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Problem 1. Short Answer

Part 1.A Architectural RAW, WAR, and WAW Dependencies

Consider the following short assembly sequence. Draw and label arrows to indicate the architec-
tural RAW, WAR, and WAW dependencies between instructions. You must label your arrows so
we can clearly distinguish between the three different types of dependencies.

sub x1, x2, x3

add x4, x5, x6

add x4, x4, x3

sub x8, x9, x1

sub x1, x2, x9
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Part 1.B X-Stage Bypass Muxing

Recall that the canonical TinyRV1 pipelined processor discussed in lecture implemented bypassing
by adding bypass muxes to the D stage. Architects sometimes choose to move these bypass muxes
into the X stage. Consider the following instruction sequence and datapath diagram. The datapath
diagram includes the X-stage bypass muxes, but does not include the actual wires that implement
the bypass paths. Modify the datapath diagram to include just those bypass paths which are
required to avoid any stalls due to RAW hazards for the given instruction sequence. Draw a
pipeline diagram for this instruction sequence that illustrates the execution assuming we in-
clude the specific bypass paths you added to the datapath diagram to avoid any stalls. You must
include all relevant RAW microarchitectural dependency arrows, and these arrows must accu-
rately reflect how data moves through the datapath. Note that you cannot add any more muxes to
the datapath diagram. You should just add wires that connect to the currently unconnected bypass
mux inputs. Each arrow should correspond to a bypass path in the datapath diagram. You are
required to add the minimum number of bypass paths to avoid stalls for this specific instruction
sequence.
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Part 1.C Implementing Multiply-Add Instruction in a Pipelined Processor

For this problem, we will use the fully bypassed five-stage TinyRV1 processor discussed in lecture.
Consider adding a new multiply-accumulate madd instruction with the following semantics.

madd rd, ry, rs1, rs2 R[rd]← ( R[rs2] × R[rs1] ) + R[ry]

Note that this instruction has three source operands. The following abstract datapath diagram il-
lustrates one potential way to implement this instruction. We add a four-stage pipelined multiplier
(stages Y0, Y1, Y2, Y3) followed by a dedicated single-cycle adder (stage Y4). Note that we read rs1
and rs2 in the D stage as with all standard TinyRV1 instructions, but this implementation delays
reading ry until the Y4 stage. We add an extra register file read port and an extra register file write
port to avoid any structural hazards. Assume that we add additional bypass paths from the end of
Y4, and add bypass muxing for the ry source operand. Assume that instructions other than madd
do not delay their writeback; they writeback to the register file just as they would in the standard
fully bypassed five-stage TinyRV1 processor. Assume that we do not add any extra control logic to
detect or prevent WAW or WAR hazards.

F D X M

Y4

W

Y0 Y1 Y2 Y3

Carefully choose a two-instruction assembly sequence that illustrates both a WAW and WAR
hazard. You must show all register specifiers. Draw a pipeline diagram for this two instruction
assembly sequence, and draw arrows on the pipeline diagram to clearly indicate the WAW and
WAR hazards. Your WAW and WAR arrows should start and end where the appropriate instruc-
tion reads or writes the register file (i.e., do not worry about bypassing when determining where
to draw the arrows). Include a few sentences about why the WAW/WAR hazards occur in this
specific design.
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Part 1.D Exception Handling

Consider the following instruction sequence. Assume that op instructions are just generic instruc-
tions with no data hazards. Assume that xxx is an instruction that is currently not implemented in
the processor, so it will cause an exception in the D stage. Assume that the commit point is in the X
stage, not in the M stage. The exception handler is at address 0x200.

1 0x100 opA
2 0x104 opB
3 0x108 xxx # causes illegal instruction exception in D stage
4 0x10c opC
5 0x110 opD
6 0x114 opE
7 0x118 opF
8 ...
9 exception_handler:

10 0x200 opG
11 0x204 opH

Draw a pipeline diagram in the space provided below illustrating how this code will execute on
a fully bypassed TinyRV2 processor with support for exceptions. Draw a control dependency
arrow to indicate the control flow. Stop your pipeline diagram when you get to opH. You will
not necessarily need to use all of the rows and/or columns provided. Use a dash (–) to indicate
squashed instructions going down the pipeline.
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Problem 2. Microcoded TinyRV1 Processor – Correction: topic is covered Fall
2024

Consider the TinyRV1 FSM processor with a microcoded control unit described in lecture. The
datapath is shown in Figure 1. Figure 2 shows the encoding you should use for all of the control
signal fields that are not just 0 or 1. Note that we have added three new operations to our ALU
compared to lecture: increment the A input by one, copy the A input to the output, and copy the B
input to the output.

