
ECE 4750 Computer Architecture, Fall 2016
Tutorial 3: PyMTL Hardware Modeling Framework

School of Electrical and Computer Engineering
Cornell University

revision: 2016-09-06-17-35

1 Introduction 3

2 PyMTL Modeling: Functional-, Cycle-, and Register-Transfer-Level Modeling 4

2.1 Comparison of FL, CL, and RTL Modeling . 4

2.2 Synthesizable vs. Non-Synthesizable RTL Modeling . 4

3 PyMTL Basics: Data Types and Operators 5

3.1 Bits Data Type . 5

3.2 Bits Operators . 7

3.3 BitStruct Data Type . 11

4 Registered Incrementer 11

4.1 Modeling a Registered Incrementer . 11

4.2 Simulating a Model . 14

4.3 Visualizing a Model with Line Traces . 16

4.4 Visualizing a Model with Waveforms . 16

4.5 Verifying a Model with Unit Testing . 17

4.6 Verifying a Model with Test Vectors . 21

4.7 Verifying a Model with Random Testing . 24

4.8 Reusing a Model with Structural Composition . 25

4.9 Parameterizing a Model with "Static" Elaboration . 28

4.10 Packaging a Collection of Models . 32

5 Sort Unit 34

5.1 FL Model of Sort Unit . 34

5.2 CL Model of Sort Unit . 36

5.3 Flat RTL Model of Sort Unit . 39

5.4 Structural RTL Model of Sort Unit . 42

5.5 Evaluating Sort Unit using a Simulator . 43

5.6 Translating RTL Model of Sort Unit to Verilog . 45

1

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

6 Greatest Common Divisor Unit 49

6.1 FL Model of GCD Unit . 49

6.2 CL Model of GCD Unit . 54

6.3 RTL Model of GCD Unit . 57

6.4 Exploring the GCD Implementation . 61

7 TravisCI for Continuous Integration 61

2

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1. Introduction

In the lab assignments for this course, we will be using the PyMTL hardware modeling framework
for functional-level modeling, verification, and simulator harnesses. Students can choose to use
either PyMTL or Verilog for their register-transfer-level modeling. If you are planning to use Verilog,
you should still complete this tutorial since we will always be using PyMTL for some aspects of the
lab assignment.

This tutorial describes the basics of the PyMTL hardware modeling framework with a focus on the
specific development, testing, and evaluation approach as well as the coding conventions we will be
using in the course. We will be using several open-source packages and tools: the py.test frame-
work for powerful test-driven Python development; Verilator (verilator) for converting Verilog
models into C++ source code; and GTKWave (gtkwave) for viewing waveforms. The PyMTL frame-
work is itself open source and available on GitHub here:

• https://github.com/cornell-brg/pymtl

You should feel free to browse the source code for PyMTL on GitHub if you want to see more
how various aspects of the framework are implemented. These tools are installed and available
on ecelinux. This tutorial assumes that students have completed the Linux and Git tutorials, and
also that students have a basic understanding of Python.

If you need to refresh your understanding of Python, we highly recommend working through the
book by Allen Downey titled “Think Python: How to Think Like a Computer Scientist” (O’Reilly,
2014). We also recommend reading a recent research paper on PyMTL by Derek Lockhart et al. titled
“PyMTL: A Unified Framework for Vertically Integrated Computer Architecture Research” and pub-
lished at the 47th ACM/IEEE Int’l Symp. on Microarchitecture (MICRO-47). Both of these resources
are available on the course website.

To follow along with the tutorial, access the course computing resources, and type the commands
without the % character (for the bash prompt) or the >>> characters (for the python interpreter
prompt). In addition to working through the commands in the tutorial, you should also try the
more open-ended tasks marked with the H symbol.

Before you begin, make sure that you have sourced the setup-ece4750.sh script or that you have
added it to your .bashrc script, which will then source the script every time you login. Sourcing the
setup script sets up the environment required for this class.

You should start by forking the tutorial repository on GitHub. Go to the GitHub page for the tutorial
repository located here:

• https://github.com/cornell-ece4750/ece4750-tut3-pymtl

Click on Fork in the upper right-hand corner. If asked where to fork this repository, choose your
personal GitHub account. After a few seconds, you should have a new repository in your account:

• https://github.com/<githubid>/ece4750-tut3-pymtl

Where <githubid> is your GitHub ID, not your NetID. Now access ecelinux and clone your copy
of the tutorial repository as follows:

% source setup-ece4750.sh
% mkdir -p ${HOME}/ece4750
% cd ${HOME}/ece4750
% git clone https://github.com/<githubid>/ece4750-tut3-pymtl.git tut3

3

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

% cd tut3/sim
% TUTROOT=${PWD}

NOTE: It should be possible to experiment with this tutorial even if you are not enrolled
in the course and/or do not have access to the course computing resources. All of the
code for the tutorial is located on GitHub. You will not use the setup-ece4750.sh script,
and your specific environment may be different from what is assumed in this tutorial.

2. PyMTL Modeling: Functional-, Cycle-, and Register-Transfer-Level Modeling

Computer architects can model systems at various levels of abstraction including at the: functional-
level (FL), cycle-level (CL), and register-transfer-level (RTL). In this section, we provide a brief overview
of these different levels of modeling and also provide more detail on the difference between synthe-
sizable and non-synthesizable RTL modeling.

2.1. Comparison of FL, CL, and RTL Modeling

Each level of modeling has its own unique advantages and disadvantages, so the most effective
designers uses a mix of these modeling levels as appropriate. This tutorial will use various examples
to illustrate how to incrementally refine a design through FL, CL, and RTL models. Although it is
useful for students to understand CL modeling (and indeed most computer architects focus primarily
on CL modeling), the actual lab assignments will focus on FL and RTL modeling.

Functional-Level – FL models implement the functionality but not the timing of the hardware target.
FL models are useful for exploring algorithms, performing fast emulation of hardware targets, and
creating golden models for verification of CL and RTL models. FL models can also be used for
building sophisticated test harnesses. FL models are usually the easiest to construct, but also the
least accurate with respect to the target hardware.

Cycle-Level – CL models capture the cycle-approximate behavior of a hardware target. CL models will
often augment the functional behavior with an additional timing model to track the performance of
the hardware target in cycles. CL models are usually specifically designed to enable rapid design-
space exploration of cycle-level performance across a range of microarchitectural design parameters.
CL models attempt to strike a balance between accuracy, performance, and flexibility.

Register-Transfer-Level – RTL models are cycle-accurate, resource-accurate, and bit-accurate represen-
tations of hardware. RTL models are built for the purpose of verification and synthesis of specific
hardware implementations. RTL models can be used to drive EDA toolflows for estimating area,
energy, and timing. RTL models are usually the most tedious to construct, but also the most accurate
with respect to the target hardware.

In PyMTL, FL, CL, and RTL models all use port-based interfaces, concurrent blocks, and structural
composition. A set of unified interfaces enables PyMTL to support mixed-level modeling, i.e., com-
bining FL, CL, and RTL models of various subsystems into a single unified system model.

2.2. Synthesizable vs. Non-Synthesizable RTL Modeling

Keep in mind that PyMTL is embedded within Python, which is a fully general-purpose language.
Given this, it is very easy to write PyMTL code that does not actually model any kind of realistic
hardware. Indeed, we actually need this feature to be able to write clean and productive functional-
level models, test harnesses, assertions, and line tracing. So students must be very diligent in ac-
tively deciding whether or not they are writing synthesizable register-transfer-level models or

4

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

non-synthesizable code. Students must always keep in mind what hardware they are modeling
and how they are modeling it!

Students’ design work will almost exclusively use synthesizable PyMTL register-transfer-level (RTL)
models. Note that students can use any Python code they like in their elaboration code; the elabo-
ration code is all of the Python code outside the PyMTL concurrent blocks (i.e., outside s.tick_rtl
and s.combinational blocks). This is because elaboration code is used to generate hardware instead
of actually model hardware. It is also acceptable to include a limited amount of non-synthesizable
code in concurrent blocks for the sole purpose of debugging, assertions, or line tracing. If the stu-
dent includes non-synthesizable code in their concurrent blocks, they should demarcate this code
with comments. This explicitly documents the code as non-synthesizable and aids automated tools
in removing this code before synthesizing the design. If at any time students are unclear about
whether a specific construct is allowed in a synthesizable concurrent block, they should ask the
instructors.

Appendix A includes a table that outlines which Python constructs are allowed in synthesizable
PyMTL concurrent blocks, which constructs are allowed in synthesizable PyMTL concurrent blocks
with limitations, and which constructs are explicitly not allowed in synthesizable PyMTL concurrent
blocks.

3. PyMTL Basics: Data Types and Operators

We will begin by writing some very basic code to explore PyMTL data types and operators. We
will not be modeling actual hardware yet; we are just experimenting with the framework. Start by
launching the Python interpreter and importing the PyMTL framework into the global namespace.

% cd ${TUTROOT}
% python
>>> from pymtl import *

3.1. Bits Data Type

To understand any new modeling framework we usually start by exploring the primitive data types
for representing values in a model. PyMTL uses the Bits class to represent fixed-bitwidth values.
Note that in many hardware description languages (HDLs) each bit can take on one of four values
(i.e., 0, 1, X, Z), where X is used to represent unknown values and Z is used to represent high-
impedence values. In PyMTL each bit can only take on one of two values (i.e., 0, 1). We say that these
other HDLs support four-state values while PyMTL supports two-state values. Both approaches have
advantages and disadvantages. Two-state values produces faster simulations and avoid many of the
pitfalls of using X values; but some hardware constructs are a bit more verbose to describe when
only two-state values are available. Using two-state values also raises issues with properly handling
reset logic, although there are well-known techniques to address these issues.

5

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

Figure 1 shows an example session in the Python
interpreter that illustrates how to instantiate and
manipulate Bits objects. Type these commands
into the Python interpreter and observe the out-
put.

The Bits constructor takes to two arguments spec-
ifying the bitwidth and the initial value. Remem-
ber that in Python, a variable is just a name that
refers to a value or object. So on line 4, we create a
new variable with the name a that refers to a new
Bits object with 16 bits and an initial value of 37.
Also recall that values and objects belong to dif-
ferent types, and that the type of a variable is the
type of the value or object it refers to. As shown on
line 5, the type of a is Bits. We might also say that
a holds an instance of type Bits. Lines 9–13 show
what happens if we assign a new integer value to
the name a. It does not update the Bits object but
instead simply updates the name a to now refer to
a plain integer value.

Lines 25–28 show how to use standard Python
syntax to specify numeric literals in binary or
hexadecimal form. Lines 32–37 demonstrate that
negative initial values are also possible. These
negative values are stored using two’s comple-
ment. The Bits constructor includes dynamic
range checking and will throw an exception if
the given literal value cannot be stored using the
given number of bits. Lines 42–43 illustrate two
examples where a positive and negative literal are
too large to be stored in just eight bits. Lines 47–50
illustrate the optional Bits constructor trunc ar-
gument that will truncate initial values which are
too large to store in the given number of bits.

H To-Do On Your Own: Experiment with creating
Bits objects of different bitwidths and various
initial values. Experiment with the trunc ar-
gument to truncate large initial values.

1 # Bits constructor specifies bitwidth
2 # and initial value
3

4 >>> a = Bits(16, 37)
5 >>> type(a)
6 <class 'pymtl.datatypes.Bits.Bits'>
7 >>> a
8 Bits(16, 0x0025)
9 >>> a = 47

10 >>> type(a)
11 <type 'int'>
12 >>> a
13 47
14

15 # Getting number of bits and value
16

17 >>> a = Bits(16, 37)
18 >>> a.nbits
19 16
20 >>> a.uint()
21 37
22

23 # Using binary and hexadecimal literals
24

25 >>> Bits(8, 0b10101100)
26 Bits(8, 0xac)
27 >>> Bits(32, 0xabcd0123)
28 Bits(32, 0xabcd0123)
29

30 # Negative values stored in two's complement
31

32 >>> Bits(8, -1)
33 Bits(8, 0xff)
34 >>> Bits(8, -2)
35 Bits(8, 0xfe)
36 >>> Bits(8, -128)
37 Bits(8, 0x80)
38

39 # Initial values that cannot be stored with
40 # given bitwidth throw an exception
41

42 >>> Bits(8, 300)
43 >>> Bits(8, -300)
44

45 # Truncating initial values
46

47 >>> Bits(8, 300, trunc=True)
48 Bits(8, 0x2c)
49 >>> Bits(8, 0xdeadbeef, trunc=True)
50 Bits(8, 0xef)

Figure 1: Creating Bits Objects

6

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

Figure 2 shows another example session in the
Python interpreter that illustrates how to slice and
copy Bits objects. Type these commands into the
Python interpreter and observe the output.

Bits objects are sequences of bits, so we can use
standard Python syntax to specify bit slices for
reading or writing fields within a Bits object.
Note that Python slices always start with the in-
dex of the first bit in the slice and end with one
past the last bit in the slice. For example, the slice
a[28:32] on line 4 produces a new four-bit Bits
object with the most-significant four bits from a.

Line 23 illustrates how to create two different
names that refer to the same Bits object. Since
there is only a single Bits object, if we modify
that object using the name a (line 28), then later
accesses to that object using either name will re-
flect this change (line 29 and 31). In other words,
simply assigning a to b on line 23, does not copy the
object. To copy the object, we must create a new
Bits object as shown on line 37.

H To-Do On Your Own: Create two new Bits ob-
jects: one with a bitwidth of 32 and the other
with a bitwidth of eight. Assign the smaller
Bits object to the middle of the larger Bits ob-
ject using slices. Continue to experiment with
creating Bits objects of different bitwidths and
then using slices to read and write various
fields within these Bits objects.

1 # Python slices for reading fields
2

3 >>> a = Bits(32, 0xabcd0123)
4 >>> a[28:32]
5 Bits(4, 0xa)
6 >>> a[4:24]
7 Bits(20, 0xcd012)
8

9 # Python slices for writing fields
10

11 >>> a = Bits(32, 0xabcd0123)
12 >>> a[28:32] = 0xf
13 >>> a
14 Bits(32, 0xfbcd0123)
15 >>> a[4:24] = 0x210cd
16 >>> a
17 Bits(32, 0xfb210cd3)
18

19 # Creating two names that refer to
20 # the same Bits object
21

22 >>> a = Bits(32, 0xabcd0123)
23 >>> b = a
24 >>> a
25 Bits(32, 0xabcd0123)
26 >>> b
27 Bits(32, 0xabcd0123)
28 >>> a[24:32] = 0x67
29 >>> a
30 Bits(32, 0x67cd0123)
31 >>> b
32 Bits(32, 0x67cd0123)
33

34 # Copying a Bits object
35

36 >>> a = Bits(32, 0xabcd0123)
37 >>> b = Bits(32, a)
38 >>> a
39 Bits(32, 0xabcd0123)
40 >>> b
41 Bits(32, 0xabcd0123)
42 >>> a[24:32] = 0x67
43 >>> a
44 Bits(32, 0x67cd0123)
45 >>> b
46 Bits(32, 0xabcd0123)

Figure 2: Slicing and Copying Bits Objects

3.2. Bits Operators

Table 1 shows the Bits operators that we will be primarily using in this course. Note that Python
supports additional operators including / for division, % for modulus, and other generic Python
object manipulation functions. These operators are not translatable, so students should avoid using
these operators in their RTL models.

7

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

Logical Operators

& bitwise AND
| bitwise OR
^ bitwise XOR
^~ bitwise XNOR
~ bitwise NOT

Arithmetic Operators

+ addition
- subtraction
* multiplication

Reduction Operators

reduce_and reduce via AND
reduce_or reduce via OR
reduce_xor reduce via XOR

Shift Operators

>> shift right
<< shift left

Relational Operators

== equal
!= not equal
> greater than
>= greater than or equals
< less than
<= less than or equals

Other Functions

concat concatenate
sext sign-extension
zext zero-extension

Table 1: Bits Operators – Obviously there are many other operations that can be used with Bits
objects, but these are guaranteed to be translatable.

Figure 3 shows an example session in the Python
interpreter that illustrates how to use basic logical
and reduction operators with Bits objects. Type
these commands into the Python interpreter and
observe the output. Note that the reduction oper-
ators produce single-bit Bits objects.

Lines 18–22 illustrate support for implicit operand
conversion. When operators are applied to a mix of
Bits objects and standard integer values, PyMTL
attempts to implicitly convert the standard integer
values into Bits objects.

H To-Do On Your Own: Write a Python function
that implements a full adder. It should take
three one-bit Bits objects as operands and re-
turn a Python tuple containing two one-bit Bits
objects corresponding to the carry out and sum
bits.

Write a Python function that returns true if two
Bits objects are equal using just the bitwise
XOR/XNOR operators and the reduction oper-
ators.

