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1. Instruction Set Architecture

1. Instruction Set Architecture

• By early 1960’s, IBM had several incompatible lines of computers!

– Defense : 701
– Scientific : 704, 709, 7090, 7094
– Business : 702, 705, 7080
– Mid-Sized Business : 1400
– Decimal Architectures : 7070, 7072, 7074

• Each system had its own:

– Implementation and potentially even technology
– Instruction set
– I/O system and secondary storage (tapes, drums, disks)
– Assemblers, compilers, libraries, etc
– Application niche

Register-Transfer Level

Circuits
Devices

Programming Language
Algorithm

Microarchitecture

Technology

Application

Operating System

Gate Level

Instruction Set Architecture
Compiler

• IBM 360 was the first line of
machines to separate ISA from
microarchitecture

– Enabled same software to run on
different current and future
microarchitectures

– Reduced impact of modifying the
microarchitecture enabling rapid
innovation in hardware

... the structure of a computer that a machine language programmer
must understand to write a correct (timing independent)

program for that machine.

— Amdahl, Blaauw, Brooks, 1964
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1. Instruction Set Architecture

ISA is the contract between software and hardware

• 1.

– Representations for characters, integers, floating-point
– Integer formats can be signed or unsigned
– Floating-point formats can be single- or double-precision
– Byte addresses can ordered within a word as either little- or big-endian

• 2.

– Registers: general-purpose, floating-point, control/status
– Memory: different addresses spaces for heap, stack, I/O

• 3.

– Register: operand stored in registers
– Immediate: operand is an immediate in the instruction
– Direct: address of operand in memory is stored in instruction
– Register Indirect: address of operand in memory is stored in register
– Displacement: register indirect, addr is added to immediate
– Autoincrement/decrement: register indirect, addr is automatically adj
– PC-Relative: displacement is added to the program counter

• 4.

– Integer and floating-point arithmetic instructions
– Register and memory data movement instructions
– Control transfer instructions
– System control instructions

• 5.

– Opcode, addresses of operands and destination, next instruction
– Variable length vs. fixed length
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1. Instruction Set Architecture 1.1. IBM 360 Instruction Set Architecture

1.1. IBM 360 Instruction Set Architecture

• How is data represented?

– 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words
– IBM 360 is why bytes are 8-bits long today!

• Where can data be stored?

– 224 8-bit memory locations
– 16 general-purpose 32-bit registers and 4 floating-point 64-bit registers
– Condition codes, control flags, program counter

• What operations can be performed on data?

– Large number of arithmetic, data movement, and control instructions
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1. Instruction Set Architecture 1.1. IBM 360 Instruction Set Architecture

Model 30 Model 70

Storage 8–64 KB 256–512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 ns/level 5 ns/level
Local Store Main store Transistor registers
Control Store Read only 1µs Conventional circuits

• IBM 360 instruction set architecture completely hid
the underlying technological differences between various models

• Significant Milestone: The first true ISA designed as a
portable hardware-software interface

• IBM 360: 60 years later ...
The zSeries z15 Microprocessor

– 5+ GHz in IBM 14 nm SOI
– 9.2B transistors in 696 mm2

– 17 metal layers
– 12 cores per chip
– Aggressive out-of-order execution
– Four-level cache hierarchy
– On-chip 256MB eDRAM L3 cache
– Off-chip 960MB eDRAM L4 cache
– Can still run IBM 360 code!

C. Berry, et al., “IBM z15: A 12-Core 5.2GHz Microprocessor,”
Int’l Solid-State Circuits Conference, Feb. 2020.
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1. Instruction Set Architecture 1.2. MIPS32 Instruction Set Architecture

1.2. MIPS32 Instruction Set Architecture

• How is data represented?

– 8-bit bytes, 16-bit half-words, 32-bit words
– 32-bit single-precision, 64-bit double-precision floating point

• Where can data be stored?

– 232 8-bit memory locations
– 32 general-purpose 32-bit registers, 32 SP (16 DP) floating-point registers
– FP status register, Program counter

• How can data be accessed?

– Register, immediate, displacement

• What operations can be performed on data?

– Large number of arithmetic, data movement, and control instructions

• How are instructions encoded?