In this problem, we explore adding several new instructions by using the same datapath and just
adding new microcode sequences to the control store. Your solutions should be elegant and effi-
cient; minimize the number of new states needed. You cannot add new datapath components or
modify the datapath components beyond this one change (although see the final problem for an
exception!). If you use any new pseudo-control-signal syntax please clearly explain what this syn-
tax means. When filling in microcode, use don’t cares (marked with an x or –) for fields where it
is safe to use don’t cares. Study the processor described in lecture well, and make sure all of your
microinstructions are legal. Please comment your code clearly. Your code should exhibit “clean”
behavior and not modify any architectural registers in the course of the execution. Finally, make
sure that each new macroinstruction fetches the next macroinstruction with a microjump to F0.
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7



ECE 4750 Computer Architecture Topic 2: Processor Microarchitecture

B/C Mux Select Encoding b select mux input from bus
s select mux input from shifter

Immediate Generation Unit (IG) i sext( IR[31:20] )
Types s sext( IR[31:25], IR[11:7] )

b sext( IR[31], IR[7], IR[30:25], IR[11:8], 0 )
j sext( IR[31], IR[19:12], IR[20], IR[30:21], 0 )

Arithmetic/Logic Unit (ALU) Functions +4 A + 4
+ A + B
+? C[0] ? A + B : copy A

cmp A == B
-4 A - 4
+1 A + 1

copy A A
copy B B

Register File Select Encoding x0 select x0
rs1 select register based on rs1 field in IR
rs2 select register based on rs2 field in IR
rd select register based on rd field in IR

Memory Request Op Encoding r read memory request
w write memory request

Next State Encoding n goto next state by incrementing µPC by one
d dispatch to instruction sequence based on opcode
f goto state F0
b goto state F0 if A == B

Figure 2: Control Signal Encodings

Bus Enables Register Enables Mux Func RF mreq

State Pseudo Control Sigs pc ig alu rf rd pc ir a b c wd b c ig alu sel wen val op next

F0: mreq.addr← PC; A← PC 1 0 0 0 0 0 0 1 0 0 0 – – – – – 0 1 r n

F1: IR← RD 0 0 0 0 1 0 1 0 0 0 0 – – – – – 0 0 – n

F2: PC← A+4 0 0 1 0 0 1 0 0 0 0 0 – – – +4 – 0 0 – d

...

Figure 3: Microcode Table
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Part 2.A Implementing Conditional Move Instructions

For this part, you are to add two new conditional move instructions. The movn instruction only
copies the source register to the destination register if a second source register is not zero. The
assembly format and semantics for the new RISC-V instruction are as follows:

movn rd, rs1, rs2 if ( R[rs2] ! = 0 ) R[rd]← R[rs1]

The movz instruction only copies the source register to the destination register if a second source
register is zero. The assembly format and semantics for the new RISC-V instruction are as follows:

movz rd, rs1, rs2 if ( R[rs2] == 0 ) R[rd]← R[rs1]

Create a table like the one shown in Figure 3 to represent the contents of the control store, and
fill in the state, pseudo-control-signal syntax, actual control signals, and next state fields for
a microinstruction fragment that implements both the movn and movz instructions. The fetch
fragment has already been provided for you.

Part 2.B Implementing Indirect Load Instruction

For this part, you are to add a new indirect load (lwx) instruction. The assembly format and seman-
tics for the new RISC-V instruction are as follows:

lwx rd, imm(rs1) R[rd]←M[ M[ R[rs1] + sext(imm) ] ]

Create a table like the one shown in Figure 3 to represent the contents of the control store, and fill
in the state and pseudo-control-signal syntax for a microinstruction fragment that implements
the lwx instruction. You do not need to fill in the actual control signals or the next state fields!
The fetch fragment has already been provided for you. Minimize the number of microinstructions
in your sequence. Note that a naive implementation will always do the swap even when the values
being swapped are identical.

Part 2.C Implementing Memory-Memory Swap Instruction

For this part, you are to add a new memory-memory swap (swap.mm) instruction. The assembly
format and semantics for the new RISC-V instruction are as follows:

swap.mm rd, rs1 temp←M[ R[rs1] ]; M[ R[rs1] ]←M[ R[rd] ]; M[ R[rd] ]← temp

Note that this instruction should not modify any architectural state other than what is indicated by
the semantics (i.e., you must carefully select what you use for temporary state to avoid corrupting
architectural state). Create a table like the one shown in Figure 3 to represent the contents of
the control store, and fill in the state and pseudo-control-signal syntax for a microinstruction
fragment that implements the swap.mm instruction. You do not need to fill in the actual control
signals or the next state fields! The fetch fragment has already been provided for you. Mini-
mize the number of microinstructions in your sequence. Note that a naive implementation will
always do the swap even when the values being swapped are identical. Optimize your microin-
struction sequence to reduce the execution time when the values being swapped identical, but
avoid increasing the execution time in the common case when the values being swapped are not
identical.
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Part 2.D Implementing Memory-Memory Increment Instruction

For this part, you are to implement a new instruction that is similar in spirit to the x86 memory-
memory inc instruction discussed in a practice problem for the previous topic. This instruction
will use a relatively complicated addressing mode to read a value from memory, increment that
value by one, and then write the value back to the same location in memory. The assembly format
and semantics for the new RISC-V instruction are as follows:

inc rd, rs1, imm addr← R[rd] + (R[rs1] × imm[3:0]); M[addr]←M[addr] + 1

Note that addr is simply a temporary to simplify the instruction semantics. It is not architectural
state. Note that this instruction only uses the least significant four bits of the immediate when
calculating the effective address. Create a table like the one in Figure 3 to represent the contents
of the control store, and fill in the state, pseudo-control-signal syntax, actual control signals, and
next state fields for a microinstruction fragment that implements the inc instruction. The fetch
fragment has already been provided for you.