1 # Logical operators
2

3 >>> a = Bits(4, 0b1010)
4 >>> b = Bits(4, 0b1100)
5 >>> a & b
6 Bits(4, 0x8) # 0b1000
7 >>> a | b
8 Bits(4, 0xe) # 0b1110
9 >>> a ^ b

10 Bits(4, 0x6) # 0b0110
11 >>> a ^~ b
12 Bits(4, 0x9) # 0b1001
13 >>> ~a
14 Bits(4, 0x5) # 0b0101
15

16 # Implicit operand conversion
17

18 >>> a = Bits(4, 0b1010)
19 >>> a & 0b1100
20 Bits(4, 0x8) # 0b1000
21 >>> 0b1100 & a
22 Bits(4, 0x8) # 0b1000
23

24 # Reduction operators
25

26 >>> a = Bits(8, 0b10101100)
27 >>> reduce_and(a)
28 Bits(1, 0x0)
29 >>> reduce_or(a)
30 Bits(1, 0x1)
31 >>> reduce_xor(a)
32 Bits(1, 0x0)

Figure 3: Bits Logical and Reduction
Operators

8

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

Figure 4 shows an example session in the Python
interpreter that illustrates how to use the shift,
arithmetic, and relational operators with Bits ob-
jects. Type these commands into the Python inter-
preter and observe the output.

Lines 3–13 illustrate left and right shift operators
that can use either a standard integer value or a
Bits object as the shift amount. The right shift op-
erator is a logical shift and inserts zeros in the most-
significant bit positions. The bitwidth of the result
from a shift is always the same as the first operand
to the shift operator.

Lines 17–37 illustrate addition and subtraction op-
erators. The bitwidth of the result is always the
max of the bitwidths of the two operands. These
operators perform modular arithmetic. On line 20,
the result of 3 + 15 is 18 which is represented in bi-
nary as 10010 but the result is truncated to four bits.
Negative numbers are converted to two’s comple-
ment before performing the addition.

Lines 41–54 illustrate relational operators for com-
paring two Bits objects. The less than and greater
than operators always treat the operands as un-
signed.

H To-Do On Your Own: Try writing some code
which does a sequence of additions resulting in
overflow and then a sequence of subtractions
that essentially undo the overflow. For exam-
ple, use an eight-bit Bits object to calculate 200
+ 100 + 100 - 100 - 100. Does this expres-
sion produce the expected answer even though
the intermediate values overflowed?

Write a Python function that does a signed less-
than comparison between two Bits objects of
any bitwidth. You will need to use the nbits
attribute to determine the sign bit for each Bits
object, and handle all four cases where either
operand can be positive or negative.

1 # Shift operators
2

3 >>> a = Bits(4, 0b1011)
4 >>> a << 2
5 Bits(4, 0xc) # 0b1100
6 >>> a >> 2
7 Bits(4, 0x2) # 0b0010
8

9 >>> b = Bits(8, 2)
10 >>> a << b
11 Bits(4, 0xc) # 0b1100
12 >>> a >> b
13 Bits(4, 0x2) # 0b0010
14

15 # Arithmetic operators
16

17 >>> a = Bits(4, 3)
18 >>> a + 2
19 Bits(4, 0x5)
20 >>> a + 15
21 Bits(4, 0x2)
22 >>> a - 2
23 Bits(4, 0x1)
24 >>> a - 15
25 Bits(4, 0x4)
26

27 >>> b = Bits(8, 2)
28 >>> a + b
29 Bits(8, 0x05)
30 >>> a - b
31 Bits(8, 0x01)
32

33 >>> c = Bits(8, -2)
34 >>> a + c
35 Bits(8, 0x01)
36 >>> a - c
37 Bits(8, 0x05)
38

39 # Relational operators
40

41 >>> a = Bits(4, 3)
42 >>> b = Bits(4, 2)
43 >>> a == b
44 False
45 >>> a != b
46 True
47 >>> a > b
48 True
49 >>> a >= b
50 True
51 >>> a < b
52 False
53 >>> a <= b
54 False

Figure 4: Bits Shift, Arithmetic, and
Relational Operators

9

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

Figure 5 shows an example session in the Python
interpreter that illustrates functions for concatenat-
ing, zero extending, and sign extending Bits ob-
jects. Type these commands into the Python inter-
preter and observe the output.

Lines 3–8 illustrate concatenating two Bits objects
using the concat function. Lines 10–15 illustrate
concatenating more than two Bits objects. Note
that one can only concatenate actual Bits objects as
opposed to integer literals since the exact bitwidth
of a decimal or hexadecimal integer literal is am-
biguous.

Lines 19–29 illustrate using the sext and zext func-
tions to sign extend and zero extend a Bits object
to the given larger bitwidth.

H To-Do On Your Own: Experiment with different
variations of concatenation to create interesting
bit patterns.

1 # Concatenation
2

3 >>> a = Bits(8, 0xab)
4 >>> b = Bits(12, 0xcde)
5 >>> concat(a, b)
6 Bits(20, 0xabcde)
7 >>> concat(b, a)
8 Bits(20, 0xcdeab)
9

10 >>> a = Bits(4, 0xd)
11 >>> b = Bits(12, 0xead)
12 >>> c = Bits(12, 0xbee)
13 >>> d = Bits(4, 0xf)
14 >>> concat(a, b, c, d)
15 Bits(32, 0xdeadbeef)
16

17 # Zero/sign extension
18

19 >>> a = Bits(4, 0xa)
20 >>> sext(a, 8)
21 Bits(8, 0xfa)
22 >>> zext(a, 8)
23 Bits(8, 0x0a)
24

25 >>> a = Bits(4, 0x6)
26 >>> sext(a, 8)
27 Bits(8, 0x06)
28 >>> zext(a, 8)
29 Bits(8, 0x06)

Figure 5: Bits Other Operators

10

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

3.3. BitStruct Data Type

Figure 6 shows an example session in the Python
interpreter that illustrates creating and using a
BitStruct for storing a value with predefined
named bit fields. Type these commands into the
Python interpreter and observe the output.

Lines 3–7 define a new BitStruct named Point
that represents a two-dimensional point with two
four-bit fields; one for the X coordinate and one
for the Y coordinate. We can instantiate new
Point objects, read the named fields, and write
the named fields. Lines 18–21 illustrate that a
BitStruct is also a Bits object so all of the stan-
dard Bits operators are available for use with
BitStruct objects.

Lines 25–39 define a parameterized BitStruct
where the bitwidth of the two coordinate fields is
given as a constructor argument. Line 30 shows
how we can define a new name for a specific
instance of this parameterized BitStruct where
each field is eight bits.

H To-Do On Your Own: Create a new BitStruct
type for holding the an RGB color pixel. The
BitStruct should include three fields named
red, green, and blue. Each field should be
eight bits. Experiment with reading and writ-
ing these named fields.

1 # Point BitStruct
2

3 >>> class Point(BitStructDefinition):
4 ... def __init__(s):
5 ... s.x = BitField(4)
6 ... s.y = BitField(4)
7 ...
8 >>> pt1 = Point()
9 >>> pt1.x = 3

10 >>> pt1.y = 4
11 >>> pt1
12 Bits(8, 0x34)
13 >>> pt1.x
14 Bits(4, 0x3)
15 >>> pt1.y
16 Bits(4, 0x4)
17

18 >> pt1 & Bits(8, 0xf0)
19 Bits(8, 0x30)
20 >> pt1[0:4]
21 Bits(4, 0x4)
22

23 # Parameterized Point BitStruct
24

25 >>> class PointN(BitStructDefinition):
26 ... def __init__(s, nbits):
27 ... s.x = BitField(nbits)
28 ... s.y = BitField(nbits)
29 ...
30 >>> Point8 = PointN(8)
31 >>> pt2 = Point8()
32 >>> pt2.x = 3
33 >>> pt2.y = 4
34 >>> pt2
35 Bits(16, 0x0304)
36 >>> pt2.x
37 Bits(8, 0x03)
38 >>> pt2.y
39 Bits(8, 0x04)

Figure 6: Creating and Using BitStruct
Objects

4. Registered Incrementer

In this section, we will create our very first PyMTL hardware model and then learn how to sim-
ulate, visualize, verify, reuse, parameterize, and package this model. It is good design practice to
usually draw some kind of picture of the hardware we wish to model before starting to develop the
corresponding PyMTL model. This picture might be a block-level diagram, a datapath diagram, a
finite-state-machine diagram, or even a control signal table; the more we can structure our code to
match this diagram the more confident we can be that our model actually models what we think it
does. In this section, we wish to model the eight-bit registered incrementer shown in Figure 7. In this
section, you will be gradually adding code to what we provide you in the regincr subdirectory.

4.1. Modeling a Registered Incrementer

Figure 8 shows one way to implement the model shown in Figure 7 using PyMTL. Every PyMTL
file should begin with a header comment as shown on lines 1–6. The header comment identifies

11

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

in
8b 8b

out+1

Figure 7: Block Diagram for Registered Incrementer
– An eight-bit registered incrementer with an eight-
bit input port, an eight-bit output port, and (implicit)
clock and reset inputs.

the primary model in the file and includes a brief description of what the model does. Reserve
discussion of the actual implementation for later in the file. In general, you should attempt to keep
lines in your PyMTL source code to less than 74 characters. This will make your code easier to read,
enable printing on standard sized paper, and facilitate viewing two source files side-by-side on a
single monitor.

We begin by importing the PyMTL framework on line 8. A PyMTL model is just a Python class
that inherits from the Model base class provided by the PyMTL framework. A couple of comments
about the coding conventions that we will be using in this course. PyMTL model names should al-
ways use CamelCaseNaming; each word begins with a capital letter without any underscores (e.g.,
RegIncr). Port names (as well as internal signal names and model instance names) should use
underscore_naming; all lowercase with underscores to separate words. We use in_ to name the
input port, since in is a Python keyword. Carefully group ports to help the reader understand how
these ports are related. Use port names (as well as variable and module instance names) that are de-
scriptive; prefer longer descriptive names (e.g., write_en) over shorter confusing names (e.g., wen).
We usually prefer using two spaces for each level of indentation; larger indentation can quickly re-
sult in significantly wasted horizontal space. Indentation affects a Python program’s semantics; so
you must be consistent in how you indent blocks. This also means you cannot mix spaces and real
tab characters in your source code. Our policy is to always use spaces and never insert any real tab
characters in source code.

The model’s constructor is used to declare the port-based interface, instantiate child models, connect
ports, and define concurrent blocks. This simple model does not include any child models and does
not include any internal structural connectivity. Note that we diverge from standard Python coding
conventions by using s instead of self to refer to the model instance in model methods. This is
to reduce the non-trivial syntactic overhead of referencing ports, signals, and child models in the
constructor.

Lines 18–19 declare the port-based interface for the RegIncr model, which in this case includes an
eight-bit input port and eight-bit output port. Ports are just class attributes that refer to instances of
the InPort or OutPort classes provided by the PyMTL framework. The constructor for these port
objects is parameterized by the type of values that can be sent through that port. In this example,
both the input and output ports support sending eight-bit Bits objects. Note that we do not need
to explicitly define a clock or reset input port; all PyMTL models have implicit clk and reset input
ports. PyMTL models should never write the special clk or reset signal directly, and PyMTL models
should never read the clk signal. PyMTL models can read the reset signal but only to reset state.

Line 23 declares an eight-bit internal wire within the model. Wires can be used to communicate
values between concurrent blocks. Ports and wires are examples of PyMTL “signals”, and for the
most part we read and write all signals (i.e., both ports and wires) in the same way. Lines 25–30
define a concurrent block named block1 to model the register in Figure 7. Concurrent blocks are just
nested functions annotated with specific decorators. In this case, we use an s.tick decorator, which
informs the framework that the corresponding nested function should be called once on every rising
clock edge (i.e., the nested function should be “ticked” once per cycle). Within the nested function
we refer to the implicit reset signal to determine if we should reset the reg_out wire to zero or

12

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # RegIncr
3 #===
4 # This is a simple model for a registered incrementer. An eight-bit value
5 # is read from the input port, registered, incremented by one, and
6 # finally written to the output port.
7

8 from pymtl import *
9

10 class RegIncr(Model):
11

12 # Constructor
13

14 def __init__(s):
15

16 # Port-based interface
17

18 s.in_ = InPort (Bits(8))
19 s.out = OutPort (Bits(8))
20

21 # Concurrent block modeling register
22

23 s.reg_out = Wire(Bits(8))
24

25 @s.tick
26 def block1():
27 if s.reset:
28 s.reg_out.next = 0
29 else:
30 s.reg_out.next = s.in_
31

32 # Concurrent block modeling incrementer
33

34 @s.combinational
35 def block2():
36 s.out.value = s.reg_out + 1

Figure 8: Registered Incrementer – An eight-bit registered incrementer corresponding to Figure 7.

copy the value on the input port to the reg_out wire. When writing signals from within a s.tick
concurrent block, we always use the next attribute. The next attribute informs the framework that
this write should only be visible after all other s.tick concurrent blocks have executed. Using the
next attribute is the key to making it appear as if all s.tick concurrent blocks execute in parallel.

Lines 34–36 define a concurrent block named block2 to model the combinational logic for the incre-
menter in Figure 7. We use the s.combinational decorator, which informs the framework that the
corresponding nested function should be called whenever any of the signals it reads change. In this
case, this means block2 will be called whenever the value on the reg_out wire changes. Note that
a s.combinational concurrent block might be called multiple times within a single clock cycle until
the values read by the block reach a fixed point. If the values read by a s.combinational block never
reach a fixed point then we say the design has a “combinational loop.” When writing signals from
within a s.combinational concurrent block, we always use the value attribute. Unlike using the
next attribute, the value attribute informs the framework that this write should be visible immedi-
ately. The write to the out port can cause other s.combinational concurrent blocks in other models
that read the out port to be called.

The two concurrent blocks work together to model the registered incrementer shown in Figure 7. On
every rising clock edge, the framework will call block1 which copies the value on the input port to
the reg_out wire. Since block1 is an s.tick concurrent block, it will appear to happen in parallel

13

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

with all other s.tick concurrent blocks in the system. After all s.tick concurrent blocks have been
called, the update to the reg_out wire will be visible. If the value on the reg_out wire has changed,
then this will cause block2 to be called; block2 reads the reg_out wire, increments the value by one,
and writes the output port. Then the whole process starts again on the next rising clock edge.

A small aside about synchronous versus asynchronous resets. Although students are allowed to read
the special reset signal, they can only do so within a s.tick concurrent block (i.e., synchronous
reset). Reading the reset signal in a s.combinational concurrent block is not allowed. If you need to
factor the reset signal into some combinational logic, you should instead use the reset signal to reset
some state bit, and the output of this state bit can be factored into some combinational logic. In other
words, students should only use synchronous and not asynchronous resets.

Edit the PyMTL source file named RegIncr.py tut3_pymtl/regincr subdirectory using your fa-
vorite text editor. Add the combinational concurrent block shown on lines 34–36 in Figure 8 which
models the incrementer logic.

4.2. Simulating a Model

Now that we have developed a new hardware model, we can test its functionality using a simulator
script. Figure 9 illustrates a simple Python script that elaborates the registered incrementer model,
creates a simulator, writes input values to the input ports, and displays the input/output ports.

Line 12 uses a Python list comprehension to read all of the command line parameters from the argv
variable, convert each parameter into an integer, and store these integers in a list named input_values.
Line 16 adds three zero values to the end of the list so that our simulation will run for a few extra
cycles before stopping. Lines 20–21 construct and elaborate the new RegIncr model. Line 25 uses the
SimulationTool to create a simulator. A key feature of PyMTL is its model/tool split, meaning that
designers create models and then use various tools (such as the SimulationTool) to manipulate their
elaborated designs. We reset the simulator on line 26 which will raise the implicit reset signal for two
cycles. Lines 30–43 define a loop that is used to iterate through the list of input values. For each
input value, we write the value to the model’s input port, display the values on the input/output
ports, and tick the simulator. Note that we must use the value attribute when writing ports in the
simulator script, similar to how signals are written from within s.combinational concurrent blocks.

Edit the simulator script named regincr-sim. Add the code on lines 18–25 in Figure 9 to construct
the model, elaborate the model, and build a simulator using the simulation tool. Then run the simu-
lator script as follows:

% cd ${TUTROOT}/tut3_pymtl/regincr
% ./regincr-sim 0x01 0x13 0x25 0x37

You should see output from executing the simulator over several cycles. Note that the output starts
on cycle 2; this is because calling the simulator’s reset method raises the implicit reset signal for
the first two cycles. On every cycle, we see a new input value being written into the registered
incrementer, and on the next cycle we should see the corresponding incremented value being read
from the output port.

14

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #!/usr/bin/env python
2 #===
3 # regincr-sim <input-values>
4 #===
5

6 from pymtl import *
7 from sys import argv
8 from RegIncr import RegIncr
9

10 # Get list of input values from command line
11

12 input_values = [int(x,0) for x in argv[1:]]
13

14 # Add three zero values to end of list of input values
15

16 input_values.extend([0]*3)
17

18 # Elaborate the model
19

20 model = RegIncr()
21 model.elaborate()
22

23 # Create and reset simulator
24

25 sim = SimulationTool(model)
26 sim.reset()
27

28 # Apply input values and display output values
29

30 for input_value in input_values:
31

32 # Write input value to input port
33

34 model.in_.value = input_value
35

36 # Display input and output ports
37

38 print " cycle = {}: in = {}, out = {}" \
39 .format(sim.ncycles, model.in_, model.out)
40

41 # Tick simulator one cycle
42

43 sim.cycle()

Figure 9: Simulator for Registered Incrementer – Python script to elaborate the model, create a
simulator, write input values to the input ports, and display the input/output ports.

