal

ostall_wport_hazard_D = val_D && !mem_inst_D && val_X && mem_inst_X

where mem_inst is true for a LW or SW instruction and false otherwise.
Stall far before the structural hazard actually occurs, because we know
exactly how instructions move down the pipeline. Also possible to use
dynamic arbitration in the back-end of the pipeline.
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7. Pipeline Hazards: Structural Hazards 7.3. Hardware Duplication

7.3. Hardware Duplication

Add more pipeline registers at the end of M stage and a second write
port so that non-memory and memory instructions can writeback to the
register file at the same time.
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Does allowing early writeback help performance in the first place?

addi x1, x2, 1

addi x3, x1, 1

addi x4, x3, 1

addi x5, x4, 1

addi x6, x5, 1

addi x7, x6, 1
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8. Pipeline Hazards: WAW and WAR Name Hazards

8. Pipeline Hazards: WAW and WAR Name Hazards

WAW dependencies occur when an instruction overwrites a register
than an earlier instruction has already written. WAR dependencies
occur when an instruction writes a register than an earlier instruction
needs to read. We use architectural dependency arrows to illustrate
WAW and WAR dependencies in assembly code sequences.

mul x1, x2, x3

addi x4, x1, 1

addi x1, x5, 1

WAW name hazards occur when an instruction in the pipeline writes a
register before an earlier instruction (in back of the pipeline) has had a
chance to write that same register.

WAR name hazards occur when an instruction in the pipeline writes a
register before an earlier instuction (in back of pipeline) has had a
chance to read that same register.

The TinyRV1 processor pipeline is specifically designed to avoid any
WAW or WAR name hazards. Instructions always write the registerfile
in-order in the same stage, and instructions always read registers in the
front of the pipeline and write registers in the back of the pipeline.

Let’s introduce a WAW name hazard by using an iterative variable
latency multiplier, and allowing other instructions to continue
executing while the multiplier is working.
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8. Pipeline Hazards: WAW and WAR Name Hazards 8.1. Software Renaming

Using pipeline diagrams to illustrate WAW name hazards

We use microarchitectural dependency arrows to illustrate WAW
hazards on pipeline diagrams.

mul x1, x2, x3

addi x4, x6, 1

addi x1, x5, 1

Approaches to resolving WAW and WAR hazards

• Software Renaming: Programmer or compiler changes the register
names to avoid creating name hazards

• Hardware Renaming: Hardware dynamically changes the register
names to avoid creating name hazards

• Hardware Stalling: Hardware includes control logic that freezes
later instructions until earlier instruction has finished either writing
or reading the problematic register name

8.1. Software Renaming

As long as we have enough architectural registers, renaming registers in
software is easy. WAW and WAR dependencies occur because we have
a finite number of architectural registers.

mul x1, x2, x3
addi x4, x6, 1
addi x7, x5, 1
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9. Summary of Processor Performance 8.2. Hardware Stalling

8.2. Hardware Stalling

Simplest approach is to add stall logic in the decode stage similar to
what the approach used to resolve other hazards.

mul x1, x2, x3

addi x4, x6, 1

addi x1, x5, 1

Deriving the stall signal

ostall_struct_hazard_D = val_D && (op_D == MUL) && !imul_rdy_D

ostall_waw_hazard_D =
val_D && rf_wen_D && val_Z && rf_wen_Z

&& (rf_waddr_D == rf_waddr_Z) && (rf_waddr_Z != 0)

9. Summary of Processor Performance

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

Results for vector-vector add example

Microarchitecture Inst CPI Cycle Time Exec Time

Single-Cycle Processor 576 1.0 74 τ 43 kτ

FSM Processor 576 6.7 36 τ 138 kτ

Pipelined Processor 576
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Estimating cycle time for pipelined processor

pc_plus4

result_sel_X

ir[31:0]

jr

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

Control Signal
Table

imemreq
addr

imemresp
data

dmemreq
addr

dmemreq
data

dmemresp
data

imm_type

immgen

a
lu

m
u

l

op1_sel_D
+

alu_fn_X
op2_sel_D

pc_sel_F

jbtarg

ir_FD

result
_XM

F Stage D Stage X Stage M Stage W Stage

cs_DX cs_XM cs_MW

sd_XM

result
_XM

result
_MW

pc_F pc_FD

val_DX val_XM val_MWval_FD

val_F

Control
Logic

Control
Logic

Control
Logic

op1_DX

sd_DX

btarg_DX

op2_DX

always pc_plus4

btarg
jtarg

reg_
en_D

reg_
en_F

CSig Table
Stall Logic

CSig Table
Stall & Bypass

Logic

op1_
byp_
sel_D

bypass_from_X
bypass_from_M
bypass_from_W

op2_
byp_
sel_D

pc_sel_F

CSig Table
Stall, Bypass, &
Squash Logic

• register read = 1τ

• register write = 1τ

• regfile read = 10τ

• regfile write = 10τ

• memory read = 20τ

• memory write = 20τ

• +4 unit = 4τ

• immgen = 2τ

• mux = 3τ

• multiplier = 20τ

• alu = 10τ

• adder = 8τ
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Estimating execution time

Using our first-order equation for processor performance, how long in τ
will it take to execute the vvadd example assuming n is 64?

loop:
lw x5, 0(x12)
lw x6, 0(x13)
add x7, x5, x6
sw x7, 0(x11)
addi x12, x12, 4
addi x12, x13, 4
addi x13, x11, 4
addi x14, x14, -1
bne x14, x0, loop
jr x1

lw

lw

add

sw

addi

addi

addi

addi

bne

opA

opB

lw
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Using our first-order equation for processor performance, how long in τ
will it take to execute the mystery program assuming n is 64 and that
we find a match on the last element.

addi x5, x0, 0
loop:
lw x6, 0(x12)
bne x6, x14, foo
addi x10, x5, 0
jr x1

foo:
addi x12, x12, 4
addi x5, x5, 1
bne x5, x13, loop
addi x10, x0, -1
jr x1
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