Part 2.E Implementing String Length Instruction

For this part, you are to implement a new string length (strlen) instruction. The assembly format
and semantics for the new RISC-V instruction are as follows:

strlen rd, rs1 R[rd]← 0; while ( M[ R[rs1] ] != 0 ) { R[rs1]← R[rs1] + 1; R[rd]← R[rd] + 1 }

In other words, the strlen instruction should count the number of characters in a string pointed
to by rs1 and return the final count in the rd register. After the instruction has finished, the rs1
register will contain a pointer to the null character at the end of the string. Note that we will need
to assume we can do byte reads from memory and you will need to assume you can encode a micro-branch
to any other micro-instruction (which is new functionality we did not support in lecture!). Create a table
like the one shown in Figure 3 to represent the contents of the control store, and fill in the state
and pseudo-control-signal syntax for a microinstruction fragment that implements the strlen
instruction. You do not need to fill in the actual control signals or the next state fields! The fetch
fragment has already been provided for you.

Problem 3. Multiplier Microarchitecture

In this problem, we consider several different implementations of an unsigned two-input integer
multiplier capable of multiplying a 32-bit operand by a 4-bit operand to produce a truncated 32-bit
result. Figure 4 abstractly illustrates the datapaths for five microarchitectures: a single-cycle mi-
croarchitecture; a four-cycle iterative microarchitecture; a two-cycle microarchitecture that can be
either unpipelined or pipelined; a four-cycle microarchitecture that again can be either unpipelined
or pipelined; and a variable-latency pipelined microarchitecture. The “iron-law” of processor per-
formance is applicable to far more than just processors. We will be using the following generalized
form to examine the performance of each of these microarchitectures:

Time
Transaction Sequence

=
Transactions

Transaction Sequence
× Cycles

Transaction
× Time

Cycle

In our multiplier, a transaction is simply a multiplication request. Create a table similar to the one
shown in Figure 5. Feel free to use a spreadsheet and copy the final table into your submission.
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1 τ1 τ 60 τ 1 τ1 τ

1 τ1 τ 15 τ 1 τ1 τ 15 τ 1 τ1 τ 15 τ 1 τ1 τ 15 τ 1 τ1 τ

X0

X0 X1 X2 X3

1 τ1 τ 30 τ

X0

1 τ1 τ 30 τ

X1

1 τ1 τ

1 τ1 τ 15 τ

X0

1 τ1 τ 15 τ 1 τ1 τ

X0

3τ

 
1-Cycle

Part 1.A
Iterative

Part 1.B
2-Cycle

Part 1.C
4-Cycle

Part 1.D
Var-Lat

1 τ1τ 5 τ

Y

1 τ1 τ 15 τ

X1

1 τ1 τ 15 τ

X2

1 τ1 τ 15 τ

X3

1 τ1 τ
3 τ 3 τ 3 τ 3 τ

Figure 4: Various Multiplier Microarchitectures

In each part, we will study one of these microarchitectures, and our goal is to gradually fill in this
table. The table already includes the results for the single-cycle multiplier microarchitecture.

The cycle time (i.e., clock period) is measured in normalized gate delays, where 1 τ is the delay
of a single inverter driving four identical inverters. Rough approximations of the delay of each
component are shown on the datapath diagrams in Figure 4. Note that a register has a clock-to-
data delay of 1 τ (i.e., the combinational delay from the rising clock edge to when the output data
is stable), and a setup time of 1 τ (i.e., how much time before the clock edge the input data must be
stable).

The transaction latency is the number of cycles we need to execute a single transaction going
through the multiplier in isolation. For the variable latency multiplier, the transaction latency de-
pends on the data so you should include a range in the table that captures the best and worst case
transaction latency.