H To-Do On Your Own: Try running the simulator script with a different list of input values specified
on the command line. Verify that the registered incrementer performs as expected when given
the input value 0xff.

Instead of reading the input values from the command line on line 12, experiment with gener-
ating a sequence of numbers automatically from within the script. You can use Python’s range
function to generate a sequence of numbers (potentially with a step greater than one), and you
can use the shuffle function from the standard Python random module to randomly shuffle a
sequence of numbers.

15

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

4.3. Visualizing a Model with Line Traces

While it is possible to visualize the execution of a model by manually inserting print statements
both in the simulator script and in concurrent blocks, this can be quite tedious. Because this kind of
visualization is so common, PyMTL includes built-in support for line tracing. A line trace consists
of plain-text trace output with each line corresponding to one (and only one!) cycle. Fixed-width
columns will correspond to either state at the beginning of the corresponding cycle or the output
of combinational logic during that cycle. Line traces will abstract the detailed bit representations of
signals in our design into useful character representations. So for example, instead of visualizing
messages as raw bits, we will visualize them as text strings. Line traces can give designers a high-
level view of how data is moving throughout the system.

To use line tracing, we need define a line_trace method in our models. Add the following method
to the RegIncr model:

def line_trace(s):
return "{} ({}) {}".format(s.in_, s.reg_out, s.out)

Each model’s line_trace method should: read the ports, wires, and other internal variables; create a
fixed-width string representation of the current state and operation; and then return this string. You
can use Python’s extensive string manipulation capabilities to create compact and useful line traces.
To display the line trace, replace the print statement on lines 38–39 in the regincr-sim script shown
in Figure 9 with sim.print_line_trace(). Make these modifications and rerun the simulator. You
can see the value at the input port, the current state of the register in the model, and the value at the
output port.

H To-Do On Your Own: Modify the line tracing code to show the port labels. After your modifica-
tions, the line trace might look something like this:

2: in:01 (00) out:01
3: in:13 (01) out:02
4: in:25 (13) out:14

4.4. Visualizing a Model with Waveforms

Line tracing can be useful for initially debugging the high-level behavior of your design, but often
we need to visualize many more signals than can be easily captured in a line trace. The PyMTL
framework can output waveforms in the Verilog Change Dump (VCD) format for every signal (i.e.,
ports and wires) in your design.

To generate VCD, you need to set the vcd_file attribute on your model after construction but before
elaboration. This attribute should be set to the desired file name for the generated VCD. Add the
following after line 20 in the regincr-sim script shown in Figure 9:

model.vcd_file = "regincr-sim.vcd"

Then rerun the simulator script, and use the open-source GTKWave program to browse the generated
waveforms as follows:

% cd ${TUTROOT}/tut3_pymtl/regincr
% ./regincr-sim 0x01 0x13 0x25 0x37

16

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

Figure 10: GTKWave Waveform Viewer – GTKWave is being used to browse the signals associated
with the registered incrementer shown in Figure 8 and the simulator script shown in Figure 9.

% gtkwave regincr-sim.vcd &

You can browse the module hierarchy of your design in the upper-left panel, with the signals in any
given module being displayed in the lower-left panel. Select signals and use the Append or Insert
button to add them to the waveform panel on the right. You can drag-and-drop signals to arrange
them as desired. You can use the scrollbar at the bottom to scroll to the right through the waveform,
and you can use the Time > Zoom menu or the corresponding magnifying glass icons in the toolbar to
zoom in or out. To see the full hierarchical names of each signal choose Edit > Toggle Trace Hierarchy
or simply press the H key. Choose File > Reload Waveform (or click the blue circular arrow icon in the
toolbar) to update GTKWave after you have rerun a simulation. Organizing signals can sometimes
be quite time consuming, so you can save and load the current configuration using File > Write Save
File and File > Read Save File. Figure 10 illustrates using GTKWave to view the waveforms from our
simulator script. GTKWave has many useful options which can make debugging your design more
productive, so feel free to explore the associated documentation.

H To-Do On Your Own: Edit the register incrementer so that it now increments by +2 instead of +1.
Rerun the simulator script and take another look the waveforms to see how they have changed.
When you are finished, edit the registered incrementer so that it again increments by +1.

4.5. Verifying a Model with Unit Testing

Now that we have developed a new hardware model, our first thought should always turn to testing
that model. Students might be tempted to simply look at line traces and/or waveforms from a
simulator script to determine if their design is working, but this kind of “verification by inspection”
is error prone and not reproducible. If you later make a change to your design, you would have
to take another look at the line traces and/or waveforms to ensure that your design still works. If
another member of your group wants to understand your design and verify that it is working, he or

17

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

she would also need to take a look at the line traces and/or waveforms. While this might be feasible
for very simple designs, it is obviously not a scalable approach when building the more complicated
designs we will tackle in this course. Automated testing through unit testing is the best way to
rigorously verify your designs.

We could simply write ad-hoc Python scripts to unit test our designs. These scripts would instantiate
our design, write values to the input ports, and then verify the outputs. Unfortunately, there are
many issues with using ad-hoc unit testing. Ad-hoc unit testing is usually verbose, which makes
it error prone and more cumbersome to write tests. Ad-hoc unit testing is difficult for others to
read and understand since by definition it is ad-hoc. Ad-hoc unit testing does not use any kind of
standard test output, and does not provide support for controlling the amount of test output. In this
course, we will be using the powerful py.test unit testing framework. The py.test framework is
popular in the Python programming community with many features that make it well-suited for test-
driven hardware development including: no-boilerplate testing with the standard assert statement;
automatic test discovery; helpful traceback and failing assertion reporting; standard output capture;
sophisticated parameterized testing; test marking for skipping certain tests; distributed testing; and
many third-party plugins. More information is available at http://www.pytest.org.

Figure 11 illustrates a simple unit testing script for our registered incrementer. Notice at a high-level
the test code is very straight-forward; the py.test framework enables unit testing to be as simple or
as complex as necessary. The py.test framework includes automatic test discovery, which means
that it will look through the unit test script and assume that any function that begins with test_ is a
test case. In this example, py.test will discover a single test case named test_basic corresponding
to the function declared on lines 13–59. To test our registered incrementer, we need to instantiate and
elaborate the model, use the simulation tool to create a simulator, write values to the input ports of
the model, and finally verify that the values read from the output ports of the model are correct.

Lines 17–19 instantiate and elaborate the model. Note that dump_vcd is specified as an argument to
the unit test, and then used as the file name for the generated VCD file. PyMTL is setup to treat
the dump_vcd argument specially. If a user includes --dump-vcd on the command-line when running
py.test, then the framework will generate a VCD file for every unit test. The name of the VCD file is
derived from the name of the unit test. If a user does not include --dump-vcd on the command-line
when running py.test, then dump_vcd will be None and no VCD file will be generated. Lines 23–24
use the SimulationTool to create and reset a simulator.

Lines 29–50 define a simple helper function that is responsible for verifying one cycle of execution.
The helper function takes the desired test input and the reference test output as arguments. Line 33
writes the test input to the in_ port of the registered incrementer. Note that it is important to use
the value attribute when writing ports in the test harness, similar to how signals are written from
within s.combinational concurrent blocks. Line 37 tells the simulator to call any s.combinational
concurrent blocks whose input values have changed. Lines 45–46 read the out port and compare
it to the reference output to ensure that the registered incrementer is functioning correctly. Notice
that we check to make sure the reference output is not set to a question mark character. This gives
us a simple way to indicate that we do not care what the output value is on that cycle. Also notice
that the py.test framework does not need special assertion checking functions, and instead hooks
into the standard assert statement provided in Python. This means the py.test framework can
carefully track the assert statement on line 46, and on an assertion error will display the context
of the assert statement including the sequence of function calls that lead to the assertion and the
values of the variables used in the assert statement.

Lines 54–59 use our helper function to test the registered incrementer over six cycles. These test
cases are an example of directed cycle-by-cycle gray-box testing. It is directed since we are explicitly

18

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # RegIncr_test
3 #===
4

5 from pymtl import *
6 from RegIncr import RegIncr
7

8 # In py.test, unit tests are simply functions that begin with a "test_"
9 # prefix. PyMTL is setup to simplify dumping VCD. Simply specify

10 # "dump_vcd" as an argument to your unit test, and then you can dump VCD
11 # with the --dump-vcd option to py.test.
12

13 def test_basic(dump_vcd):
14

15 # Elaborate the model
16

17 model = RegIncr()
18 model.vcd_file = dump_vcd
19 model.elaborate()
20

21 # Create and reset simulator
22

23 sim = SimulationTool(model)
24 sim.reset()
25 print ""
26

27 # Helper function
28

29 def t(in_, out):
30

31 # Write input value to input port
32

33 model.in_.value = in_
34

35 # Ensure that all combinational concurrent blocks are called
36

37 sim.eval_combinational()
38

39 # Display a line trace
40

41 sim.print_line_trace()
42

43 # If reference output is not '?', verify value read from output port
44

45 if (out != '?'):
46 assert model.out == out
47

48 # Tick simulator one cycle
49

50 sim.cycle()
51

52 # Cycle-by-cycle tests
53

54 t(0x00, '?')
55 t(0x13, 0x01)
56 t(0x27, 0x14)
57 t(0x00, 0x28)
58 t(0x00, 0x01)
59 t(0x00, 0x01)

Figure 11: Unit Test Script for Registered Incrementer – A unit test for the eight-bit registered
incrementer in Figure 8, which uses the py.test unit testing framework.

19

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 ========================== test session starts ===========================
2 platform darwin -- Python 2.7.5 -- py-1.4.26 -- pytest-2.6.4
3 plugins: xdist
4 collected 1 items
5

6 ../tut3_pymtl/regincr/RegIncr_test.py .
7

8 ======================== 1 passed in 0.04 seconds ========================

Figure 12: py.test Output – Each line corresponds to one test script, and each dot corresponds to
one passing test case. Failing test cases are shown with an F character.

creating directed tests as opposed to using some kind of random testing. It is cycle-by-cycle since we
are explicitly setting the inputs and verifying the outputs every cycle. Black-box testing describes a
testing strategy where the test cases depend only on the interface and not the specific implementation
of the DUT (i.e., they should be valid for any correct implementation). White-box testing describes a
testing strategy where the test cases depend on the specific implementation of the DUT (i.e., they may
not be valid for every correct implementation). The test cases in Figure 11 are black-box with respect
to the functional behavior of the DUT, but they are white-box with respect to the timing behavior of
the device. The test cases rely on the fact that the registered incrementer includes exactly one edge
and they would fail if we pipelined the incrementer such that each transaction took two edges. In
Section 6, we will see how we can use latency-insensitive interfaces to create true black-box unit tests.

Edit the test script named RegIncr_test.py. Note that it is important that all test script file names
end in _test.py, since this suffix is used by the py.test framework for automatic test discovery.
Add the tests cases shown on lines 54–59 in Figure 8. We can run the test script using py.test as
follows:

% mkdir ${TUTROOT}/build
% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr/RegIncr_test.py

Note that we run our unit test scripts from within a separate build directory. The PyMTL framework
often creates extra temporary and/or output files, so keeping these generated files in a separate
build directory helps avoid creating generated files in the source tree and facilitates performing a
clean build. The py.test framework automatically discovers the test_basic test case. The output
from running py.test should look similar to what is shown in Figure 12; py.test will display the
name of the test script and a single dot indicating that the corresponding test case has passed. If we
ran multiple test scripts, then each test script would have a separate line in the output. If we had
multiple test_ functions in RegIncr_test.py, then each test case would have its own dot. Failing
test cases are shown with an F character.

Note that our test script prints the line trace, yet the line trace is not included in the output shown in
Figure 12. This is because by default, the py.test framework “captures” the standard output from
a test script instead of displaying this output. The output is only displayed when a test case fails, or
if the users explicitly disables capturing the standard output. So to generate a line trace for this test,
we simply use the --capture=no (or -s) command line option as follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr/RegIncr_test.py -s

Note that by default, py.test will not show much detail on an error. This enables a designer to
quickly get an overview of which tests are passing and which tests are failing. If some of your tests

20

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

are failing, then you will want to produce more detailed error output using the --tb command line
options.

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr/RegIncr_test.py --tb=long

The --tb command line option specifies the level of “trace-back” output, and there are a couple of
different options you might want to use including: long, short, and line. To generate waveforms
for this test, we simply use the --dump-vcd command line option as follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr/RegIncr_test.py --dump-vcd
% gtkwave tut3_pymtl.regincr.RegIncr_test.test_basic.vcd &

H To-Do On Your Own: Edit the register incrementer so that it now increments by +2 instead of
+1. Rerun the unit test and verify that the tests no longer pass. Use the --tb=long command
line option to display more detailed error output. Study the output carefully to understand the
corresponding error messages. You should see: (1) a sequence of two function calls that lead to
the assertion failure; (2) the exact assertion that is failing; (3) the value of the output port and the
reference output in the failing assertion; and (4) the captured standard output which usually a line
trace. Modify the unit test so that it includes the correct reference outputs for a +2 incrementer,
rerun the unit test, and verify that the test now passes. When you are finished, edit the registered
incrementer so that it again increments by +1.

4.6. Verifying a Model with Test Vectors

The unit test shown in Figure 11 requires quite a bit of setup code. Usually we want to include
many directed test cases in a test script; each test case focuses on testing a different specific aspect
of our design. If we simply extend the approach shown in Figure 11, then each test case would
need to duplicate lines 15–50. We could refactor this code into a separate helper function that can be
reused across all test cases in a given test script. However, since this kind of testing is so common,
PyMTL includes a flexible helper function for unit testing any model using test vectors. This function
is named run_test_vector_sim and it is part of pclib (PyMTL Component Library), which has a
variety of RTL and testing functions, classes, and models that we will be using in this class. To find
out more about pclib, you cab browse the source code on the public PyMTL GitHub repository:

• https://github.com/cornell-brg/pymtl/tree/pclib/rtl
• https://github.com/cornell-brg/pymtl/tree/pclib/test

For example, here is the definition of the run_test_vector_sim helper function:

• https://github.com/cornell-brg/pymtl/blob/pclib/test/test_utils.py#L75-L159

Test vectors are essentially a table of test inputs and reference outputs. Figure 13 shows an extra test
script that uses the run_test_vector_sim helper function provided by the PyMTL framework. There
are three test cases for testing small input values, large input values, and the registered incrementer’s
overflow condition. The run_test_vector_sim helper function takes two arguments: an instantiated
model and a test vector table. The function elaborates a model, uses the simulation tool to create a
simulator, resets the simulator, writes the input values provided in the test vector table to the model’s
input ports, reads the values from the model’s output ports, and compares the values to the reference

21

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # RegIncr_extra_test
3 #===
4

5 from pymtl import *
6 from pclib.test import run_test_vector_sim
7 from RegIncr import RegIncr
8

9 #---
10 # test_small
11 #---
12

13 def test_small(dump_vcd):
14 run_test_vector_sim(RegIncr(), [
15 ('in_ out*'),
16 [0x00, '?'],
17 [0x03, 0x01],
18 [0x06, 0x04],
19 [0x00, 0x07],
20], dump_vcd)
21

22 #---
23 # test_large
24 #---
25

26 def test_large(dump_vcd):
27 run_test_vector_sim(RegIncr(), [
28 ('in_ out*'),
29 [0xa0, '?'],
30 [0xb3, 0xa1],
31 [0xc6, 0xb4],
32 [0x00, 0xc7],
33], dump_vcd)
34

35 #---
36 # test_overflow
37 #---
38

39 def test_overflow(dump_vcd):
40 run_test_vector_sim(RegIncr(), [
41 ('in_ out*'),
42 [0x00, '?'],
43 [0xfe, 0x01],
44 [0xff, 0xff],
45 [0x00, 0x00],
46], dump_vcd)

Figure 13: Unit Test Script using Test Vectors for Registered Incrementer – A unit test for the
eight-bit registered incrementer in Figure 8, which uses test vectors and the py.test unit testing
framework.

values provided by the test vector table. The test vector table is a list of lists and is written so as to
look like a table. Each column corresponds to either an input value or a reference output value,
and each row corresponds to one cycle of the simulation. Question marks are allowed for reference
output values when we don’t care what the output is on that cycle. The first row of the test vector
table is always a special “header string” that specifies the name of the model’s input/output port for
that column. Output ports are denoted with an asterisk suffix. Note how compact this test script is
compared to the test script in Figure 11. This sophisticated helper function demonstrates the power
of using a general-purpose dynamic language such as Python to write test harnesses.