– Fixed-length 32-bit instructions

MIPS R2K: 1986, single-issue,
in-order, off-chip caches, 2 µm,

8–15 MHz, 110K transistors, 80 mm2

MIPS R10K: 1996, quad-issue,
out-of-order, on-chip caches, 0.35 µm,
200 MHz, 6.8M transistors, 300 mm2
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Add Immediate Unsigned Word ADDIU

48 MIPS32® Architecture For Programmers Volume II: The MIPS32® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ADDIU rt, rs, immediate MIPS32

Purpose: Add Immediate Unsigned Word

To add a constant to a 32-bit integer

Description: GPR[rt] ← GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into

GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] + sign_extend(immediate)
GPR[rt] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not

trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-

metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

ADDIU

001001
rs rt immediate
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Load Word LW

148 MIPS32® Architecture For Programmers Volume II: The MIPS32® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LW rt, offset(base) MIPS32

Purpose: Load Word

To load a word from memory as a signed value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-

extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the con-

tents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LW

100011
base rt offset
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Load Word Left LWL

175 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.03

Copyright © 2001-2003,2005,2008-2013 MIPS Technologies Inc. All rights reserved.

Format: LWL rt, offset(base) MIPS32

Purpose: Load Word Left

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: GPR[rt] ← GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes of W is in the aligned word containing the EffAddr. This part of W is loaded into the
most-significant (left) part of the word in GPR rt. The remaining least-significant part of the word in GPR rt is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination register word
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remainder of
the unaligned word

Figure 3.4 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the processor
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

31 26 25 21 20 16 15 0

LWL
100010 base rt offset

6 5 5 16

Word at byte 2 in big-endian memory; each memory byte contains its own address
 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h GPR 24 Initial contents

2 3 g h After executing LWL $24,2($0)

2 3 4 5 Then after LWR $24,5($0)



Branch on Not Equal BNE

84 MIPS32® Architecture For Programmers Volume II: The MIPS32® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BNE rs, rt, offset MIPS32

Purpose: Branch on Not Equal

To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] ≠ GPR[rt] then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the

delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BNE

000101
rs rt offset
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1. Instruction Set Architecture 1.3. Tiny RISC-V Instruction Set Architecture

1.3. Tiny RISC-V Instruction Set Architecture

• RISC-V instruction set architecture

– Brand new free, open instruction set architecture
– Significant excitement around RISC-V hardware/software ecosystem
– Helping to energize “open-source hardware”
– Specifically designed to encourage subsetting and extension
– Link to official ISA manual on course webpage

• Tiny RISC-V instruction set architecture

– Subset we use in this course
– Small enough for teaching, powerful enough for running real C programs
– How is data represented?
– Where can data be stored?
– How can data be accessed?

– What ops can be performed on
data?

– How are inst encoded?
– http://www.csl.cornell.edu/courses/ece4750/handouts.shtml

• TinyRV1: Small subset suitable for lecture, problems, exams

–
–
–

• TinyRV2: Subset suitable for lab assignments and capable of
executing simple C programs without an operating system

– add, addi, sub, mul, and, andi, or, ori, xor, xori
– slt, slti, sltu, sltiu
– sra, srai, srl, srli, sll, slli
– lui, aupic, lw, sw
– jal, jalr, beq, bne, blt, bge, bltu, bgeu
– csrr, csrw
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1. Instruction Set Architecture 1.3. Tiny RISC-V Instruction Set Architecture

TinyRV1 instruction assembly, semantics, and encoding

0000000 000rs1rs2 rd 0110011

067111214151920242531

000rs1 rd 0010011

06711121415192031

0000001 000rs1rs2 rd 0110011

067111214151920242531

ADD

imm

010rs1 rd 0000011

06711121415192031

imm

010rs1 imm 0100011

06711121415192031

imm rs2

2425

rd 1101111

067111231

imm

000rs1 1100111

06711121415192031

00000000000000000

001rs1 1100011

06711121415192031

rs2

2425

immimm

add rd, rs1, rs2

R[rd] ← R[rs1] + R[rs2]
PC ← PC + 4  

 

ADDI

addi rd, rs1, imm

R[rd] ← R[rs1] + sext(imm)
PC ← PC + 4  

MUL

mul rd, rs1, rs2

R[rd] ← R[rs1] × R[rs2]
PC ← PC + 4  

JAL

jal rd, imm

JR

jr rs1

BNE

bne rs1, rs2, imm

SW

LW

lw rd, imm(rs1)