The transaction throughput can be measured as either the average number of transactions we pro-
cess per cycle or the average number of cycles a transaction occupies the microarchitecture. One
is just the inverse of the other. Latency and throughput are two very different (although related)
concepts; please make sure you clearly understand these two concepts. When calculating the trans-
action throughput for this problem, we will assume that our multiplier is processing a sequence of
60 transactions. The 60 transactions are formed by repeating the following three transactions 20
times.
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Num Cycle Transaction Transaction Total
Trans Time Latency Throughput Execution Time

Microarchitecture (#) (τ) (cyc) (τ) (trans/cyc) (cyc/trans) (cycles) (τ)

1-Cycle 60 62 1 62 1 1 60 3720

Part A Iterative 60

Part B 2-Cycle Unpiplined 60

Part B 2-Cycle Pipelined 60

Part C 4-Cycle Unpiplined 60

Part C 4-Cycle Pipelined 60

Part D Var-Lat Pipelined 60

Figure 5: Evaluation of Various Multiplier Microarchitectures

1 mul 0xdeadbeef, 0xf
2 mul 0xf5fe4fbc, 0x7
3 mul 0x0a01b044, 0x3

So the 60 transaction sequence will look like this:

1 mul 0xdeadbeef, 0xf
2 mul 0xf5fe4fbc, 0x7
3 mul 0x0a01b044, 0x3
4 mul 0xdeadbeef, 0xf
5 mul 0xf5fe4fbc, 0x7
6 mul 0x0a01b044, 0x3
7 mul 0xdeadbeef, 0xf
8 mul 0xf5fe4fbc, 0x7
9 ...

The total execution time is the total time (in units of τ) to execute the sequence of 60 transactions.

Part 3.A Iterative Microarchitecture

Consider the iterative multiplier microarchitecture shown in Figure 4. This microarchitecture is
very similar to the one you implemented in the first lab assignment, except that we only need to
iterate for four cycles. This is because we are multiplying a 32-bit operand by a just a 4-bit operand.
Assume that we have optimized the implementation so that we do not need any additional cycles
to handle the val/rdy interface. The multiplier only handles unsigned numbers so we don’t need
to worry about sign/unsign logic. In other words, we can complete each transaction in exactly
four cycles, and we are ready to start the next transaction after exactly four cycles.

Draw a transaction vs. time diagram illustrating the execution of the first four multiplication
transactions on this microarchitecture. A transaction vs. time diagram is like a pipeline diagram,
but of course this microarchitecture is not pipelined. There should be one column per cycle and
one row per transaction. Use the symbol X0 to indicate on which cycle each transaction is using the
iterative multiplier. Use your transaction vs. time diagram to fill in the appropriate row of the table
in Figure 5.
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Part 3.B Two-Cycle Microarchitecture

Consider the two-cycle multiplier microarchitecture shown in Figure 4. In this microarchitecture,
we use the same basic approach as the iterative multiplier, but we do the computation in space
instead of time by unrolling the shift and add operations. We do two of the shift and addition op-
erations in a single cycle. We will consider an unpipelined variant where only a single transaction
can be using any part of the multiplier at once, and a pipelined variant where there can be two
different transactions using the multiplier at the same time (i.e., one in the X0 stage and one in the
X1 stage).

Draw two transaction vs. time diagrams illustrating the execution of the first four multiplication
transactions on both the unpipelined and pipelined variants. Use the symbols X0 and X1 to
indicate on which cycle each transaction is using that part of the multiplier. Use your transaction
vs. time diagram to fill in the appropriate rows of the table in Figure 5.

Part 3.C Four-Cycle Microarchitecture

Consider the four-cycle multiplier microarchitecture shown in Figure 4. In this microarchitecture,
we use the same basic approach as the two-cycle multiplier, but with a single shift and addition
operation per cycle. We will consider an unpipelined variant where only a single transaction can
be using any part of the multiplier at once, and a pipelined variant where there can be four different
transactions using the multiplier at the same time (i.e., different transactions in X0, X1, X2, and X3).

Draw two transaction vs. time diagrams illustrating the execution of the first four multiplication
transactions on both the unpipelined and pipelined variants. Use the symbols X0, X1, X2, and X3
to indicate on which cycle each transaction is using that part of the multiplier. Use your transaction
vs. time diagram to fill in the appropriate rows of the table in Figure 5.

Part 3.D Variable-Latency Microarchitecture

Consider the variable-latency multiplier microarchitecture shown in Figure 4. This microarchitec-
ture exploits the fact that when some of the bits in the four-bit operand are zero, we don’t actually
have to do any work. We add a new stage at the beginning of the pipeline (denoted with the Y sym-
bol) that is responsible for determining the bit position of the most significant one in the four-bit
operand. This control information is used to set the mux select in a later pipeline stage so as to skip
over some of the early stages in the pipeline. For example, if the four-bit operand is two (0b0010),
then the transaction would go through stage Y, skip over stages X0 and X1, and go through stages
X2 and X3. Note that this requires an extra mux at the end of each X stage, and we will need to
carefully handle the structural hazard caused by multiple stages writing the same register. Again,
if the four-bit operand is two, then we need to avoid two transactions writing the pipeline register
at the end of the X1 stage at the same time. Assume that the multiplier stalls in the Y stage when-
ever it detects that letting the current transaction go down the pipeline would cause a structural
hazard.

Draw a transaction vs. time diagram illustrating the execution of the first four multiplication
transactions on the pipelined variable-latency microarchitecture. Use the symbols Y, X0, X1, X2,
and X3 to indicate on which cycle each transaction is using that part of the multiplier. Look at
the four-bit operand in each of the four multiplication transactions to determine how many stages
of computation are actually required. Ensure that two transactions are never in the same stage at

13
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the same time. Use your transaction vs. time diagram to fill in the appropriate row of the table in
Figure 5.