22

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 ========================== test session starts ===========================
2 platform darwin -- Python 2.7.5 -- py-1.4.26 -- pytest-2.6.4
3 plugins: xdist
4 collected 21 items
5

6 ../tut3_pymtl/regincr/RegIncr2stage_test.py::test_small FAILED
7 ../tut3_pymtl/regincr/RegIncr2stage_test.py::test_large FAILED
8 ../tut3_pymtl/regincr/RegIncr2stage_test.py::test_overflow FAILED
9 ../tut3_pymtl/regincr/RegIncr2stage_test.py::test_random FAILED
10 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[2stage_small] FAILED
11 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[2stage_large] FAILED
12 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[2stage_overflow] FAILED
13 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[2stage_random] FAILED
14 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[3stage_small] FAILED
15 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[3stage_large] FAILED
16 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[3stage_overflow] FAILED
17 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[3stage_random] FAILED
18 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test_random[1] PASSED
19 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test_random[2] FAILED
20 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test_random[3] FAILED
21 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test_random[4] FAILED
22 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test_random[5] FAILED
23 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test_random[6] FAILED
24 ../tut3_pymtl/regincr/RegIncr_extra_test.py::test_small PASSED
25 ../tut3_pymtl/regincr/RegIncr_extra_test.py::test_large PASSED
26 ../tut3_pymtl/regincr/RegIncr_test.py::test_basic PASSED
27

28 =================== 17 failed, 4 passed in 0.36 seconds ==================

Figure 14: py.test Verbose Output – Each line corresponds to one test case. Passing test cases are
marked with PASSED and failing test cases are marked with FAILED.

Edit the new test script named RegIncr_extra_test.py. Add the code on lines 35–46 in Figure 13
which tests for overflow. Run this extra test script using py.test as follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr/RegIncr_extra_test.py

The output should show the name of the test script and three dots corresponding to the three test
cases in Figure 13. The py.test framework can automatically discover test scripts in addition to
automatically discovering the test cases within a test script. If the argument to py.test is a directory,
then py.test will search that directory for any files ending in _test.py and assume that these files
are test scripts. The py.test framework also provides a more verbose output where each test case is
listed on a separate line; passing test cases are marked with PASSED and failing test cases are marked
with FAILED. Run both of the test scripts using the --verbose (or -v) command line option as follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr -v

The verbose output should look similar to what is shown in Figure 14. Some test cases are passing
for those models which we have completed, while other test cases are failing because we will work
on them later in the tutorial. We can use the -k command line option to select just a few test cases to
run and debug in more detail. For example to run just the test case for testing small input values, we
can use the following:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr -k small

23

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #---
2 # test_random
3 #---
4

5 import random
6

7 def test_random(dump_vcd):
8

9 test_vector_table = [('in_', 'out*')]
10 last_result = '?'
11 for i in xrange(20):
12 rand_value = Bits(8, random.randint(0,0xff))
13 test_vector_table.append([rand_value, last_result])
14 last_result = Bits(8, rand_value + 1)
15

16 run_test_vector_sim(RegIncr(), test_vector_table, dump_vcd)

Figure 15: Random Test Case for Registered Incrementer – Random input values and the corre-
sponding incremented output value are added to a test vector table for random testing.

We can use the -x command line option to have py.test stop after the very first failing test case:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr -x

When testing an entire directory, we often use an iterative process to “zoom” in on a failing test case.
We start by running all tests in the directory to see an overview of which tests are passing and which
tests are failing. We then explicitly run a single test script with the -v command line option to see
which specific test cases are failing. Finally, we use the -k or -x command line options with --tb, -s,
and/or --dump-vcd command line option to generate error output, line traces, and/or waveforms
for the failing test case. Here is an example of this three-step process to “zoom” in on a failing test
case:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr
% py.test ../tut3_pymtl/regincr/RegIncr2stage_test.py -v
% py.test ../tut3_pymtl/regincr/RegIncr2stage_test.py -v -x --tb=long

H To-Do On Your Own: Add another directed test case for the registered incrementer which tests
another arbitrary set of input values. Rerun the test script, and verify that the output matches
your expectations.

4.7. Verifying a Model with Random Testing

So far we used a directed cycle-by-cycle gray-box testing strategy. Once we have finished writing
hand-crafted directed tests, we almost always want to leverage randomized testing to further im-
prove our confidence in the correct functionality of the design. Generating random test vectors in
Python is relatively straight forward, especially if we make use of the standard Python random mod-
ule. Figure 15 illustrates a random test case for the registered incrementer. Note that the random test
vector generation must carefully take into account the latency of the registered incrementer in order
to ensure that each reference output is placed in the correct row of the test vector table. Add this test

24

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

case to the RegIncr_extra_test.py test script, and run the new test case with line tracing enabled
as follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr/RegIncr_extra_test.py -k random -s

H To-Do On Your Own: Add another random test case for the registered incrementer where the
input values are always less than 16 (i.e., small numbers). Rerun the test script, and verify that
the output matches your expectations.

4.8. Reusing a Model with Structural Composition

We will use modularity and hierarchy to structurally compose small, simple models into large, com-
plex models. This incremental approach allows us to first design and test the small models, and thus
ensure they are working, before integrating them and testing the larger models. Figure 16 shows
a two-stage registered incrementer that uses structural composition to instantiate and connect two
instances of a single-stage registered incrementer. Figure 17 shows the corresponding PyMTL model.
Line 9 imports the child model that we will be reusing.

Lines 19–20 illustrate a simplified PyMTL syntax for specifying the type of the values that can be
passed through the in_ and out ports. If we use an integer b, then this is syntactic sugar for specifying
that objects of type Bits(b) can be passed through the port.

Lines 24–33 actually perform the structural composition of the two instances of the child model.
Line 24 instantiates the first RegIncr model with the instance name reg_incr_0. Line 26 uses the
s.connect method to connect two ports together: the in_ port, which is part of the parent interface,
and the in_ port for the first RegIncr. The arguments to the s.connect method can be ports or wires
and can be in either order (i.e., the input signal is not required to be the first argument). Line 30
instantiates the second RegIncr model with the instance name reg_incr_1. Line 32 connects the
output of the first RegIncr to the input of the second RegIncr. Line 33 connects the output of the
second RegIncr to the out port in the parent interface.

Lines 37–43 show the line_trace method for the two-stage registered incrementer. A key feature
of line tracing is the ability to construct line trace strings hierarchically. On lines 40–41, we call the
line_trace methods for the two child RegIncr models.

As always, once we create a new hardware model, we should immediately write a unit test to verify
its functionality. Figure 18 shows a test script using test vectors to verify our two-stage registered
incrementer. Notice how we must carefully take into account the two-cycle latency of the registered
incrementer in order to ensure that each reference output is placed in the correct row of the test vector
table. This is because we are using a cycle-by-cycle gray-box testing strategy.

in
8b

outRegIncr
8b

RegIncr

Figure 16: Block Diagram for Two-Stage Reg-
istered Incrementer – An eight-bit two-stage
registered incrementer that reuses the regis-
tered incrementer in Figure 7 through struc-
tural composition.

25

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # RegIncr2stage
3 #===
4 # Two-stage registered incrementer that uses structural composition to
5 # instantiate and connect two instances of the single-stage registered
6 # incrementer.
7

8 from pymtl import *
9 from RegIncr import RegIncr

10

11 class RegIncr2stage(Model):
12

13 # Constructor
14

15 def __init__(s):
16

17 # Port-based interface
18

19 s.in_ = InPort (Bits(8))
20 s.out = OutPort (Bits(8))
21

22 # First stage
23

24 s.reg_incr_0 = RegIncr()
25

26 s.connect(s.in_, s.reg_incr_0.in_)
27

28 # Second stage
29

30 s.reg_incr_1 = RegIncr()
31

32 s.connect(s.reg_incr_0.out, s.reg_incr_1.in_)
33 s.connect(s.reg_incr_1.out, s.out)
34

35 # Line Tracing
36

37 def line_trace(s):
38 return "{} ({}|{}) {}".format(
39 s.in_,
40 s.reg_incr_0.line_trace(),
41 s.reg_incr_1.line_trace(),
42 s.out
43)

Figure 17: Two-Stage Registered Incrementer – An eight-bit two-stage registered incrementer cor-
responding to Figure 16. This model is implemented using structural composition to instantiate and
connect two instances of the single-stage register incrementer.

Edit the PyMTL source file named RegIncr2stage.py. Add lines 28-33 from Figure 17 to connect
the second stage of the two-stage registered incrementer. Then run all of the test scripts as well as a
subset of the test cases as follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr/RegIncr2stage_test.py -v
% py.test ../tut3_pymtl/regincr/RegIncr2stage_test.py -k test_small

You can generate the line trace for just the first test case for our two-stage registered incrementer as
follows:

% py.test ../tut3_pymtl/regincr/RegIncr2stage_test.py -k test_small -s

26

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # Regincr2stage_test
3 #===
4

5 import random
6

7 from pymtl import *
8 from pclib.test import run_test_vector_sim
9 from RegIncr2stage import RegIncr2stage

10

11 #---
12 # test_small
13 #---
14

15 def test_small(dump_vcd):
16 run_test_vector_sim(RegIncr2stage(), [
17 ('in_ out*'),
18 [0x00, '?'],
19 [0x03, '?'],
20 [0x06, 0x02],
21 [0x00, 0x05],
22 [0x00, 0x08],
23], dump_vcd)
24

25 #---
26 # test_large
27 #---
28

29 def test_large(dump_vcd):
30 run_test_vector_sim(RegIncr2stage(), [
31 ('in_ out*'),
32 [0xa0, '?'],
33 [0xb3, '?'],
34 [0xc6, 0xa2],
35 [0x00, 0xb5],
36 [0x00, 0xc8],
37], dump_vcd)
38

39 #---
40 # test_overflow
41 #---
42

43 def test_overflow(dump_vcd):
44 run_test_vector_sim(RegIncr2stage(), [
45 ('in_ out*'),
46 [0x00, '?'],
47 [0xfe, '?'],
48 [0xff, 0x02],
49 [0x00, 0x00],
50 [0x00, 0x01],
51], dump_vcd)
52

53 #---
54 # test_random
55 #---
56

57 def test_random(dump_vcd):
58

59 test_vector_table = [('in_', 'out*')]
60 last_result_0 = '?'
61 last_result_1 = '?'
62 for i in xrange(20):
63 rand_value = Bits(8, random.randint(0,0xff))
64 test_vector_table.append([rand_value, last_result_1])
65 last_result_1 = last_result_0
66 last_result_0 = Bits(8, rand_value + 2)
67

68 run_test_vector_sim(RegIncr2stage(), test_vector_table, dump_vcd)

Figure 18: Unit Test Script for Two-Stage Registered Incrementer – A unit test for the two-stage
registered incrementer shown in Figure 17 that uses test vectors and the py.test unit testing frame-
work.

27

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 reg_incr_0 reg_incr_1
2 ----------- -----------
3 cycle in in reg out in reg out out
4 -------------------------------------
5 2: 00 (00 (00) 01|01 (00) 01) 01
6 3: 03 (03 (00) 01|01 (01) 02) 02
7 4: 06 (06 (03) 04|04 (01) 02) 02
8 5: 00 (00 (06) 07|07 (04) 05) 05
9 6: 00 (00 (00) 01|01 (07) 08) 08

Figure 19: Line Trace Output for Two-
Stage Registered Incrementer – This
line trace is for the test_small test case
and is annotated to show what each col-
umn corresponds to in the model. The
data flow for the input value 0x03 is
highlighted.

The line trace should look similar to what is shown in Figure 19. The line trace in the figure has been
annotated to show what each column corresponds to in the model. If you look closely, you can see
the input data propagating through both stages of the two-stage registered incrementer. Remember
you can generate waveforms for all of the test cases in our new test script as follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr/RegIncr2stage_test.py --dump-vcd
% ls *.vcd

H To-Do On Your Own: Create a three-stage registered incrementer similar in spirit to the two-stage
registered incrementer in Figure 16. Verify your design by writing a test script that uses test
vectors.

4.9. Parameterizing a Model with "Static" Elaboration

To facilitate model reuse and productive design-space exploration, we often want to implement pa-
rameterized models. Parameterized models take one or more parameters as constructor arguments,
and then use these parameters when declaring the model’s interface, defining the model’s behavior
in concurrent blocks, and/or structurally composing child models. A common example is to pa-
rameterize models by the bitwidth of various input and output ports. The registered incrementer
in Figure 8 is designed for only eight-bit input values, but we may want to reuse this model in a
different context with four-bit input values or 16-bit input values. To parameterize the port bitwidth
for the registered incrementer shown in Figure 8, we add another constructor argument (which by
convention we usually name nbits), and then we replace references to the constant 8 with a refer-
ence to nbits. Now we can specify the port bitwidth for our register incrementer when we construct
the model. The PyMTL framework includes a library of parameterized FL, CL, and RTL models
called pclib. You can use the PyMTL GitHub repository (http://github.com/cornell-brg/pymtl)
to browse what models are available in pclib.rtl.arith. Figure 20 shows a combinational incre-
menter from pclib that is parameterized by both the port bitwidth and the incrementer amount.

Figure 21 shows a more involved example where we have parameterized the number of stages in
the registered incrementer. The constructor on line 13 for our multi-stage registered incrementer
(RegIncrNstage) includes an extra argument named nstages (with a default value of two) that spec-
ifies how many stages should be used in the registered incrementer. Line 22 uses a Python list com-
prehension to create a list of RegIncr models. Line 26 connects the in_ port, which is part of the
interface, to the in_ port of the first registered incrementer in the chain. Lines 30–31 use a loop to
connect the out port of each registered incrementer to the in_ port of the next registered incrementer.
Line 35 connects the out port of the last registered incrementer in the chain to the out port in the in-
terface. This example illustrates how PyMTL enables powerful elaboration; we can use arbitrary
Python code in a model’s constructor to generate complex hardware based on the constructor argu-

28

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 class Incrementer(Model):
2

3 def __init__(s, nbits = 1, increment_amount = 1):
4

5 s.in_ = InPort (nbits)
6 s.out = OutPort (nbits)
7

8 s.increment_amount = increment_amount
9

10 @s.combinational
11 def comb_logic():
12 s.out.value = s.in_ + s.increment_amount
13

14 def line_trace(s):
15 return "{} () {}".format(s.in_, s.out)

Figure 20: Parameterized Incrementer from pclib – A combinational incrementer from pclib that
is parameterized by both the port bitwidth and the incrementer amount.

1 #===
2 # RegIncrNstage
3 #===
4 # Registered incrementer that is parameterized by the number of stages.
5

6 from pymtl import *
7 from RegIncr import RegIncr
8

9 class RegIncrNstage(Model):
10

11 # Constructor
12

13 def __init__(s, nstages=2):
14

15 # Port-based interface
16

17 s.in_ = InPort (8)
18 s.out = OutPort (8)
19

20 # Instantiate the registered incrementers
21

22 s.reg_incrs = [RegIncr() for x in xrange(nstages)]
23

24 # Connect input port to first reg_incr in chain
25

26 s.connect(s.in_, s.reg_incrs[0].in_)
27

28 # Connect reg_incr in chain
29

30 for i in xrange(nstages - 1):
31 s.connect(s.reg_incrs[i].out, s.reg_incrs[i+1].in_)
32

33 # Connect last reg_incr in chain to output port
34

35 s.connect(s.reg_incrs[-1].out, s.out)
36

37 # Line Tracing
38

39 def line_trace(s):
40 return "{} ({}) {}".format(
41 s.in_,
42 '|'.join([str(reg_incr.out) for reg_incr in s.reg_incrs]),
43 s.out
44)

Figure 21: N-Stage Registered Incrementer – A parameterized registered incrementer where the
number of stages is specified as an argument to the constructor.

29

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

ments. In traditional hardware description languages, this process is often called static elaboration
since this phase happens at compile or synthesis time. In PyMTL, the elaboration phase happens
in our simulator and test scripts at “runtime,” but it is essentially the same idea. To reiterate, the
Python list comprehension on line 22 and the for loop on lines 30–31 does not model hardware, in-
stead this code generates hardware. All of the code in a PyMTL model’s constructor that is not in a
concurrent block is used for hardware generation, while the code within a concurrent block is used
for hardware modeling. Students can use whatever Python code they want for generation, but must
limit themselves to a synthesizable subset for modeling.

One challenge with highly parameterized models is that they can require more complicated verifi-
cation to test all of the various parameter combinations. The py.test framework includes sophis-
ticated support for parameterized testing that can simplify verifying highly parameterized models.
Figure 22 shows a test script for the multi-stage registered incrementer model. Because we are using
a cycle-by-cycle gray-box testing strategy, the test vectors vary depending on the number of stages.
Lines 18–28 define an advanced helper function that takes as input the number of stages and a list
of input values and generates the corresponding test vector table. This helper function makes use of
Python’s standard deque container for carefully tracking how to set the reference outputs based on
the latency of the multi-stage registered incrementer. Notice that we also use the trunc argument to
the Bits constructor when creating the reference output to ensure the proper modular arithmetic.