R[rd] ← M[ R[rs1] + sext(imm) ]
PC ← PC + 4

sw rs2, imm(rs1)

M[ R[rs1] + sext(imm) ] ← R[rs2]
PC ← PC + 4

R[rd] ← PC + 4
PC ← PC + sext(imm)

PC ← R[rs1]

if ( R[rs1] != R[rs2] )  PC ← PC + sext(imm)
else                                  PC ← PC + 4

imm = { inst[31:25], inst[11:7] }

imm = { inst[31], inst[7],
inst[30:25], inst[11:8], 0 }

imm = { inst[31], inst[19:12],
inst[20], inst[30:21], 0 }
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Category         Name Fmt RV32I Base Category                Name RV mnemonic
Loads         Load Byte I LB    rd,rs1,imm CSR Access     Atomic R/W CSRRW  rd,csr,rs1 

 Load Halfword I LH    rd,rs1,imm Atomic Read & Set Bit CSRRS  rd,csr,rs1 
Load Word I LW    rd,rs1,imm Atomic Read & Clear Bit CSRRC  rd,csr,rs1 

 Load Byte Unsigned I LBU   rd,rs1,imm  Atomic R/W Imm CSRRWI rd,csr,imm 
Load Half Unsigned I LHU   rd,rs1,imm Atomic Read & Set Bit Imm CSRRSI rd,csr,imm 

Stores       Store Byte S SB    rs1,rs2,imm Atomic Read & Clear Bit Imm CSRRCI rd,csr,imm 
Store Halfword S SH    rs1,rs2,imm Change Level      Env. Call ECALL 

Store Word S SW    rs1,rs2,imm Environment Breakpoint EBREAK 

Shifts          Shift Left R SLL   rd,rs1,rs2 Environment Return ERET 
 Shift Left Immediate I SLLI  rd,rs1,shamt Trap Redirect to SupervisorMRTS 

 Shift Right R SRL   rd,rs1,rs2 Redirect Trap to Hypervisor MRTH 
 Shift Right Immediate I SRLI  rd,rs1,shamt Hypervisor Trap to Supervisor HRTS 
 Shift Right Arithmetic R SRA   rd,rs1,rs2 Interrupt  Wait for Interrupt WFI 
 Shift Right Arith Imm I SRAI  rd,rs1,shamt MMU        Supervisor FENCE SFENCE.VM rs1 

Arithmetic         ADD R ADD   rd,rs1,rs2
 ADD Immediate I ADDI  rd,rs1,imm

 SUBtract R SUB   rd,rs1,rs2

 Load Upper Imm U LUI   rd,imm
 Add Upper Imm to PC U AUIPC rd,imm Category    Name Fmt RVC RVI equivalent

Logical              XOR R XOR   rd,rs1,rs2 Loads     Load Word CL C.LW    rd′,rs1′,imm LW rd′,rs1′,imm*4
 XOR Immediate I XORI  rd,rs1,imm Load Word SP CI C.LWSP  rd,imm LW rd,sp,imm*4

OR R OR    rd,rs1,rs2 Load Double CL C.LD    rd′,rs1′,imm LD rd′,rs1′,imm*8
OR Immediate I ORI   rd,rs1,imm Load Double SP CI C.LDSP  rd,imm LD rd,sp,imm*8

AND R AND   rd,rs1,rs2 Load Quad CL C.LQ    rd′,rs1′,imm LQ rd′,rs1′,imm*16
AND Immediate I ANDI  rd,rs1,imm Load Quad SP CI C.LQSP  rd,imm LQ rd,sp,imm*16

Compare            Set < R SLT   rd,rs1,rs2 Stores   Store Word CS C.SW    rs1′,rs2′,imm SW rs1′,rs2′,imm*4
 Set < Immediate I SLTI  rd,rs1,imm Store Word SP CSS C.SWSP  rs2,imm SW rs2,sp,imm*4

 Set < Unsigned R SLTU  rd,rs1,rs2 Store Double CS C.SD    rs1′,rs2′,imm SD rs1′,rs2′,imm*8
 Set < Imm Unsigned I SLTIU rd,rs1,imm Store Double SP CSS C.SDSP  rs2,imm SD rs2,sp,imm*8