Part 3.E Comparison of Microarchitectures

Which microarchitecture has the highest performance? In a few paragraphs, explain some of the
trade-offs in terms of area and performance between these microarchitectures. Would we ever
want to consider a multiplier with many more stages (e.g., a 20-cycle pipelined microarchitecture)?
How does the fixed-latency pipelined multiplier compare to the variable-latency pipelined multi-
plier? Discuss when we would want to choose fixed-latency over variable-latency, and when we
would want to choose variable-latency over fixed-latency. How would this trade-off change if one
multiply transaction needs to wait for the result of an earlier transaction before starting? Make sure
you generalize your conclusions so that they are valid over many different transaction sequences,
not just the specific sequence studied in this problem.

Problem 4. Two-Cycle Pipelined Integer ALU and Multiplier

Assume in a given emerging technology, the logic delay is significantly slower than the memory
delay as compared to the standard CMOS technology used in modern processors. In this situation,
the execute stage of the standard five-stage pipeline might be significantly longer than the other
stages, and as a consequence, we might want to split this stage into two pipeline stages. In this
problem we will be investigating the implications of using a two-cycle pipelined integer ALU and
multiplier. Our new pipelined TinyRV1 processor will have the following six stages:

• F – instruction fetch
• D – decode and read registers
• X0 – first half of the ALU and multiply operation
• X1 – second half of the ALU and multiply operation
• M – data memory read/write
• W – write registers

Figure 7 illustrates the new six-stage datapath. Spend some time studying this datapath to un-
derstand how the two-cycle pipelined integer ALU and multiplier afffect the structural, data, and
control hazards in the pipeline. Assume that only those bypass paths shown in the diagram are
present. More specifically, notice that this datapath does not allow bypassing between back-to-

Static Instr Sequence
1 bne x1, x0, done
2 lw x5, 0(x2)
3 lw x6, 0(x3)
4 add x7, x5, x6
5 addi x8, x4, 4
6 sw x7, 0(x8)
7 ...
8 done:
9 addi x10, x9, 1

Dynamic Cycle
Transaction 0 1 2 3 4 5 6 7 8 9 10

1 bne x1, x0, done F D X0 X1 M W

2 lw x5, 0(x2) F D X0 X1 M W

3 lw x6, 0(x3) F D X0 X1 M W

4 add x7, x5, x6 F D X0 X1 M W

5 addi x8, x4, 4 F D X0 X1 M W

6 sw x7, 0(x8) F D X0 X1 M W

Figure 6: Execution of Six-Stage Pipelined MIPS32 Processor
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Figure 7: Datapath for Six-Stage Pipelined TinyRV1 Processor
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back dependent integer ALU operations without requiring some kind of stall. Also notice the store
data can only bypassed into the end of the D stage, and that conditional branches are resolved by
the end of the X1 stage.

Figure 6 shows a simple code sequence and illustrates the read-after-write (RAW) data dependen-
cies present given the current pipeline assuming the branch is not taken. An arrow indicates a
microarchitectural RAW dependency, and since some of these arrows point backwards they create
data hazards. Please note the backwards arrow representing the RAW hazard between the X1 stage
of the addi instruction and the D stage of the sw instruction. The result of the addi is not ready until
the end of the X1 stage, but the sw instruction needs the store data at the end of the D stage so that
it can bypass it into the operand pipeline register between the D and X0 stages – spend some time
studying what bypass paths are available in Figure 7. Technically, we could add a special bypass
path just for the store data from the end of the X1 stage to the end of the X0 stage (and also from the
end of the M stage into the end X0 stage and the end of the M stage into the end of the X1 stage).
Since this bypass path can only be used in very specific cases, it is not included in our design (and
thus not shown in Figure 7). In this microarchitecture, the store base addresss and store data must
both be ready at the the end of the D stage so they can be muxed into the operand pipeline reigster
between the D and X0 stages. Spend some more time understanding the example in Figure 6.

Part 4.A Control and Data Hazard Latencies

The jump resolution latency and branch resolution latency are the number of cycles we need to
delay the fetch of the next instruction in order to avoid any kind of control hazard (assuming we
do not use speculation). Note that with a single-issue processor, we always delay the fetch of the
next instruction by one cycle anyways. The ALU-use delay latency is the number of cycles we need
to delay the execution of an instruction that uses the result of an integer ALU instruction to avoid
a data hazard. The load-use delay latency is the number of cycles we need to delay an instruction
that uses the result of a load to avoid a data hazard. For the standard five-stage pipeline, the jump
resolution latency is two cycles, the branch resolution latency is three cycles if the branch condition
is checked in the execute stage, the branch resolution latency is two cycles if the branch condition is
checked in the decode stage, the ALU-use delay latency is one cycle, and the load-use delay latency
is two cycles. Since a single-issue processor always delays the fetch of the next instruction by one
cycle, we do not need to stall even though the ALU-use delay latency is one cycle.