The test script in Figure 22 uses this helper function in combination with the pytest.mark.parametrize
decorator to create parameterized test cases. The pytest.mark.parametrize decorator (notice that it
is parametrize not parameterize) takes two arguments: a string containing the names of arguments
for the test case function and a list of values to use for those arguments. The py.test framework will
automatically generate a set of test cases for each set of argument values.

On lines 34–51, we use pytest.mark.parametrize to succinctly generate eight test cases that test
both two- and three-stage registered incrementers with small, large, overflow, and random input
values. We use another helper function (named mk_test_case_table) which is provided by the
PyMTL framework to create a test case table. A test case table compactly represents a set of test
cases. Each row corresponds to a test case, and the first column is always the name of the test case.
The remaining columns correspond to the test parameters. The first row of the test case table is
always a special “header string” that specifies the name of each test parameter. In this example,
there are two test parameters: the number of stages (nstages) and the test inputs (inputs). Notice
how we use the sample function from the standard Python random module to generate a random
sequence of input values. The mk_test_case_table creates a data structure suitable for passing
into pytest.mark.parametrize. For technical reasons, we need to use the ** operator to pass this
data structure into pytest.mark.parametrize, as shown on line 46. The test function on lines 47–51
includes a test_params argument that will contain the test parameters corresponding to one row of
the test case table. On lines 48–49, we read these test parameters, and then on lines 50–51 we use the
run_test_vector_sim and the mk_test_vector_table helper functions to actually run a test.

On lines 57–60, we use pytest.mark.parametrize without a test case table to succinctly generate six
test cases that test our multi-stage registered incrementer with one to six stages and random input
values. As mentioned above, pytest.mark.parametrize takes two arguments: a string containing
the names of arguments for the test case function (i.e., "n") and a list of values to use for those
arguments (i.e., [1,2,3,4,5,6]). The py.test framework generates a separate test case for each
value of n and calls the test_random function with that value of n. Our mk_test_vector_table
helper function enables us to make test vector tables from random input values for any number of
stages.

30

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # RegincrNstage_test
3 #===
4

5 import collections
6 import pytest
7

8 from random import sample
9

10 from pymtl import *
11 from pclib.test import run_test_vector_sim, mk_test_case_table
12 from RegIncrNstage import RegIncrNstage
13

14 #---
15 # mk_test_vector_table
16 #---
17

18 def mk_test_vector_table(nstages, inputs):
19

20 inputs.extend([0]*nstages)
21

22 test_vector_table = [('in_ out*')]
23 last_results = collections.deque(['?']*nstages)
24 for input_ in inputs:
25 test_vector_table.append([input_, last_results.popleft()])
26 last_results.append(Bits(8, input_ + nstages, trunc=True))
27

28 return test_vector_table
29

30 #---
31 # Parameterized Testing with Test Case Table
32 #---
33

34 test_case_table = mk_test_case_table([
35 ("nstages inputs "),
36 ["2stage_small", 2, [0x00, 0x03, 0x06]],
37 ["2stage_large", 2, [0xa0, 0xb3, 0xc6]],
38 ["2stage_overflow", 2, [0x00, 0xfe, 0xff]],
39 ["2stage_random", 2, sample(range(0xff),20)],
40 ["3stage_small", 3, [0x00, 0x03, 0x06]],
41 ["3stage_large", 3, [0xa0, 0xb3, 0xc6]],
42 ["3stage_overflow", 3, [0x00, 0xfe, 0xff]],
43 ["3stage_random", 3, sample(range(0xff),20)],
44])
45

46 @pytest.mark.parametrize(**test_case_table)
47 def test(test_params, dump_vcd):
48 nstages = test_params.nstages
49 inputs = test_params.inputs
50 run_test_vector_sim(RegIncrNstage(nstages),
51 mk_test_vector_table(nstages, inputs), dump_vcd)
52

53 #---
54 # Parameterized Testing of With nstages = [1, 2, 3, 4, 5, 6]
55 #---
56

57 @pytest.mark.parametrize("n", [1, 2, 3, 4, 5, 6])
58 def test_random(n, dump_vcd):
59 run_test_vector_sim(RegIncrNstage(nstages=n),
60 mk_test_vector_table(n, sample(range(0xff),20)), dump_vcd)

Figure 22: Unit Test Script for Parameterized Registered Incrementer – A unit test for the parame-
terized registered incrementer shown in Figure 21.

31

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 ========================== test session starts ===========================
2 platform darwin -- Python 2.7.5 -- py-1.4.26 -- pytest-2.6.4
3 plugins: xdist
4 collected 14 items
5

6 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[2stage_small] PASSED
7 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[2stage_large] PASSED
8 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[2stage_overflow] PASSED
9 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[2stage_random] PASSED
10 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[3stage_small] PASSED
11 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[3stage_large] PASSED
12 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[3stage_overflow] PASSED
13 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test[3stage_random] PASSED
14 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test_random[1] PASSED
15 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test_random[2] PASSED
16 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test_random[3] PASSED
17 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test_random[4] PASSED
18 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test_random[5] PASSED
19 ../tut3_pymtl/regincr/RegIncrNstage_test.py::test_random[6] PASSED
20

21 ======================= 14 passed in 0.17 seconds ========================

Figure 23: py.test Parameterized Output – Each line corresponds to one test case. Test cases gen-
erated using pytest.mark.parametrize use square brackets to denote each generated test case.

Edit the PyMTL source file named RegIncrNstage.py. Add the code on lines 28–31 from Figure 21
to connect the stages together. Then run all of the test scripts as well as a subset of the test cases as
follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr/RegIncrNstage_test.py -v

The output should look similar to what is shown in Figure 23. Notice how the py.test framework
names the generated test cases. When using a test case table, the py.test framework puts the test
case name in square brackets after the test function name (e.g., test[2stage_small]). When not
using a test case table, the py.test framework uses the arguments to the test function in square
brackets after the test function name (e.g., test_random[2]).

As before, you can use the -k, -s, and --dump-vcd command line options to py.test to run a subset
of the test cases, display a line trace, and generate waveforms. For example, the following command
will run just the tests for the three-stage registered incrementer and also display a line trace.

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/regincr/RegIncrNstage_test.py -k 3stage -s

H To-Do On Your Own: Parameterize the input/output port bitwidth for the basic registered
incrementer in Figure 8. Set the default bitwidth to be eight so that the rest of our code
will still function correctly. Create a new test script named RegIncr_param_test.py that uses
pytest.mark.parameterize to test various bitwidths on random input values.

4.10. Packaging a Collection of Models

We group related models into a single subdirectory (sometimes called a “subproject”) within a PyMTL
project. Packaging is the process of making a subproject available for other subprojects to use via the

32

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # regincr
3 #===
4

5 from RegIncr import RegIncr
6 from RegIncr2stage import RegIncr2stage
7 from RegIncrNstage import RegIncrNstage

Figure 24: Configuration Script for regincr Package – A package configuration script is named
__init__.py and placed in the subproject directory. The script is responsible for importing models
within the package so as to create the package namespace.

1 % cd ${TUTROOT}
2 % python
3 >>> from pymtl import *
4 >>> from tut3_pymtl.regincr import RegIncr
5 >>> model = RegIncr()
6 >>> model.elaborate()
7 >>> sim = SimulationTool(model)
8 >>> sim.reset()
9 >>> model.in_.value = 0x24

10 >>> sim.cycle()
11 >>> model.out
12 Bits(8, 0x25)

Figure 25: Importing a PyMTL Package
from the Tutorial Root Directory

1 % cd ${TUTROOT}/build
2 % env PYTHONPATH=".." python
3 >>> from tut3_pymtl.regincr import RegIncr
4 >>> model = RegIncr()
5 >>> model.elaborate()
6 >>> [x.name for x in model.get_ports()]
7 ['reset', 'in_', 'clk', 'out']
8 >>> [x.name for x in model.get_wires()]
9 ['reg_out']

Figure 26: Importing a PyMTL Package
from the Build Directory

standard Python import command. Packaging simply involves adding a standard Python package
configuration script named __init__.py to the subproject. This script is responsible for importing
models within the package so as to create the package namespace. Note that if there are several
nested subdirectories within the PyMTL project, then each of these subdirectories must have a pack-
age configuration script even if that script is empty. For example, there is a __init__.py file in the
tut3_pymtl subdirectory.

Figure 24 shows a package configuration script for our regincr package. This script simply imports
each model into the package namespace, but it is possible to also import helper functions or other
classes into the package namespace.

Figure 25 shows an example session in the Python interpreter that illustrates how to import models
from the regincr package and then use the SimulationTool to perform a single-cycle simulation.
Type these commands into the Python interpreter and observe the output.

Now try a similar interpreter session, but start the interpreter in the build directory. Python will
report an error that it cannot find a module named tut3_pymtl.regincr. Python uses a special
environment variable named PYTHONPATH to determine where to look for packages. By default the
current directory is in the PYTHONPATH which is why our initial interpreter session is able to find the
regincr package. Figure 26 shows how we can set the PYTHONPATH to the root of our project before
starting the interpreter. Type these commands into the Python interpreter and observe the output.

As an aside, Figure 26 also illustrates how the PyMTL framework provides an interface for inspecting
elaborated models. The get_ports method will return a list of input/output ports for an elaborated
model. There are similar methods for inspecting a model’s wires, child models, connections, and
concurrent blocks. This interface is often used when implementing new PyMTL tools, but can also
be potentially useful when implementing highly parameterized models.

33

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

5. Sort Unit

The previous section introduced the key PyMTL concepts and primitives that we will use to imple-
ment more complex FL, CL, and RTL models including: using the Model base class to define PyMTL
models; declaring the port-based interfaces using the InPort and OutPort classes; declaring inter-
nal wires using the Wire class; declaring s.tick concurrent blocks to model logic that executes on
every rising clock edge; declaring s.combinational concurrent blocks to model combinational logic
that executes one or more times within a clock cycle; using structural composition to connect child
models; and creating parameterized models. In addition, the previous section also introduced how
to visualize designs with line tracing and waveforms, and how to verify designs with unit testing. In
this section, we will apply what we have learned to incrementally refine a simple sort unit from an
initial FL model, to a CL model, and finally an RTL model. We will also learn how to use a simulator
to evaluate a design, and how to use the PyMTL translation tool to generate Verilog from an RTL
model. Most of the code for this section is provided for you in the tut3_pymtl/sort subdirectory.

5.1. FL Model of Sort Unit

We begin by designing an FL model of our target sort unit. Recall that FL models implement the
functionality but not the timing of the hardware target. Figure 27 illustrates the FL model using
a cloud diagram where the “clouds” abstractly represent how logic interacts with ports and child
models. Our sort unit will have four input ports for the values we want to sort and four output
ports for the sorted values; all ports should used parameterized bitwidths. The sort unit should sort
the values on the in_ ports such that out[0] has the smallest value, out[1] has the second smallest
value, and so on. Input/output valid bits indicate when the input/output values are valid.

Figure 28 shows how to implement an FL model for the sort unit in PyMTL. On lines 16 and 19, we
use Python list comprehensions to create lists of four input and output ports. On lines 31 and 35, we
use the standard Python map function to easily convert all input/output values into strings for line
tracing. Notice how our line tracing code checks the input/output valid bit, and if the input/output
is invalid then we clear the corresponding string to all spaces. This means the line trace will show
spaces when the input/output values are invalid, but the line trace is still always a fixed width to
ensure the columns stay aligned. We generally use this idea of displaying spaces in the line trace
when “nothing is happening”; this makes it easy to see true activity in the line trace.

The s.tick concurrent block on lines 21–25 defines the actual functional-level behavior. PyMTL
provides specialized decorators for FL, CL, and RTL modeling, so we use the s.tick_fl decorator
instead of the generic s.tick decorator used in the previous section. You should always use the
more specialized decorators instead of the generic s.tick decorator to better capture your intent.

in_[0]
n

sort

n

n

n

n

n

n

n

in_[1]

in_[2]

in_[3]

out[0]

out[1]

out[2]

out[3]

in_val out_val
Figure 27: Cloud Diagram for Sort Unit
FL Model – Cloud diagrams use “clouds”
to abstractly represent logic without worry
about the actual implementation details.
The sort unit FL model takes four input val-
ues and sorts them such that the out[0] port
has the smallest value and the out[3] port
has the largest value. Input/output valid
bits indicate when the input/output values
are valid.

34

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # Sort Unit FL Model
3 #===
4 # Models the functional behavior of the target hardware but not the
5 # timing.
6

7 from pymtl import *
8

9 class SortUnitFL(Model):
10

11 # Constructor
12

13 def __init__(s, nbits=8):
14

15 s.in_val = InPort(1)
16 s.in_ = [InPort (nbits) for _ in range(4)]
17

18 s.out_val = OutPort(1)
19 s.out = [OutPort (nbits) for _ in range(4)]
20

21 @s.tick_fl
22 def block():
23 s.out_val.next = s.in_val
24 for i, v in enumerate(sorted(s.in_)):
25 s.out[i].next = v
26

27 # Line tracing
28

29 def line_trace(s):
30

31 in_str = '{' + ','.join(map(str,s.in_)) + '}'
32 if not s.in_val:
33 in_str = ' '*len(in_str)
34

35 out_str = '{' + ','.join(map(str,s.out)) + '}'
36 if not s.out_val:
37 out_str = ' '*len(out_str)
38

39 return "{}|{}".format(in_str, out_str)

Figure 28: Sort Unit FL Model – FL model of four-element sort unit corresponding to Figure 27.

The more specialized decorators also provide additional functionality that is appropriate for each
abstraction level. We will still use the term s.tick concurrent block to generically refer to any of
these types of concurrent blocks. The s.tick concurrent block in our sort unit FL model uses the
standard Python sorted function and then uses a loop to write the sorted values to the output ports.
The valid bit from the in_val port is written directly to the out_val port.

Notice that although this model in no way attempts to capture any timing of the hardware target, it
is still a “single-cycle” model. This is due to the PyMTL semantics of s.tick concurrent blocks, and
this is why we show input registers in the cloud diagram in Figure 27. Although it is also possible
to implement FL models using s.combinational concurrent blocks, we have found using s.tick
concurrent blocks to be significantly easier. Using s.combinational concurrent blocks means the
block can be called multiple times in a cycle, increases the likelihood of creating combinational loops
when composing FL models, and complicates incrementally refining an FL model into a CL model.

We do not explicitly handle resetting the valid bit, but we instead rely on the PyMTL framework,
which guarantees that signals are reset to zero by default. Leveraging this guarantee simplifies our
FL (and CL) models, but keep in mind that RTL models must still explicitly handle resetting state.

35

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

The PyMTL model is in SortUnitFL.py and the corresponding test script is in SortUnitFL_test.py.
This test script uses test vector tables similar in spirit to the unit testing for the registered incrementer
in Figure 18. The test script includes four directed test cases and one random test case. Note that we
usually try to ensure that the very first test case is always the simplest possible test case we can
imagine. For this model, our first test case simply sorts a single set of four input values. You can run
all of the tests and display the line trace for the basic test case as follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/sort/SortUnitFL_test.py -v
% py.test ../tut3_pymtl/sort/SortUnitFL_test.py -k test_basic -s

Once we have implemented a FL model, we can then use this model to enable early verification
work. We can write and check tests using the FL model, and then gradually these same tests can
be used with the CL and RTL models. Using the FL model to write tests also ensures if the CL or
RTL models fail a test, it is more likely due to the CL or RTL implementation itself as opposed to an
incorrect test case.

H To-Do On Your Own: Add another directed test case that specifically tests for when the inputs are
already sorted in increasing and then decreasing order. Add another random test case for a sort
unit with 12-bit input/output values.

5.2. CL Model of Sort Unit

Once we have a reasonable FL model, we can manually refine this model into a CL model. Recall
that CL models capture the cycle-approximate behavior of a hardware target. We can achieve this with
additional logic to track the cycle-level performance of our target hardware. In this case, we will
assume that our target hardware is a pipelined sort unit, although we may not know yet how many
stages our final design will use. Figure 29 illustrates the CL model using a cloud diagram. The high-
level approach is to completely sort the input values in the first cycle, and then to pipeline the sorted
results some number of cycles to model the cycle-level performance of the target hardware.

Figure 30 shows how to implement a CL model for the sort unit in PyMTL. On line 23, we instantiate
a deque object (i.e., a doubly ended queue) from the standard Python collections module. The
deque will be used to model the pipeline latency: each cycle we will append a value to the back of
the deque and pop a value from the front of the deque. Depending on how we initialize the deque, it
will take some number of cycles for a value to propagate from the back to the front of the deque and
this latency corresponds to the pipeline latency.

in_[0]
n

sort

n

n

n

n

n

n

n

in_[1]

in_[2]

in_[3]

out[0]

out[1]

out[2]

out[3]

Pipeline

in_val out_val
Figure 29: Cloud Diagram for Sort Unit
CL Model – The CL model completely
sorts the input values in the first cycle, and
then uses a pipeline object to model the
pipeline latency.