Branches     Branch = SB BEQ   rs1,rs2,imm Store Quad CS C.SQ    rs1′,rs2′,imm SQ rs1′,rs2′,imm*16
 Branch ≠ SB BNE   rs1,rs2,imm Store Quad SP CSS C.SQSP  rs2,imm SQ rs2,sp,imm*16
 Branch < SB BLT   rs1,rs2,imm Arithmetic      ADD CR C.ADD      rd,rs1 ADD   rd,rd,rs1
 Branch ≥ SB BGE   rs1,rs2,imm ADD Word CR C.ADDW     rd,rs1 ADDW  rd,rd,imm

 Branch < Unsigned SB BLTU  rs1,rs2,imm  ADD Immediate CI C.ADDI     rd,imm ADDI  rd,rd,imm
 Branch ≥ Unsigned SB BGEU  rs1,rs2,imm  ADD Word Imm CI C.ADDIW    rd,imm ADDIW rd,rd,imm

Jump & Link       J&L UJ JAL   rd,imm  ADD SP Imm * 16 CI C.ADDI16SP x0,imm ADDI  sp,sp,imm*16
 Jump & Link Register UJ JALR  rd,rs1,imm  ADD SP Imm * 4 CIW C.ADDI4SPN rd',imm ADDI  rd',sp,imm*4

Synch    Synch thread I FENCE Load Immediate CI C.LI       rd,imm ADDI  rd,x0,imm
 Synch Instr & Data I FENCE.I  Load Upper Imm CI C.LUI      rd,imm LUI   rd,imm

System  System CALL I SCALL MoVe CR C.MV       rd,rs1 ADD   rd,rs1,x0
 System BREAK I SBREAK SUB CR C.SUB      rd,rs1 SUB   rd,rd,rs1

Counters ReaD CYCLE I RDCYCLE    rd Shifts Shift Left Imm CI C.SLLI     rd,imm SLLI  rd,rd,imm 
 ReaD CYCLE upper Half I RDCYCLEH   rd Branches Branch=0 CB C.BEQZ     rs1′,imm BEQ   rs1',x0,imm

 ReaD TIME I RDTIME     rd  Branch≠0 CB C.BNEZ     rs1′,imm BNE   rs1',x0,imm
 ReaD TIME upper Half I RDTIMEH    rd Jump             Jump CJ C.J        imm JAL   x0,imm
 ReaD INSTR RETired I RDINSTRET  rd  Jump Register CR C.JR       rd,rs1 JALR  x0,rs1,0

 ReaD INSTR upper Half I RDINSTRETH rd Jump & Link    J&L CJ C.JAL      imm JAL   ra,imm
 Jump & Link Register CR C.JALR     rs1 JALR  ra,rs1,0
System Env. BREAK CI C.EBREAK EBREAK 

CR
R CI
I CSS
S CIW
SB CL
U CS
UJ CB

CJ
RISC-V Integer Base (RV32I/64I/128I),  privileged, and optional compressed extension (RVC). Registers x1-x31 and the pc are 32 bits 
wide in RV32I, 64 in RV64I, and 128 in RV128I (x0=0).  RV64I/128I add 10 instructions for the wider formats. The RVI base of <50 
classic integer RISC instructions is required. Every 16-bit RVC instruction matches an existing 32-bit RVI instruction. See risc.org.

32-bit Instruction Formats 16-bit (RVC) Instruction Formats

SRAI{W|D} rd,rs1,shamt
ADD{W|D}  rd,rs1,rs2
ADDI{W|D} rd,rs1,imm
SUB{W|D}  rd,rs1,rs2

Optional Compressed (16-bit) Instruction Extension: RVC 

SRL{W|D}  rd,rs1,rs2
SRLI{W|D} rd,rs1,shamt
SRA{W|D}  rd,rs1,rs2

S{D|Q}    rs1,rs2,imm

SLL{W|D}  rd,rs1,rs2
SLLI{W|D} rd,rs1,shamt

L{D|Q}    rd,rs1,imm

L{W|D}U   rd,rs1,imm

         Free & Open                                 Reference Card        ① 

 +RV{64,128}
Base Integer Instructions: RV32I, RV64I, and RV128I RV Privileged Instructions



Category                Name Fmt RV32M (Multiply-Divide)
Multiply                  MULtiply R MUL             rd,rs1,rs2

MULtiply upper Half R MULH            rd,rs1,rs2
MULtiply Half Sign/Uns R MULHSU          rd,rs1,rs2