What is the jump resolution latency, branch resolution latency, the ALU-use delay latency, and
the load-use delay latency for the new six-stage pipeline shown in Figure 7?

Part 4.B Resolving Data Hazards with Software Scheduling

Assume we have a fully bypassed datapath, but we expose those stalls that are unavoidable (even
with bypassing) in the instruction set architecture. Reschedule the code shown in Figure 6 by
moving instructions and/or adding nop instructions to avoid any data hazards that are not handled
by bypassing. Try to minimize the execution time of the instruction sequence. Your rescheduled
code should be functionally equivalent to the original code, but should have no stalls! Show the
new static code sequence and describe your optimizations. Draw a pipeline diagram similar to
the one shown in Figure 6. Either draw the microarchitectural RAW dependencies as in Figure 6
or list them in the form Instruction X’s D stage depends on Instruction Y’s M stage. Verify that none
of the RAW dependency arrows point backward in time. Assume the branch is not taken, and that
the microarchitecture always speculatively executes the not taken path.
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Part 4.C Resolving Data Hazards with Stalling

Assume we wish to use hardware stalling to correctly prevent RAW hazards that we cannot avoid
with bypassing. Note that we are using a combination of stalling and bypassing in this problem.
Draw a pipeline diagram similar to the one shown in Figure 6 that shows which instructions
have to stall in which stages. Show stalls by simply repeating the pipeline stage character (e.g.,
D) for multiple consecutive cycles. Either draw the microarchitectural RAW dependencies as in
Figure 6 or list them in the form Instruction X’s D stage depends on Instruction Y’s M stage. Verify that
none of the RAW dependency arrows point backward in time. Assume the branch is not taken, and
that the microarchitecture always speculatively executes the not taken path.

Part 4.D New Stall Signal

The stall signal for a fully bypassed five-stage pipeline was discussed in class and is included below
for you reference:

ostall_load_use_X_rs1_D =
val_D && rs1_en_D && val_X && rf_wen_X

&& (inst_rs1_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X == LW)

ostall_load_use_X_rs2_D =
val_D && rs2_en_D && val_X && rf_wen_X

&& (inst_rs2_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X == LW)

ostall_D =
val_D && ( ostall_load_use_X_rs1_D || ostall_load_use_X_rs2_D )

Each signal has a suffix indicating which pipeline stage the signal originates from. rs1_en and
rs2_en are true for instructions that read from either the rs1 or rs2 registers respectively; rs1 and
rs2 are the actual read register specifiers for both read ports; rf_waddr is the write destination reg-
ister; and op is the opcode. Understand this stall signal thoroughly before attempting to complete
this part.

Derive the new stall signal for the six-stage pipeline with the datapath and associated bypassing
shown in Figure 7. This stall signal essentially implements the stalls that you identified in the
previous part. You should use a similar syntax as the original stall signal above. Define new ostall
hazard signals as necessary.

Part 4.E Resolving Control Hazards with Speculation

In this problem, you will explore resolving control hazards using speculation by drawing two
pipeline diagrams. The first pipeline diagram should assume the branch is taken. Draw a pipeline
diagram similar to the one shown in Figure 6 that shows which instructions have to be squashed
in which stages. Use a dash symbol (–) to indicate pipeline bubbles caused by squashing instruc-
tions. For the second pipeline diagram assume we replace the bne instruction with a jal instruc-
tion. Draw a pipeline diagram similar to the one shown in Figure 6 except with a jal instruction
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in place of the bne instruction. Your diagram should clearly show which instructions have to be
squashed in which stages.
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Problem 5. Moving Branch Resolution from X Stage to D Stage

In this problem, you will explore the two different processor microarchitectures shown in Figures 10
and 11. The microarchitecture in Figure 10 is the standard fully bypassed five-stage TinyRV1 pro-
cessor discussed in lecture. The microarchitecture in Figure 11 moves branch resolution into the
D stage by adding a dedicated branch comparator after the bypass muxes. Figure 8 contains the
delay of the various components in the datapath in units of τ.

We will examine how these two microarchitectures execute the following function written in as-
sembly, which is a variant of one of the sequences we studied in lecture. The function compares
each element in an array of integers to each of three search values. If a value is found, then the
function returns the index of the value. If none of the three values are found, then the function
returns -1. Assume the following initial register values: x4 initially holds the pointer to the array
of integers; x5 holds the size of the array; x6, x7, and x8 hold the three search values. x2 holds the
return value. Assume that x5 is initially 64 and that none of the search values are actually present
in the array (i.e., the loop executes 64 times).