36

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # Sort Unit CL Model
3 #===
4 # Models the cycle-approximate timing behavior of the target hardware.
5

6 from collections import deque
7 from copy import deepcopy
8

9 from pymtl import *
10

11 class SortUnitCL(Model):
12

13 # Constructor
14

15 def __init__(s, nbits=8, nstages=3):
16

17 s.in_val = InPort (1)
18 s.in_ = [InPort (nbits) for _ in range(4)]
19

20 s.out_val = OutPort(1)
21 s.out = [OutPort (nbits) for _ in range(4)]
22

23 s.pipe = deque([[0,0,0,0,0]]*(nstages-1))
24

25 @s.tick_cl
26 def block():
27 s.pipe.append(deepcopy([s.in_val] + sorted(s.in_)))
28 data = s.pipe.popleft()
29 s.out_val.next = data[0]
30 for i, v in enumerate(data[1:]):
31 s.out[i].next = v
32

33 # Line tracing
34

35 def line_trace(s):
36

37 in_str = '{' + ','.join(map(str,s.in_)) + '}'
38 if not s.in_val:
39 in_str = ' '*len(in_str)
40

41 out_str = '{' + ','.join(map(str,s.out)) + '}'
42 if not s.out_val:
43 out_str = ' '*len(out_str)
44

45 return "{}|{}".format(in_str, out_str)

Figure 30: Sort Unit CL Model – CL model of four-element sort unit corresponding to Figure 29.

The s.tick_cl concurrent block on lines 25–31 defines the actual functional-level behavior. We first
sort the input values using the standard Python sorted function and append the corresponding
sorted list of four values along with the input valid bit to the back of the deque (line 27). We then
pop the next list of four values from the front of the deque (line 28), write the valid bit to the out_val
port (line 29), and write the sorted list to the out ports (lines 30–31). Notice how line 23 initializes the
deque to contain nstages-1 entries (each entry is list of four values). If nstages is three, then there
are initially two entries in the deque. Every cycle we will append a value to the back of the deque
and pop a value from the front of the deque. So it will take three cycles for a value to propagate from
the back to the front of the deque. We initialize the deque to contain nstages-1 instead of nstages
elements, because we have carefully designed our model to cleanly support the case when nstages
is one. In this case the deque is initially empty. On line 27 we will append the list of sorted values to
the deque, and on line 28 we will immediately pop this same list of sorted values from the deque. In

37

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 cycle input ports output ports
2 -------------------------------------
3 2: |
4 3: {04,02,03,01}|
5 4: |
6 5: |
7 6: |{01,02,03,04}
8 7: |

Figure 31: Line Trace Output for Sort
Unit CL Model – This line trace is for
the test_basic test case and is anno-
tated to show what each column corre-
sponds to in the model.

this case, the s.tick concurrent block itself gives us a single-cycle delay, and the deque does not add
any additional latency.

A key point to note is the use of the deepcopy function from the standard Python copy module on
line 27. Recall that simply assigning one Python name to another name does not create a copy, but
results in two names referring to the same object. Without this deepcopy, the list we append to
the back of the deque contains references to Bits objects that are also referenced elsewhere in the
framework. The deepcopy function appends a copy of the input valid bit and sorted list to the deque.
Copying objects is often necessary when reading values from an input port and storing these values
in a standard Python data structure. If your FL or CL model is exhibiting strange behavior where
signals seem not to change or change to arbitrary values, you may want to carefully consider whether
or not you are forgetting to copy objects.

The PyMTL model is in SortUnitCL.py and the corresponding test script is in SortUnitCL_test.py.
This test script uses parameterized testing similar in spirit to the unit testing for the parameterized
registered incrementer in Figure 22. The test script generates 18 test cases for directed and random
testing of the sort unit CL model with different input values and numbers of stages. Take a closer
look at this test script before continuing. You can run all of the tests and display the line trace for one
of the three-stage test cases as follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/sort/SortUnitCL_test.py -v
% py.test ../tut3_pymtl/sort/SortUnitCL_test.py -k 3stage_stream -s

Figure 31 shows the line trace for the basic test case. Study the line trace to see how the CL model
captures the cycle-level performance of our sort unit. Imagine we want to integrate this sort unit
into a larger system. Because our sort unit CL model is parameterized by the number of stages,
it would be relatively simple to explore how the sort unit latency impacts the overall system-level
performance. This initial design-space exploration can enable a designer to determine a reasonable
target latency for the sort unit without the need for tediously implementing many different RTL
models, each with different pipeline latencies. Once we have implemented an RTL model with a
specific pipeline latency, we might still want to use the CL model as part of our overall system-level
model, since its simplicity leads to much higher simulator performance.

H To-Do On Your Own: Experiment with what happens if you initialize the deque to have just nstage
instead of nstages-1 elements. Experiment with removing the deepcopy. Generate waveforms
for one of the test cases and confirm that signals are recorded in the waveform (e.g., in_ and out
ports) but not arbitrary Python data structures used within a model (e.g., the deque).

38

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

in0
n

in1
n

in2
n

in3
n

min
max

min
max

min
max

min
max

min
max

n

n

n

n

out0

out1

out2

out3

in_val out_val
Stage S1 Stage S2 Stage S3

Figure 32: Block Diagram for
Sort Unit RTL Model – The RTL
model implements a three-stage
pipelined, bitonic sorting net-
work.

5.3. Flat RTL Model of Sort Unit

Let’s assume we used our sort unit CL model to explore the cycle-level performance of our system,
and we have settled on implementing a three-stage pipelined sort unit. We now manually refine this
model into an RTL model. Recall that RTL models are cycle-accurate, resource-accurate, and bit-accurate
representations of hardware. Although RTL models are usually the most tedious to construct, they
are also the most accurate with respect to the target hardware. Note that this is an iterative pro-
cess: our CL design-space exploration might suggest a target three-stage pipeline, but then our RTL
design-space exploration might reveal that a two-stage pipeline is much more efficient in terms of
area, energy, or timing. Based on these RTL insights we can revisit our CL model and analyze the
system-level impact of using a two-stage pipeline latency. Figure 32 illustrates the RTL model using a
block diagram. Each min/max unit compares its inputs and sends the smaller value to the top output
port and the larger value to the bottom output. This specific implementation is pipelined into three
stages, such that the critical path should be through a single min/max unit. Input and output valid
signals indicate when the input and output elements are valid. We are essentially implementing a
pipelined bitonic sorting network.

Notice that we register the inputs but we do not register the outputs. In other words, we register
the inputs as soon as possible, but there is almost a full cycle’s worth of work before the outputs are
stable. When working with larger blocks we usually need to decide whether to use registered inputs
or registered outputs, and it is important that we adopt a uniform policy. When some blocks use
registered inputs and others use registered outputs, composing them can create either long critical
paths or “dead cycles” where very little work happens beyond simply transferring data. In this
course, we will adopt the general policy of using registered inputs for larger blocks. As long as all
modules roughly adhere to this policy then we can focus on the critical path of each larger module
in isolation and be confident that composing these blocks should not cause significant timing issues.

Figure 33 shows how to implement a flat RTL model for the sort unit in PyMTL. We say this model
is “flat” because it does not instantiate any additional child models. For simplicity, only the first
pipeline stage of the sort unit RTL model is shown. We cleanly separate the sequential logic (modeled
with s.tick_rtl concurrent blocks) from the combinational logic (modeled with s.combinational
concurrent blocks). We use comments and explicit suffixes to make it clear what pipeline stage we
are modeling.

Since RTL models are meant to model real hardware, we cannot rely on the PyMTL framework to
reset state. Line 30 uses the implicit s.reset signal to reset the valid bit register to zero in the first
stage of the pipeline. Simple loops with bounds fixed at elaboration are allowed within RTL models.
Lines 31–32 illustrate a loop that iterates over the in_ ports to model the input registers. Lines 40–59
correspond to the first stage in Figure 32 with two min/max units.

39

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # SortUnitFlatRTL
3 #===
4

5 from pymtl import *
6

7 class SortUnitFlatRTL(Model):
8

9 def __init__(s, nbits=8):
10

11 #---
12 # Interface
13 #---
14

15 s.in_val = InPort (1)
16 s.in_ = [InPort (nbits) for _ in range(4)]
17

18 s.out_val = OutPort(1)
19 s.out = [OutPort (nbits) for _ in range(4)]
20

21 #---
22 # Stage S0->S1 pipeline registers
23 #---
24

25 s.val_S1 = Wire(1)
26 s.elm_S1 = [Wire(nbits) for _ in range(4)]
27

28 @s.tick_rtl
29 def pipereg_S0S1():
30 s.val_S1.next = s.in_val if ~s.reset else 0
31 for i in xrange(4):
32 s.elm_S1[i].next = s.in_[i]
33

34 #---
35 # Stage S1 combinational logic
36 #---
37

38 s.elm_next_S1 = [Wire(nbits) for _ in range(4)]
39

40 @s.combinational
41 def stage_S1():
42

43 # Sort elements 0 and 1
44

45 if s.elm_S1[0] <= s.elm_S1[1]:
46 s.elm_next_S1[0].value = s.elm_S1[0]
47 s.elm_next_S1[1].value = s.elm_S1[1]
48 else:
49 s.elm_next_S1[0].value = s.elm_S1[1]
50 s.elm_next_S1[1].value = s.elm_S1[0]
51

52 # Sort elements 2 and 3
53

54 if s.elm_S1[2] <= s.elm_S1[3]:
55 s.elm_next_S1[2].value = s.elm_S1[2]
56 s.elm_next_S1[3].value = s.elm_S1[3]
57 else:
58 s.elm_next_S1[2].value = s.elm_S1[3]
59 s.elm_next_S1[3].value = s.elm_S1[2]
60

61 ...

Figure 33: Sort Unit Flat RTL Model – RTL model of four-element sort unit corresponding to Fig-
ure 32. For simplicity only the interface and first pipeline stage are shown.

40

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 cycle input ports stage S1 stage S2 stage S3 output ports
2 ---
3 2: | | | |
4 3: {04,02,03,01}| | | |
5 4: |{04,02,03,01}| | |
6 5: | |{02,04,01,03}| |
7 6: | | |{01,03,02,04}|{01,02,03,04}
8 7: | | | |

Figure 34: Line Trace Output for Sort Unit RTL Model – This line trace is for the test_basic test
case and is annotated to show what each column corresponds to in the model. If the valid bit is not
set, then the corresponding list of values is not shown.

The PyMTL model is in SortUnitFlatRTL.py and the corresponding test script is in
SortUnitFlatRTL_test.py. The test script includes four directed tests and one random test. Take a
closer look at this test script before continuing. You can run all of the tests and display the line trace
for the basic test case as follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/sort/SortUnitFlatRTL_test.py -v
% py.test ../tut3_pymtl/sort/SortUnitFlatRTL_test.py -k test_basic -s

The line trace for the sort unit RTL model is shown in Figure 34. On cycle 3, there is a valid set of
four input values available on the input ports, and on cycle 4, we can see that this set of four values
is now in the first set of pipeline registers. Recall that our line trace shows the state at the beginning
of the corresponding cycle. During cycle 4, pipeline stage S1 swaps elements 0 and 1, and also swaps
elements 2 and 3. We can see the result of these swaps by looking at the four values on cycle 5 at the
beginning of pipeline stage S2. During cycle 5, pipeline stage S2 swaps elements 0 and 2, and also
swaps elements 1 and 3. During cycle 6, pipeline stage S1 swaps elements 1 and 2 before writing the
results to the output ports. Compare the cycle-level behavior of the sort unit CL model in Figure 31
and the sort unit RTL model in Figure 34. While obviously the internals of each model are very
different, from the perspective of just the input/output ports these two models have the exact same
cycle-level behavior. An unsorted set of four values is consumed by the sort unit model on cycle 3,
and a sorted set of four values is produced by the sort unit model on cycle 6. We say that the sort
unit CL model is cycle accurate with respect to the sort unit RTL model. Often our CL models will be
cycle approximate, meaning they will approximately model the cycle-level behavior of the RTL model.
This is the key to CL modeling; CL models should capture the CL timing behavior, but they need not
accurately model the actual target hardware.

H To-Do On Your Own: Make a copy of the sorter implementation file so you can put things back to
the way they were when you are finished. The sorter currently sorts the four input numbers from
smallest to largest. Change to the sorter implementation so it sorts the numbers from largest to
smallest. Recompile and rerun the unit test and verify that the tests are no longer passing. Modify
the tests so that they correctly capture the new expected behavior. You might want to make use
of the optional reverse argument to the standard Python sorted function.

% cd ${TUTROOT}/build
% python
>>> sorted([3, 1, 7, 5])
[1, 3, 5, 7]
>>> sorted([3, 1, 7, 5], reverse=True)
[7, 5, 3, 1]

41

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

5.4. Structural RTL Model of Sort Unit

The sort unit flat RTL model is complex and monolithic and it fails to really exploit the structure in-
herent in the sorter. We can use modularity and hierarchy to divide complicated designs into smaller
more manageable units; these smaller units are easier to design and can be tested independently
before integrating them into larger, more complicated designs.

Figure 35 shows how to implement a structural RTL model for the sort unit in PyMTL. We say this
model is “structural” because it only instantiates other child models. For simplicity, only the first
pipeline stage of the sort unit RTL model is shown. Even though we are using a structural im-

1 #===
2 # SortUnitStructRTL
3 #===
4

5 from pymtl import *
6 from pclib.rtl.regs import Reg, RegRst
7 from MinMaxUnit import MinMaxUnit
8

9 class SortUnitStructRTL(Model):
10

11 def __init__(s, nbits=8):
12

13 #---
14 # Interface
15 #---
16

17 s.in_val = InPort (1)
18 s.in_ = [InPort (nbits) for _ in range(4)]
19

20 s.out_val = OutPort(1)
21 s.out = [OutPort (nbits) for _ in range(4)]
22

23 #---
24 # Stage S0->S1 pipeline registers
25 #---
26

27 s.val_S0S1 = RegRst(1)
28 s.elm_S0S1 = [Reg(nbits) for _ in range(4)]
29

30 s.connect(s.in_val, s.val_S0S1.in_)
31 for i in xrange(4):
32 s.connect(s.in_[i], s.elm_S0S1[i].in_)
33

34 #---
35 # Stage S1 combinational logic
36 #---
37

38 s.minmax0_S1 = MinMax(nbits)
39

40 s.connect(s.elm_S0S1[0].out, s.minmax0_S1.in0)
41 s.connect(s.elm_S0S1[1].out, s.minmax0_S1.in1)
42

43 s.minmax1_S1 = MinMax(nbits)
44

45 s.connect(s.elm_S0S1[2].out, s.minmax1_S1.in0)
46 s.connect(s.elm_S0S1[3].out, s.minmax1_S1.in1)
47

48 ...

Figure 35: Sort Unit Structural RTL Model – RTL model of four-element sort unit corresponding to
Figure 32. For simplicity only the interface and first pipeline stage are shown.

42

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

plementation strategy, we still cleanly separate the sequential child models from the combinational
child models. We still use comments and explicit suffixes to make it clear what pipeline stage we are
modeling.

Notice on lines 27–28 we are using register models from pclib. On line 6, we import the Reg (simple
positive-edge triggered register) and RegRst (positive-edge triggered register with reset) models.
Notice our use of a loop to connect the in_ ports in the interface to the in_ ports in the Reg model. As
shown on lines 38–46, we usually instantiate a child model, and then we use s.connect statements
to implement structural composition. There is no need to declare intermediate wires; we can directly
connect ports between two different models.

The PyMTL model is in SortUnitStructRTL.py and the corresponding test script is in
SortUnitStructRTL_test.py. The test script includes four directed tests and one random test.
Take a closer look at this test script before continuing; notice how the test script is able to import
a helper function (mk_test_vector_table) from SortUnitCL_test.py. This ability to share test vec-
tors, cases, and/or harnesses across many different test scripts is a significant benefit of the py.test
framework.

H To-Do On Your Own: The structural implementation is incomplete because the actual implementa-
tion of the min/max unit in MinMaxUnit.py is not finished. You should go ahead and implement
the logic for the min/max unit, and then as always you should write a unit test to verify the function-
ality of your min/max unit! Add some line tracing for the min/max unit. You should have enough
experience based on the previous sections to be able to create a unit test from scratch and run
it using py.test. You should name the new test script MinMaxUnit_test.py. You can use the
registered incrementer model as an example for both implementing the min/max unit and for
writing the corresponding test script. Once your min/max unit is complete and tested, then test
the structural sorter implementation like this:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/sort/SortUnitStructRTL_test.py -v
% py.test ../tut3_pymtl/sort/SortUnitStructRTL_test.py -k test_basic -s

The line trace for the sort unit structural RTL model should be the same as in Figure 34, since
these are really just two different implementations of the sort unit RTL.

5.5. Evaluating Sort Unit using a Simulator

So far we have focused on implementing and verifying our design, but our ultimate goal is to actually
evaluate a design. We do not use unit tests for evaluation; instead we use a simulator script which has
been designed for quantitatively measuring the cycle-level performance of a specific implementation
on a given input dataset. For this tutorial, we will create a simulator to compare the various models
of our sort unit when executing various input datasets.