MULtiply upper Half Uns R MULHU           rd,rs1,rs2
Divide                       DIVide R DIV             rd,rs1,rs2

DIVide Unsigned R DIVU            rd,rs1,rs2
Remainder          REMainder R REM             rd,rs1,rs2

REMainder Unsigned R REMU            rd,rs1,rs2

Category                Name Fmt RV32A (Atomic)
Load               Load Reserved R LR.W            rd,rs1
Store           Store Conditional R SC.W            rd,rs1,rs2
Swap                          SWAP R AMOSWAP.W       rd,rs1,rs2
Add                                  ADD R AMOADD.W        rd,rs1,rs2
Logical                          XOR R AMOXOR.W        rd,rs1,rs2

 AND R AMOAND.W        rd,rs1,rs2
OR R AMOOR.W         rd,rs1,rs2

Min/Max                 MINimum R AMOMIN.W        rd,rs1,rs2
MAXimum R AMOMAX.W        rd,rs1,rs2

MINimum Unsigned R AMOMINU.W       rd,rs1,rs2
MAXimum Unsigned R AMOMAXU.W       rd,rs1,rs2

Category                Name Fmt RV32{F|D|Q} (HP/SP,DP,QP Fl Pt)
Move          Move from Integer R FMV.{H|S}.X       rd,rs1 FMV.{D|Q}.X           rd,rs1

Move to Integer R FMV.X.{H|S}       rd,rs1 FMV.X.{D|Q}           rd,rs1
Convert       Convert from Int R FCVT.{H|S|D|Q}.W  rd,rs1 FCVT.{H|S|D|Q}.{L|T}  rd,rs1

Convert from Int Unsigned R FCVT.{H|S|D|Q}.WU rd,rs1 FCVT.{H|S|D|Q}.{L|T}U rd,rs1
Convert to Int R FCVT.W.{H|S|D|Q}  rd,rs1 FCVT.{L|T}.{H|S|D|Q}  rd,rs1

Convert to Int Unsigned R FCVT.WU.{H|S|D|Q} rd,rs1 FCVT.{L|T}U.{H|S|D|Q} rd,rs1

Load                            Load I FL{W,D,Q}      rd,rs1,imm
Store                          Store S FS{W,D,Q}      rs1,rs2,imm Register ABI Name Saver Description
Arithmetic                   ADD R FADD.{S|D|Q}   rd,rs1,rs2 x0 zero --- Hard-wired zero

SUBtract R FSUB.{S|D|Q}   rd,rs1,rs2 x1 ra Caller Return address
MULtiply R FMUL.{S|D|Q}   rd,rs1,rs2 x2 sp Callee Stack pointer

DIVide R FDIV.{S|D|Q}   rd,rs1,rs2 x3 gp --- Global pointer 
SQuare RooT R FSQRT.{S|D|Q}  rd,rs1 x4 tp --- Thread pointer

Mul-Add            Multiply-ADD R FMADD.{S|D|Q}  rd,rs1,rs2,rs3 x5-7 t0-2 Caller Temporaries
Multiply-SUBtract R FMSUB.{S|D|Q}  rd,rs1,rs2,rs3 x8 s0/fp Callee Saved register/frame pointer 

Negative Multiply-SUBtract R FNMSUB.{S|D|Q} rd,rs1,rs2,rs3 x9 s1 Callee Saved register
Negative Multiply-ADD R FNMADD.{S|D|Q} rd,rs1,rs2,rs3 x10-11 a0-1 Caller Function arguments/return values

Sign Inject        SiGN source R FSGNJ.{S|D|Q}  rd,rs1,rs2 x12-17 a2-7 Caller Function arguments 
Negative SiGN source R FSGNJN.{S|D|Q} rd,rs1,rs2 x18-27 s2-11 Callee Saved registers

Xor SiGN source R FSGNJX.{S|D|Q}  rd,rs1,rs2 x28-31 t3-t6 Caller Temporaries
Min/Max                  MINimum R FMIN.{S|D|Q}   rd,rs1,rs2 f0-7 ft0-7 Caller FP temporaries   

MAXimum R FMAX.{S|D|Q}   rd,rs1,rs2 f8-9 fs0-1 Callee FP saved registers 
Compare     Compare Float = R FEQ.{S|D|Q}    rd,rs1,rs2 f10-11 fa0-1 Caller FP arguments/return values 