1 0x1000 addi x12, x0, 0
2

3 loop:
4 0x1004 lw x13, 0(x4)
5 0x1008 bne x13, x6, L1 # check value 1
6 0x100c jal x0, done
7 L1:
8 0x1010 bne x13, x7, L2 # check value 2
9 0x1014 jal x0, done

10 L2:
11 0x1018 bne x13, x8, L3 # check value 3
12 0x101c jal x0, done
13 L3:
14 0x1020 addi x4, x4, 4
15 0x1024 addi x12, x12, 1
16 0x1028 bne x12, x5, loop
17 0x102c addi x2, x0, -1
18 0x1030 jalr x0, x31
19

20 done:
21 0x1034 addi x2, x12, 0
22 0x1038 jalr x31

Component Delay (τ)

register read 1
register write 1
regfile read 10
regfile write 10
memory read 20
memory write 20
+4 unit 4
immgen 2
mux 3
multiplier 20
alu 10
adder 8
br cmp 4
squash logic 3

Figure 8: Datapath Component Delays

Branch Instructions / Avg Cycles / Time (τ) / Time (τ) /

Part Resolution Program Instruction Cycle Program

2.A X

2.B D

Figure 9: Processor Performance for Assembly Sequence with Two Different Branch Resolutions
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Part 5.A Performance when Resolving Branch in X Stage

In this part, we will calculate the execution time for the assembly sequence given above execut-
ing on the microarchitecture shown in Figure 10. Again, this microarchitecture is identical to the
fully bypassed five-stage TinyRV1 pipeline discussed in lecture. There are no special features; the
processor is exactly as described in lecture. Assume the processor is directly connected to a magic
combinational memory providing single-cycle instruction and data access latency. Remember that
branches are resolved in the X stage and there is no branch delay slot.

Calculate the critical path for this microarchitecture and clearly highlight this path on Figure 10
given the datapath component delays in Figure 8. Hint: the critical path likely includes one of the
bypass paths. Draw a pipeline diagram illustrating how the first iteration of the loop executes
on this microarchitecture. You can use microarchitectural dependency arrows to illustrate how
data is transferred between instructions, although this is not required. If you do draw arrows,
then they must be correct. You may want to include the first instruction of the second iteration to
illustrate the impact of the branch resolution latency. Based on this pipeline diagram estimate the
execution time in units of τ for 64 iterations of this loop. Fill in the appropriate row of the table
in Figure 14. You must show your work.
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Part 5.B Performance when Resolving Branch in D Stage

In this part, we will calculate the execution time for the assembly sequence given above executing
on the microarchitecture shown in Figure 11. This microarchitecture is identical to the fully by-
passed five-stage TinyRV1 pipeline in the previous part except for one key difference: the branch is
resolved in D using a dedicated branch comparator (labeled “br cmp” in the datapath diagram).

Calculate the critical path for this microarchitecture and clearly highlight this path on Figure 11
given the datapath component delays in Figure 8. Draw a pipeline diagram illustrating how
the first iteration of the loop executes on this microarchitecture. You can use microarchitectural
dependency arrows to illustrate how data is transferred between instructions, although this is not
required. If you do draw arrows, then they must be correct. You may want to include the first
instruction of the second iteration to illustrate the impact of the branch resolution latency. Based
on this pipeline diagram estimate the execution time in units of τ for 64 iterations of this loop.
Fill in the appropriate row of the table in Figure 14. You must show your work.
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Problem 6. Reduced Register-File Ports

In this problem, you will explore the two different processor microarchitectures shown abstractly
in Figures 12 and 13. The 2r1w microarchitecture shown in Figure 12 is the standard fully bypassed
five-stage TinyRV1 processor discussed in lecture. In lecture, we also discussed how the number
of register file ports can impact the cycle time if the register file is on the critical path. The 1r1w
microarchitecture shown in Figure 13 uses a simpler register file with only one read port and one
write port to reduce the cycle time.

We will examine how these two microarchitectures execute the following assembly loop. Assume
the following initial register values: x1 initially points to an array in memory that holds pointers
to pairs of values; x7 is a constant; x9 is initially 64 (i.e., the loop executes 64 times). There are 10
instructions per iteration so the total number of instructions per program is 10 × 64 = 640.

1 loop:
2 lw x2, 0(x1) # load pointer to pair of values
3 lw x3, 0(x2) # load first element of pair
4 lw x4, 4(x2) # load second element of pair
5 addi x1, x1, 4 # pointer increment for array
6 addi x9, x9, -1 # subtract one from loop counter
7 add x5, x3, x7 # add constant to first element
8 add x6, x4, x7 # add constant to second element
9 sw x6, 4(x2) # store new second element of pair

10 sw x5, 0(x2) # store new first element of pair
11 bne x9, x0, loop # backwards loop branch

PC IR

Reg Read
Data

Memory

branch?

Reg Write

Decode

Instr
Memory

F D X M W

Figure 12: 2r1w Processor Microarchitecture – Standard five-stage PARCv2 pipeline

PC

Reg Read
Data

Memory

branch?