The simulator script is in sort-sim. A simplified version of the main function in the script is shown
in Figure 36. The simulator script is responsible for handling command line arguments, creating
input datasets, instantiating and elaborating the design, ticking the simulator until the evaluation is
finished, and reporting various statistics. Lines 8–10 create an input pattern based on the --input
command line parameter. Simulator scripts can use standard Python to flexible generate a wide vari-
ety of different input patterns. Lines 16–20 define a standard Python dictionary that maps strings to
model types. Then on line 22, we can simply use this dictionary to instantiate the correct model based

43

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 opts = parse_cmdline()
2

3 # Create input datasets
4

5 ninputs = 100
6 inputs = []
7

8 if opts.input == "random":
9 for i in xrange(ninputs):

10 inputs.append([randint(0,0xff) for i in xrange(4)])
11

12 ...
13

14 # Instantiate and elaborate the design
15

16 model_impl_dict = {
17 'cl' : SortUnitCL,
18 'rtl-flat' : SortUnitFlatRTL,
19 'rtl-struct' : SortUnitStructRTL,
20 }
21

22 model = model_impl_dict[opts.impl]()
23

24 dump_vcd = ""
25 if opts.dump_vcd:
26 dump_vcd = "sort-" + opts.impl + "-" + opts.input + ".vcd"
27

28 model.vcd_file = dump_vcd
29

30 model.elaborate()
31 sim = SimulationTool(model)
32 sim.reset()
33

34 # Tick simulator until evaluation is finished
35

36 counter = 0
37 while counter < ninputs:
38

39 if model.out_val:
40 counter += 1
41

42 if inputs:
43 model.in_val.value = True
44 for i,v in enumerate(inputs.pop()):
45 model.in_[i].value = v
46

47 else:
48 model.in_val.value = False
49 for i in xrange(4):
50 model.in_[i].value = 0
51

52 if opts.trace:
53 sim.print_line_trace()
54

55 sim.cycle()
56

57 # Report various statistics
58

59 if opts.stats:
60 print("num_cycles = {}".format(sim.ncycles))
61 print("num_cycles_per_sort = {:1.2f}".format(sim.ncycles/(1.0*ninputs)))

Figure 36: Simplified Simulator Script for Sort Unit – The simulator script is responsible for han-
dling command line arguments, creating input datasets, instantiating and elaborating the design,
ticking the simulator until the evaluation is finished, and reporting various statistics.

44

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

on the --impl command line option. The simulator will conditionally generate waveforms based on
the --dump-vcd command line option. The main simulator loop on lines 37–55 iterates through the
input dataset and sets the corresponding input ports. The simulator loops keeps a counter to track
how many valid outputs have been received, and thus to determine when to stop the simulation.
Lines 52–53 turn on line tracing based on the --trace command line option. A key difference be-
tween a simulator and a unit test, is that the simulator should also report various statistics that help
us evaluate our design. The --stats command line option will display the number of cycles to finish
processing the input dataset, and the average number of cycles per sort. You can run the simulator
script for the sort unit CL and RTL models as follows:

% cd ${TUTROOT}/build
% ../tut3_pymtl/sort/sort-sim --stats --impl cl
% ../tut3_pymtl/sort/sort-sim --stats --impl rtl-flat
% ../tut3_pymtl/sort/sort-sim --stats --impl rtl-struct

Not surprisingly, it should take one cycle on average since our CL model captures the timing behav-
ior of a fully pipelined implementation, and our RTL models actually implement a fully pipelined
design. The number of cycles per sort is slightly greater than one due to pipeline startup overhead.

You can experiment with other input datasets like this:

% cd ${TUTROOT}/build
% ../tut3_pymtl/sort/sort-sim --stats --impl cl --input random
% ../tut3_pymtl/sort/sort-sim --stats --impl cl --input sorted-fwd
% ../tut3_pymtl/sort/sort-sim --stats --impl cl --input sorted-rev

You can display a line trace and generate waveforms like this:

% cd ${TUTROOT}/build
% ../tut3_pymtl/sort/sort-sim --stats --impl rtl-struct --trace --dump-vcd

Note that the simulator does absolutely no verification! If you have not actually completed the real
implementation of the min/max unit, the rtl-struct implementation will still run and actually the
simulator will report what looks to be reasonable performance results; even though the structural im-
plementation is not at all functionally correct. The take-away here is that you should not use a simulator
script for verification; your testing strategy should be comprehensive enough that once you get to
the evaluation you are confident that your design is fully functional.

H To-Do On Your Own: Add a fourth random input dataset where all of the input values are less
than 16. Add a new choice to the --input command line option corresponding to this new
input dataset. Use the simulator and line tracing to experiment with this new dataset on various
implementations of the sort unit.

5.6. Translating RTL Model of Sort Unit to Verilog

After we have refined our design from an initial FL model, to a CL model, and to an RTL model;
rigorously verified our design using unit testing; and evaluated our design using a simulator; we are
finally ready to translate the RTL model into an industry standard HDL. The generated HDL can be
used to verify that our RTL model is indeed synthesizable, create faster simulators, drive an FPGA
toolflow for emulation and/or prototyping, or drive an ASIC toolflow for accurately estimating area,

45

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 % cd ${TUTROOT}/build
2 % env PYTHONPATH=".." python
3 >>> from pymtl import *
4 >>> from tut3_pymtl.sort import SortUnitFlatRTL
5 >>> model = SortUnitFlatRTL()
6 >>> model = TranslationTool(model)
7 % ls
8 SortUnitFlatRTL_0x4b8e51bd8055176a.v
9 SortUnitFlatRTL_0x4b8e51bd8055176a_v.cpp

10 SortUnitFlatRTL_0x4b8e51bd8055176a_v.py
11 SortUnitFlatRTL_0x4b8e51bd8055176a_v.pyc
12 libSortUnitFlatRTL_0x4b8e51bd8055176a_v.so
13 obj_dir_SortUnitFlatRTL_0x4b8e51bd8055176a

Figure 37: Translating an RTL Model into Ver-
ilog – The TranslationTool translates an RTL
model into Verilog, but also uses the Verilator
tool and various generated wrappers to creates
a new PyMTL model that internally contains its
own cycle-accurate simulator for the translated
Verilog.

energy, and timing. PyMTL currently supports translating an RTL model into Verilog, although the
framework’s use of a clean model/tool split can enable adding translation tools for other HDLs in
the future.

Figure 37 shows an example session in the Python interpreter that illustrates how to use the transla-
tion tool from the PyMTL framework to translate an RTL model into Verilog. Type these commands
into the Python interpreter and observe the output. Then browse the files generated during trans-
lation. Browse SortUnitFlatRTL_0x4b8e51bd8055176a.v to see the Verilog generated by the trans-
lation tool. The suffix 0x4b8e51bd8055176a corresponds to a hash of the design parameters; this
ensures that the generated Verilog module name is unique across different instantiations of the same
parameterized model. Notice that the translation tool preserves the model hierarchy, unrolls lists,
and uses relatively readable name mangling from PyMTL to Verilog names. s.tick_rtl concurrent
blocks are translated into Verilog always @(posedge clk) concurrent blocks, and s.combinational
concurrent blocks are translated into Verilog always @(*) concurrent blocks. Also notice that for
each concurrent block, the translation tool includes the corresponding PyMTL code as a comment
directly above the generated Verilog. This can be useful when debugging incorrect translations.

The translation tool actually does far more than just translate RTL models into Verilog. The trans-
lation tool will: (1) translate an RTL model into Verilog; (2) use the open-source Verilator tool to
translate the Verilog into C++; (3) generate a C++ wrapper; (4) compile this wrapper and the C++
generated by Verilator into a shared library; and (5) generate a PyMTL wrapper around the shared li-
brary. Essentially, this means the translation tool creates a new PyMTL model that internally contains
its own cycle-accurate simulator for the translated Verilog. As part of this process, the translation tool
generates several extra files in the build directory. Feel free to browse through the C++ and PyMTL
wrappers. This powerful feature enables us to seamlessly use the exact same test scripts to verify the
functionality of the translated Verilog.

Figure 38 shows a unit test with support for testing a translated model. This test is very similar to
the initial test script for the registered incrementer shown in Figure 11, except of course our sort unit
requires many more input and output values. The test_verilog argument is handled specially by
the PyMTL framework; it is set to True when the --test-verilog command line option is given
to py.test. On lines 17–18, we use the translation tool to first translate the sort unit into Verilog
and then return a new PyMTL model that contains the translated Verilog. We can now test both the
PyMTL RTL and the translated Verilog as follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/sort/SortUnitFlatRTL_v_test.py --dump-vcd
% mv tut3_pymtl.sort.SortUnitFlatRTL_v_test.test_verilate.vcd sort-pymtl.vcd
% py.test ../tut3_pymtl/sort/SortUnitFlatRTL_v_test.py --dump-vcd --test-verilog

46

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # SortUnitFlatRTL_v_test
3 #===
4

5 from pymtl import *
6 from SortUnitFlatRTL import SortUnitFlatRTL
7

8 def test_verilate(dump_vcd, test_verilog):
9

10 # Conflat the model
11

12 model = SortUnitFlatRTL()
13 model.vcd_file = dump_vcd
14

15 # Translate the model into Verilog
16

17 if test_verilog:
18 model = TranslationTool(model)
19

20 # Elaborate the model
21

22 model.elaborate()
23

24 # Create and reset simulator
25

26 sim = SimulationTool(model)
27 sim.reset()
28 print ""
29

30 # Helper function
31

32 def t(in_val, in_, out_val, out):
33

34 model.in_val.value = in_val
35 for i,v in enumerate(in_):
36 model.in_[i].value = v
37

38 sim.eval_combinational()
39 sim.print_line_trace()
40

41 assert model.out_val == out_val
42 if (out_val):
43 for i,v in enumerate(out):
44 assert model.out[i] == v
45

46 sim.cycle()
47

48 # Cycle-by-cycle tests
49

50 t(0, [0x00, 0x00, 0x00, 0x00], 0, [0x00, 0x00, 0x00, 0x00])
51 t(1, [0x03, 0x09, 0x04, 0x01], 0, [0x00, 0x00, 0x00, 0x00])
52 t(1, [0x10, 0x23, 0x02, 0x41], 0, [0x00, 0x00, 0x00, 0x00])
53 t(1, [0x02, 0x55, 0x13, 0x07], 0, [0x00, 0x00, 0x00, 0x00])
54 t(0, [0x00, 0x00, 0x00, 0x00], 1, [0x01, 0x03, 0x04, 0x09])
55 t(0, [0x00, 0x00, 0x00, 0x00], 1, [0x02, 0x10, 0x23, 0x41])
56 t(0, [0x00, 0x00, 0x00, 0x00], 1, [0x02, 0x07, 0x13, 0x55])
57 t(0, [0x00, 0x00, 0x00, 0x00], 0, [0x00, 0x00, 0x00, 0x00])
58 t(0, [0x00, 0x00, 0x00, 0x00], 0, [0x00, 0x00, 0x00, 0x00])

Figure 38: Unit Test Script for Sort Model with Verilog Translation – The test_verilog argument
is handled specially by the PyMTL framework; it is set to True when the --test-verilog command
line option is given to py.test.

47

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

% ls *SortUnitFlatRTL_v_test.*.vcd

We save the generated VCD file from the first py.test run as sort-pymtl.vcd. When testing with the
--test-verilog command line option during the second py.test run, the PyMTL framework will
generate two different VCD files (with relatively long file names). One file corresponds to the PyMTL
wrapper, and the other file corresponds to the actual Verilog design. Browse all three generated
waveforms to understand the difference.

You will probably notice that the second py.test run takes significantly longer than the first py.test
run. This is because the second py.test run must go through all of the steps to translate the design
to Verilog and ultimately create a new PyMTL model that internally contains its own cycle-accurate
simulator for this translated Verilog. The PyMTL translation tool caches the result of translation to
reduce this overhead when testing the same model many times. If you run py.test again with the
--test-verilog command line option, it will execute faster since the tool realizes it can just reuse
the translated model from before.

However, sometimes the translation tool can get confused; you may need to remove all of the content
in the build directory and do a “clean” build to occasionally fix issues with translation like this:

% cd ${TUTROOT}/build
% rm -rf *
% py.test ../tut3_pymtl/sort/SortUnitFlatRTL_v_test --dump-vcd --test-verilog

If you take a closer look at the SortUnitFlatRTL_test.py test script, you will see that the run_sim
helper function accepts test_verilog as an argument. This enables us to test the translated Verilog
on all of our tests as follows:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/sort -v --test-verilog

You should see that py.test tests the translated Verilog for the min/max unit and our sort unit RTL
models, but skips testing the FL and CL models since these models cannot be translated into Verilog.

Once we have verified that our RTL models can be correctly translated into Verilog, we will ulti-
mately use the simulator script (with the --translate command line option) to generate the actual
Verilog that can be used to drive an FPGA or ASIC toolflow. We can at the same time also generate
waveforms to drive power analysis in an ASIC toolflow. The following commands use the simulator
script to generate the Verilog for the sort unit flat RTL model and three VCD files corresponding to
the three input datasets.

% ../tut3_pymtl/sort/sort-sim --impl rtl-flat --input random --translate --dump-vcd
% ../tut3_pymtl/sort/sort-sim --impl rtl-flat --input sorted-fwd --translate --dump-vcd
% ../tut3_pymtl/sort/sort-sim --impl rtl-flat --input sorted-rev --translate --dump-vcd

H To-Do On Your Own: Experiment with translating the sort unit structural RTL model to Verilog.
Verify that all of the test cases for the structural RTL model pass on the translated model, and use
the simulator to generate the Verilog and VCD files for all three input patterns.

48

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

6. Greatest Common Divisor Unit

The previous section introduced the process of refining a design from an initial FL model, to a CL
model, and finally an RTL model. In this section, we will apply what we have learned to study a
more complicated hardware unit that calculates the greatest common divisor (GCD) of two input
operands. We will gain experience with latency-insensitive val/rdy interfaces, unit testing with test
sources/sinks, and using a control/datapath split to implement RTL models. The code for this sec-
tion is provided for you in the tut3_pymtl/gcd subdirectory. The previous examples placed the unit
test scripts in the same subdirectory as the models these tests were testing. As we start to explore
much larger and more complicated designs, it can be useful to keep all of the unit tests together in a
separate test subdirectory. You can see in this example, that all of the unit tests for the GCD unit are
placed in the tut3_pymtl/gcd/test subdirectory.

6.1. FL Model of GCD Unit

As before, we begin by designing an FL model of our target GCD unit. Figure 39 shows a cloud
diagram for the GCD unit FL model. The GCD unit will take two 16-bit operands and produce a
16-bit result. A key feature of the GCD unit is its use of latency-insensitive val/rdy interfaces to
manage flow control for the requests and responses. The interface for the registered incrementer in
Section 4 included no extra control signals. A module that wants to use the registered incrementer
must explicitly handle the fact that the unit always takes exactly one cycle. The interface for the sorter
in Section 5 included an extra valid signal. A module that wants to use the sorter could be carefully
constructed so as to be agnostic to the latency of the sorter; this would enable flexibly trying out
different sorting algorithms. One issue with including just a valid signal is that there is no way to
know if the sorter is busy, and there is no way to tell the sorter that we are not ready to accept the
result. In other words, there is no provision for back pressure. As shown in Figure 39, our GCD design
will use a fully latency-insensitive interface by including two extra signals: a valid and a ready signal.
These signals will allow additional flexibility: the GCD unit can indicate it is not ready to accept a
new GCD input, and another module can indicate that it is not ready to accept the GCD output.

Assume we have a producer that wishes to send a message to a consumer using the val/rdy micro-
protocol. At the beginning of the cycle, the producer determines if it has a new message to send to
the consumer. If so, it sets the message bits appropriately and then sets the valid signal high. Also
at the beginning of the cycle, the consumer determines if it is able to accept a new message from the
producer. If so, it sets the ready signal high. At the end of the cycle, the producer and consumer can
independently AND the valid and ready signals together; if both signals are true then the message
is considered to have been sent from the producer to the consumer and both sides can update their
internal state appropriately. Otherwise, we will try again on the next cycle. To avoid long combina-
tional paths and/or combinational loops, we should avoid making the valid signal depend on the
ready signal or the ready signal depend on the valid signal. If you absolutely must, you can make
the ready signal depend on the valid signal (e.g., in an arbiter) but it is considered very bad practice

req.msg

req.val

req.rdy

32 16
resp.msg

resp.val

resp.rdy
GCD

req_q resp_q

Figure 39: Cloud Diagram for GCD Unit
FL Model – Input and output use latency-
insensitive val/rdy interfaces; input/output
queue interface adapters simplify interacting
with these interfaces. The input message in-
cludes two 16-bit operands; output message
is an 16-bit result.