Compare Float < R FLT.{S|D|Q}    rd,rs1,rs2 f12-17 fa2-7 Caller FP arguments     
Compare Float ≤ R FLE.{S|D|Q}    rd,rs1,rs2 f18-27 fs2-11 Callee FP saved registers 

Categorization Classify Type R FCLASS.{S|D|Q} rd,rs1 f28-31 ft8-11 Caller FP temporaries   
Configuration    Read Status R FRCSR          rd

Read Rounding Mode R FRRM           rd
Read Flags R FRFLAGS        rd

Swap Status Reg R FSCSR          rd,rs1
Swap Rounding Mode R FSRM           rd,rs1

Swap Flags R FSFLAGS        rd,rs1
Swap Rounding Mode Imm I FSRMI          rd,imm

Swap Flags Imm I FSFLAGSI       rd,imm
RISC-V calling convention and five optional extensions: 10 multiply-divide instructions (RV32M); 11 optional atomic instructions (RV32A); and 
25 floating-point instructions each for single-, double-, and quadruple-precision (RV32F, RV32D, RV32Q). The latter add registers f0-f31, whose 
width matches the widest precision, and a floating-point control and status register fcsr. Each larger address adds some instructions: 4 for RVM, 
11 for RVA, and 6 each for RVF/D/Q. Using regex notation, {} means set, so L{D|Q} is both LD and LQ. See risc.org. (8/21/15 revision)

AMOMINU.{D|Q} rd,rs1,rs2
AMOMAXU.{D|Q} rd,rs1,rs2

Three Optional Floating-Point Instruction Extensions: RVF, RVD, & RVQ 
 +RV{64,128}

RISC-V Calling Convention

AMOMAX.{D|Q}  rd,rs1,rs2

AMOADD.{D|Q}  rd,rs1,rs2
AMOXOR.{D|Q}  rd,rs1,rs2
AMOAND.{D|Q}  rd,rs1,rs2
AMOOR.{D|Q}   rd,rs1,rs2

AMOMIN.{D|Q}  rd,rs1,rs2

LR.{D|Q}      rd,rs1
SC.{D|Q}      rd,rs1,rs2
AMOSWAP.{D|Q} rd,rs1,rs2

REMU{W|D}     rd,rs1,rs2

Optional Atomic Instruction Extension: RVA
 +RV{64,128}

REM{W|D}      rd,rs1,rs2

MUL{W|D}      rd,rs1,rs2

DIV{W|D}      rd,rs1,rs2

Free & Open                                 Reference Card (riscv.org)    ②

 +RV{64,128}
Optional Multiply-Divide Instruction Extension: RVM
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2. Processor Functional-Level Model

Program
Counter

Instr
Mem

CS
Regs

Data
Mem

Instruction
Semantics

A
rc

h
it

ec
tu

ra
l

St
at

e

Instruction and data memory
usually combined into a
single unified memory

X
Regs

2.1. Transactions and Steps

• We can think of each instruction as a transaction
• Executing a transaction involves a sequence of steps

add addi mul lw sw jal jr bne

Fetch Instruction

Decode Instruction

Read Register File

Register Arithmetic

Read Memory

Write Memory

Write Register File

Update PC

Topic 1: Processor Concepts 16



2. Processor Functional-Level Model 2.2. TinyRV1 Simple Assembly Example

2.2. TinyRV1 Simple Assembly Example

Static Asm Sequence Instruction Semantics

loop: lw x1, 0(x2)

add x3, x3, x1

addi x2, x2, 4

bne x1, x0, loop

Worksheet illustrating processor functional-level model

PC Instr Mem Reg File Data Mem

0x1000

x0

x1

x2

x3

x31

0x2000

add x3, x3, x1

addi x2, x2, 4

bne x1, x0, loop

lw x1, 0(x2) 

0

13

47

0

0x2004

0x2008

Table illustrating processor functional-level model
PC Dynamic Asm Sequence x1 x2 x3

lw x1, 0(x2)

add x3, x3, x1

addi x2, x2, 4

bne x1, x0, loop

lw x1, 0(x2)

add x3, x3, x1
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2. Processor Functional-Level Model 2.3. TinyRV1 VVAdd Asm and C Program

2.3. TinyRV1 Vector-Vector Add Assembly and C Program

C code for doing element-wise vector addition.
void vvadd( int* dest, int* src0, int* src1, int n ) {

}

Equivalent TinyRV1 assembly code. Arguments are passed in x10–x17,
return value is stored to x10, return address is stored in x1, and
temporaries are stored in x5–x7.