Reg WriteDecode
Instr

Memory

F R X M W

IR

D

Figure 13: 1r1w Processor Microarchitecture – Six-stage pipeline with one register-file read port
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Part 6.A Performance of 2r1w Processor Microarchitecture

In this part, we will calculate the execution time for the assembly loop given above running on the
2r1w microarchitecture shown in Figure 12. Assume that this microarchitecture is identical to the
fully bypassed five-stage PARCv2 pipeline discussed in lecture. Assume the processor is directly
connected to a magic combinational memory providing single-cycle instruction and data access
latency. Remember that branches are resolved in the X stage and there is no branch delay slot. The
cycle time for this microarchitecture is 1 ns and is limited by the critical path through the register
file.

Draw a pipeline diagram illustrating how the first iteration of the loop executes on the 2r1w
processor microarchitecture. Use microarchitectural dependency arrows to illustrate how data
is transferred between instructions. You may want to include the first instruction of the second
iteration to illustrate the impact of the branch resolution latency. Based on this pipeline diagram
estimate the execution time for 64 iterations of this loop. Fill in the appropriate row of the table
in Figure 14. You must show your work.

lw x2, 0(x1)

lw x3, 0(x2)

lw x4, 4(x2)

addi x1, x1, 4

addi x9, x9, -1

add x5, x3, x7

add x6, x4, x7

sw x6, 4(x2)

sw x5, 0(x2)

bne x9, loop

F D X M W
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Instructions / Avg Cycles / Time (ns) / Time (ns) /

Part Microarchitecture Program Instruction Cycle Program

2.A 2r1w 640 1.0

2.B 1r1w 640 0.7

2.C 1r1w 640 0.7

Figure 14: Processor Performance for Assembly Loop on Two Different Microarchitectures

Part 6.B Performance of 1r1w Processor Microarchitecture

In this part, we will calculate the execution time for the assembly loop given above running on the
1r1w microarchitecture shown in Figure 13. This microarchitecture uses a simpler register file with
only one read port and one write port. It is not possible to read two values from this register file
in the same cycle. It is now necessary to first decode an instruction, determine the register read
specifier, and only then can we read the register file. This means we must add an extra R stage to
our pipeline. The new pipeline includes the following six stages: fetch (F), decode (D), register-file
read (R), execute (X), memory access (M), and register-file writeback (W). Branches are still resolved
in the X stage and there is still no branch delay slot.

Some instructions only read one register value (e.g., ori) and other instructions don’t actually read
any register values (e.g., j). For these instructions the reduced number of read ports will not be an
issue. For instructions that actually do need to read two values from the register file, the control
logic will need to stall in the R stage for an extra cycle. We read the first register value in the first
cycle and read the second register value in the second cycle. Notice that we bypass into the R stage
and not the D stage with the 1r1w microarchitecture, so assume that we stall in R if we cannot
bypass and need to resolve a RAW hazards. Due to the reduced number of register file ports, the
cycle time for this microarchitecture is 0.7 ns and is limited by the critical path through the register
file.

There is one final issue that is subtle but very important. As shown in Figure 13, using the bypass
path does not require using a read port of the register file! This means that we do not need to stall
an instruction that reads two register values if one or both of the values come from the bypass paths
as opposed to actually coming from the register file.
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Draw a pipeline diagram illustrating how the first iteration of the loop executes on the 1r1w
processor microarchitecture. Use microarchitectural dependency arrows to illustrate how data
is transferred between instructions. You may want to include the first instruction of the second
iteration to illustrate the impact of the branch resolution latency. Based on this pipeline diagram
estimate the execution time for 64 iterations of this loop. Fill in the appropriate row of the table
in Figure 14. You must show your work below.

lw x2, 0(x1)

lw x3, 0(x2)

lw x4, 4(x2)

addi x1, x1, 4

addi x9, x9, -1

add x5, x3, x7

add x6, x4, x7

sw x6, 4(x2)

sw x5, 0(x2)

bne x9, loop

F D R X M W
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Part 6.C Software Scheduling for 1r1w Processor Microarchitecture

Software can improve the performance of the assembly loop by rescheduling the instructions to
avoid stalls due to structural and data hazards. Note that this does not imply changing the in-
struction set architecture; instead, the hardware architect would provide optimization guidelines
to the compiler writer to enable performance optimizations for the specific 1r1w microarchitec-
ture described in the previous section. In the space below, carefully craft succinct optimization
guidelines for compiler writers that if followed will improve the performance of assembly code
running on the 1r1w microarchitecture. Your optimization guidelines should mitigate the impact of
stalls due to structural and data hazards. Explain your optimization guidelines.

Use your optimization guidelines to reschedule the assembly loop. Show the optimized static
instruction sequence below. Explain your optimizations. Note that we have provided space for
a pipeline diagram on the next page but you are not required to use it. Do not remove or add new
assembly instructions; simply reschedule the assembly instructions given in the loop. Estimate the
execution time for 64 iterations of this loop. Fill in the appropriate row of the table in Figure 14.
You must show your work.

Note that we have provided space for a pipeline diagram below but you are not required to use it.
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