Note that we are ignoring the fact that our assembly code will not function correctly if n
<= 0. Our assembly code would need an additional check before entering the loop to
ensure that n > 0. Unless otherwise stated, we will assume in this course that array
bounds are greater than zero to simplify our analysis.

Topic 1: Processor Concepts 18



2. Processor Functional-Level Model 2.4. TinyRV1 Mystery Asm and C Program

2.4. TinyRV1 Mystery Assembly and C Program

What is the C code corresponding to the TinyRV1 assembly shown
below? Assume assembly implements a function.

addi x5, x0, 0

loop:
lw x6, 0(x10)
bne x6, x12, foo
addi x10, x5, 0
jr x1

foo:
addi x10, x10, 4
addi x5, x5, 1
bne x5, x11, loop

addi x10, x0, -1
jr x1
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3. Processor/Laundry Analogy
• Processor

– Instructions are “transactions” that execute on a processor
– Architecture: defines the hardware/software interface
– Microarchitecture: how hardware executes sequence of instructions

• Laundry

– Cleaning a load of laundry is a “transaction”
– Architecture: high-level specification, dirty clothes in, clean clothes out
– Microarchitecture: how laundry room actually processes multiple loads

3.1. Arch vs. µArch vs. VLSI Impl

ARM Architecture ARM VLSI Implementation

Samsung Exynos Octa

NVIDIA Tegra 2

ARM
Microarchitecture

Topic 1: Processor Concepts 20



3. Processor/Laundry Analogy 3.2. Processor Microarchitectural Design Patterns

3.2. Processor Microarchitectural Design Patterns

7pm 8pm 9pm 10pm 11pm 12am 1am 2am 3am

7pm 8pm 9pm

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Fixed Time Slot Laundry (Single-Cycle Processors)

Pipelined Laundry
10pm

0 hr 1 h 2 hr

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Four Types of Transactions

 
2.0 hr

Transaction
Latency

1.0 hr

1.5 hr

2.0 hr

Anne requires all four steps

Ben is messy, leaves unfolded
clothes in his laundry basket

Cathy does not have a bureau,
leaves folded clothes in basket

Dave requires all four steps

Transaction
Steps

Washing
(30 min)

Drying
(30 min)

Folding
(30 min)

Storing
(30 min)

7pm 8pm 9pm 10pm 11pm 12am 1am

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Variable Time Slot Laundry (FSM Processors)
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3. Processor/Laundry Analogy 3.3. Transaction Diagrams

3.3. Transaction Diagrams

W: Washing D: Drying F: Folding S: Storing

Key Concepts

• Transaction latency is the time to
complete a single transaction

• Execution time or total latency is
the time to complete a sequence
of transactions

• Throughput is the number of
transactions executed per unit time
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4. Analyzing Processor Performance

4. Analyzing Processor Performance

Time
Program

=
Instructions

Program
× Avg Cycles

Instruction
× Time

Cycle

• Instructions / program depends on source code, compiler, ISA
• Avg cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Using our first-order equation for processor performance and
a functional-level model, the execution time is just the

number of dynamic instructions.

Microarchitecture CPI Cycle Time

Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ≈1 short

Students often confuse “Cycle Time” with the execution time
of a sequence of transactions measured in cycles.

“Cycle Time” is the clock period or the inverse of the clock frequency.
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4. Analyzing Processor Performance

Estimating dynamic instruction count

Estimate the dynamic instruction count for the vector-vector add
example assuming n is 64?

loop:
lw x5, 0(x11)
lw x6, 0(x12)
add x7, x5, x6
sw x7, 0(x10)
addi x11, x11, 4
addi x12, x12, 4
addi x10, x10, 4
addi x13, x13, -1
bne x13, x0, loop
jr x1

Estimate the dynamic instruction count for the mystery program
assuming n is 64 and that we find a match on the final element.

addi x5, x0, 0
loop:

lw x6, 0(x10)
bne x6, x12, foo
addi x10, x5, 0
jr x1

foo:
addi x10, x10, 4
addi x5, x5, 1
bne x5, x11, loop
addi x10, x0, -1
jr x1
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