49

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # GCD Unit FL Model
3 #===
4

5 from fractions import gcd
6

7 from pymtl import *
8 from pclib.ifcs import InValRdyBundle, OutValRdyBundle
9 from pclib.fl import InValRdyQueueAdapter, OutValRdyQueueAdapter

10

11 class GcdUnitFL(Model):
12

13 # Constructor
14

15 def __init__(s):
16

17 # Interface
18

19 s.req = InValRdyBundle (32)
20 s.resp = OutValRdyBundle (16)
21

22 # Adapters
23

24 s.req_q = InValRdyQueueAdapter (s.req)
25 s.resp_q = OutValRdyQueueAdapter (s.resp)
26

27 # Concurrent block
28

29 @s.tick_fl
30 def block():
31 req_msg = s.req_q.popleft()
32 result = gcd(req_msg[0:16], req_msg[16:32])
33 s.resp_q.append(result)
34

35 # Line tracing
36

37 def line_trace(s):
38 req_msg_str = "{}:{}".format(s.req.msg[0:16], s.req.msg[16:32])
39 return "{}(){}".format(
40 valrdy_to_str(req_msg_str, s.req.val, s.req.rdy),
41 s.resp
42)

Figure 40: Gcd Unit FL Model – FL model of greatest-common divisor unit corresponding to Fig-
ure 39.

to make the valid signal depend on the ready signal. As long as you adhere to this policy, composing
modules via the val/rdy interface should not cause significant timing issues.

Based on the discussion so far, the benefit of a latency-insensitive val/rdy interface should be ob-
vious. This interface will allow true black-box testing and will allow flexibly composing modules
without regards for the detailed timing properties of each module. For example, if we use the GCD
unit in a larger design we can later decide to try a different GCD implementation (with potentially a
very different latency), and the larger design should need no modifications! We will use this kind of
interface extensively throughout the course.

In Figure 39, we can see that we often use input/output queues to simplify designing FL models that
interact with val/rdy interfaces. Figure 40 shows how to implement an FL model for the GCD unit
in PyMTL. The actual work of the FL model takes place on line 32. We use the gcd function from
the standard Python fractions module to calculate the GCD of the two input operands. This exam-

50

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # ValRdyBundle.py
3 #===
4 # Defines a PortBundle for the val/rdy interface.
5

6 from pymtl import *
7 from valrdy import valrdy_to_str
8

9 class ValRdyBundle(PortBundle):
10

11 def __init__(self, nbits):
12 self.msg = InPort (nbits)
13 self.val = InPort (1)
14 self.rdy = OutPort(1)
15

16 def to_str(self, msg=None):
17 msg = self.msg if None else msg
18 return valrdy_to_str(msg, self.val, self.rdy)
19

20 def __str__(self):
21 return valrdy_to_str(self.msg, self.val, self.rdy)
22

23 # Create InValRdyBundle and OutValRdyBundle
24

25 InValRdyBundle, OutValRdyBundle = create_PortBundles(ValRdyBundle)

Figure 41: Val/Rdy Port Bundle from pclib – A parameterized port bundle that groups together the
valid, ready, and message ports.

ple illustrates a two important new features of the PyMTL framework: port bundles and interface
adapters.

Lines 19–20 of Figure 40 use port bundles instead of ports as the interface for our GCD unit. A port
bundle is simply a collection of logically related ports (potentially in different directions), which can
then be connected in a single statement. For our GCD unit, we are using the ValRdyBundle from
pclib.ifcs. This port bundle groups together the valid, ready, and message ports. Figure 41 shows
how the port bundle is defined in pclib. A port bundle is just a Python class that inherits from the
PortBundle base class provided by the PyMTL framework. In the constructor, we define the ports
that make up the port bundle (lines 12–14). We also define methods for converting the port bundle
to a string for simplified line tracing. One line 25, we use the create_PortBundles function from the
PyMTL framework to create two new port bundle classes: InValRdyBundle has input valid/message
ports and an output ready port, while OutValRdyBundle as output valid/message ports and an input
ready port.

Lines 24–25 of Figure 40 instantiate two interface adapters provided by the PyMTL framework.
Interface adapters take one or more ports (or port bundles) as constructor arguments, and then
enable the logic within the model to interact with these ports through methods. In this exam-
ple, we are using ValRdyQueueAdapter objects from pclib.fl. An InValRdyQueueAdapter accepts
an InValRdyBundle and provides a standard Python popleft method for the FL model to use.
An OutValRdyQueueAdapter accepts an OutValRdyBundle and provides a standard Python append
method for the FL model to use. We can see the s.tick concurrent block making use of these meth-
ods to pop a request message from the input interface (line 31) and append the response message on
the output interface (line 33). These queue adapters significantly simplify implementing FL models,
since we no longer need to explicitly manage the val/rdy interface. The framework actually uses
a sophisticated implementation to enable an s.tick concurrent block to be “paused” if the input
interface is not valid or the output interface is not ready.

51

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #---
2 # TestHarness
3 #---
4

5 class TestHarness (Model):
6

7 def __init__(s, GcdUnit, src_msgs, sink_msgs,
8 src_delay, sink_delay,
9 dump_vcd=False, test_verilog=False):

10

11 # Instantiate models
12

13 s.src = TestSource (32, src_msgs, src_delay)
14 s.gcd = GcdUnit ()
15 s.sink = TestSink (16, sink_msgs, sink_delay)
16

17 # Dump VCD
18

19 if dump_vcd:
20 s.gcd.vcd_file = dump_vcd
21

22 # Translation
23

24 if test_verilog:
25 s.gcd = get_verilated(s.gcd)
26

27 # Connect
28

29 s.connect(s.src.out, s.gcd.req)
30 s.connect(s.gcd.resp, s.sink.in_)
31

32 def done(s):
33 return s.src.done and s.sink.done
34

35 def line_trace(s):
36 return s.src.line_trace() + " > " + \
37 s.gcd.line_trace() + " > " + \
38 s.sink.line_trace()

Figure 42: Excerpt from Unit Test Script for GCD Unit FL Model – Latency insensitive interfaces
enable us to use generic sources and sinks for testing.

GCD Unit

req_msg

req_val

req_rdy

resp_msg

resp_val

resp_rdy
Test Source Test Sink

Figure 43: Verifying GCD Using Test Sources and Sinks – Parameterized test sources send a stream
of messages over a val/rdy interface, and parameterized test sinks receive a stream of messages over
a val/rdy interface and compare each message to a previously specified reference message.

The PyMTL model is in GcdUnitFL.py and the corresponding test script is in GcdUnitFL_test.py in
the test subdirectory. One of the nice features of using a latency-insensitive val/rdy interface is that
it enables us to use a common framework for sending messages into the device-under-test (DUT) and
then verifying that the correct messages come out of the DUT. pclib.test includes the TestSource
and TestSink models for this purpose. Figure 42 illustrates the test harness included in the GCD unit
test script. We instantiate a test source and attach it to the GCD unit’s request val/rdy interface, and
then we instantiate a test sink and attach it to the GCD unit’s response val/rdy interface. Figure 43

52

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 cycle src A B out sink
2 ---------------------------------------
3 19: 0004001c > 001c:0004(). > .
4 20: > ()# > #
5 21: > ()# > #
6 22: # > # ()# > #
7 23: # > # ()# > #
8 24: # > # ()# > #
9 25: 00990096 > 0096:0099()0004 > 0004
10 26: > ()# > #
11 27: > ()# > #
12 28: 009c00b4 > 00b4:009c()0003 > 0003
13 29: . > . ()000c > 000c
14 30: 00a00060 > 0060:00a0(). > .
15 31: # > # ()# > #
16 32: 005400a4 > 00a4:0054()0020 > 0020
17 33: # > # ()# > #
18 34: 00ab0059 > 0059:00ab()0004 > 0004

Figure 44: Line Trace for GCD Unit FL Model
– Various characters indicate the status of the
val/rdy interface: . = val/rdy interface is not
valid and not ready; # = val/rdy interface is
valid but not ready; space = val/rdy interface
is not valid and ready; message is shown when
it is actually transferred across interface.

illustrates the overall connectivity in the test harness. Notice how port bundles enable us to connect
three ports with a single connect statement (lines 29–30). The test source includes the ability to
randomly delay messages going into the DUT and the test sink includes the ability to randomly
apply back-pressure to the DUT. By using various combinations of these random delays we can more
robustly ensure that our flow-control logic is working correctly. Note that these test cases illustrate
both directed black-box and randomized black-box testing strategies. The test cases are black-box since
they do not depend on the timing within the DUT.

A common testing strategy is for the very first test-case to use directed source/sink messages with
no random delays. For example, the first test case for our GCD unit FL model creates a couple of
source messages along with the correct sink messages. We can run just this test case like this:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/gcd/test/GcdUnitFL_test.py -k basic_0x0 -s

Once we know that our design works without any random delays, we continue to use directed
source/sink messages but then add random source delays and random sink delays. For example,
the second test case for our GCD unit FL model sets the test source to randomly delay the input
messages from zero to five cycles. We can also try using no delays on the source, but adding random
delays to the sink, and finally add random delays to both the source and the sink. If we see that our
design passes the tests with no random delays but fails with random delays this is a good indicator
that there is an issue with our val/rdy logic.

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/gcd/test/GcdUnitFL_test.py -k basic -s

After additional directed testing with random delays, we can start to use randomly generated source/sink
messages for even greater test coverage.

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/gcd/test/GcdUnitFL_test.py -k random -s

Figure 44 illustrates a portion of the line trace for the randomized testing. Notice that the line trace
tells something about what is going on with each val/rdy interface. A period (.) indicates that the
interface is not ready but also not valid; a hash (#) indicates that the interface is valid but not ready;
a space indicates that the interface is ready but not valid. The actual message is displayed when it is

53

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

transferred from the producer to the consumer. We can see a message being sent from the test source
into the GCD unit on cycle 19 and although the result is valid on cycle 20 the test sink is not ready
until cycle 25 to accept the result. On cycles 20–21 the test source does not have a new message to
send to the GCD unit. On cycle 22 it does indeed have a new message, but the GCD unit is not ready
because it is still waiting on the test sink. Finally, on cycle 25 the test sink is ready and the GCD unit
is able to send the result and accept a new input. The GCD unit takes a single cycle when there is no
back pressure; we can see this on cycle 28–29.

H To-Do On Your Own: Write a new test case for the GCD unit FL model. First create a new list
of messages named coprime_msgs which includes a few sets of relatively prime numbers. Two
numbers are relatively prime (or coprime) if their greatest common divisor is one. Then add two
new test cases to the test case table. Both test cases should use coprime_msgs. The first new test
case should have no random delays, and the second new test case should have random delays.

6.2. CL Model of GCD Unit

Once we have a reasonable FL model, we can manually refine this model into a CL model. This pro-
cess often requires exploring different algorithms that can achieve the functional-level behavior yet
still be efficiently implemented in hardware. We can implement these algorithms in the CL model,
along with a cycle-approximate timing model, to explore the system-level performance impact of
different algorithms. Figure 29 illustrates the CL model using a cloud diagram. The high-level ap-
proach is to use the first cycle to calculate the GCD and also to estimate the number of cycles a specific
algorithm will take. We can then to delay the result some number of cycles to model the cycle-level
performance of the target hardware. Unlike the pipelined CL timing model in Section 5, our GCD
unit will be using an iterative CL timing model. This means that we do not need to model pipelining
multiple results, but instead we just need to wait a certain number of cycles.

Figure 46 shows an excerpt from the CL model for the GCD unit. Lines 5–15 define a helper function
that implements the specific algorithm we will be using to calculate the GCD and also estimates the
number of cycles this algorithm will take. For now, we have chosen to explore Euclid’s algorithm,
and we are assuming each iteration of the while loop will take one cycle. This is a reasonable cycle-
approximate model for a simple FSM-based RTL model. It would be relatively straight-forward
to include multiple algorithms (each with their own timing model) and then to choose a specific
algorithm based on a parameter. As in the GCD unit FL model, we are using port bundles and
interface adapters.

The interface adapters on lines 32–33 are different from the ones we used in the GCD unit FL model.
These queue adapters still accept val/rdy port bundles, but they are meant for CL instead of FL
modeling. We must explicitly tick them once a cycle (lines 47–48). We can use the empty method to
see if an input queue is empty, and (if not empty) we can use the deq method to dequeue a message

req.msg

req.val

req.rdy

32 16
resp.msg

resp.val

resp.rdy
GCD

req_q resp_q

counterresult
Figure 45: Cloud Diagram for GCD Unit CL
Model – CL model uses input/output queue
adapters and extra state to create a cycle-level
timing model.

54

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #---
2 # GCD: algorithm and timing model
3 #---
4

5 def gcd(a, b):
6

7 ncycles = 0
8 while True:
9 ncycles += 1

10 if a < b:
11 a,b = b,a
12 elif b != 0:
13 a = a - b
14 else:
15 return (a,ncycles)
16

17 #---
18 # GcdUnitCL
19 #---
20

21 class GcdUnitCL(Model):
22

23 def __init__(s):
24

25 # Interface
26

27 s.req = InValRdyBundle (32)
28 s.resp = OutValRdyBundle (16)
29

30 # Adapters
31

32 s.req_q = InValRdyQueueAdapter (s.req)
33 s.resp_q = OutValRdyQueueAdapter (s.resp)
34

35 # Member variables
36

37 s.result = 0
38 s.counter = 0
39

40 # Concurrent block
41

42 @s.tick_cl
43 def block():
44

45 # Tick the queue adapters
46

47 s.req_q.xtick()
48 s.resp_q.xtick()
49

50 # Handle delay to model the gcd unit latency
51

52 if s.counter > 0:
53 s.counter -= 1
54 if s.counter == 0:
55 s.resp_q.enq(s.result)
56

57 # If we have a new message and the output queue is not full
58

59 elif not s.req_q.empty() and not s.resp_q.full():
60 req_msg = s.req_q.deq()
61 s.result,s.counter = gcd(req_msg[0:16], req_msg[16:32])

Figure 46: Excerpt from Gcd Unit CL Model – CL model of greatest-common divisor unit corre-
sponding to Figure 45.

55

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # GcdUnitCL_test
3 #===
4

5 import pytest
6

7 from pymtl import *
8 from pclib.test import run_sim
9 from tut3_pymtl.gcd.GcdUnitCL import gcd, GcdUnitCL

10

11 # Reuse tests from FL model
12

13 from GcdUnitFL_test import TestHarness
14 from GcdUnitFL_test import basic_msgs, random_msgs, test_case_table
15

16 #---
17 # test_gcd
18 #---
19

20 def test_gcd():
21 # a b result ncycles
22 assert gcd(0, 0) == (0, 1)
23 assert gcd(1, 0) == (1, 1)
24 assert gcd(0, 1) == (1, 2)
25 assert gcd(5, 5) == (5, 3)
26 assert gcd(15, 5) == (5, 5)
27 assert gcd(5, 15) == (5, 6)
28 assert gcd(7, 13) == (1, 13)
29 assert gcd(75, 45) == (15, 8)
30 assert gcd(36, 96) == (12, 10)
31

32 #---
33 # Test cases
34 #---
35

36 @pytest.mark.parametrize(**test_case_table)
37 def test(test_params, dump_vcd):
38 run_sim(TestHarness(GcdUnitCL,
39 test_params.msgs[::2], test_params.msgs[1::2],
40 test_params.src_delay, test_params.sink_delay),
41 dump_vcd)

Figure 47: Unit Test Script for GCD Unit CL Model – We use directed testing for the GCD algorithm
and timing model, and reuse the test cases from the GCD unit CL model.

from the input queue. We can use the full method to see if an output queue is full, and (if not full)
we can use the enq method to enqueue a message onto the output queue. These queue adapters
significantly simplify implementing CL models, since we no longer need to explicitly manage the
val/rdy interface. However, these queue adapters do introduce extra buffering that may (or may not)
be present in the target hardware. This will impact the cycle-level performance. This is a common
trade-off we often make when designing CL models; we sometimes reduce the cycle-level accuracy
of our CL model in order to simplify the design and enable easier design-space exploration.

Figure 47 shows the unit test script for our GCD unit CL model. Lines 20–30 use directed testing
for just the algorithm and the associated timing model. Line 9 imports the GCD CL unit by its
absolute package because it is not in the same subdirectory as the test file. Lines 13–14 import the
test harness, messages, and test case table from the GCD unit FL model’s test script. We then simply
apply the same FL test cases to our GCD unit CL model on lines 36–41. If we add new test cases for
the FL model, then they will also be automatically applied to the CL model. Notice how compact
the test script is compared to GcdUnitFL_test.py. Latency-insensitive val/rdy interfaces combined

56

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 cycle src A B out sink
2 ---------------------------------------
3 2: > () >
4 3: 000f0005 > 0005:000f() >
5 4: 00030009 > 0009:0003() >
6 5: # > # () >
7 6: # > # () >
8 7: # > # () >
9 8: # > # () >
10 9: # > # () >
11 10: # > # ()0005 > 0005
12 11: 00000000 > 0000:0000(). > .
13 12: # > # () >
14 13: # > # () >
15 14: # > # () >
16 15: # > # () >
17 16: # > # ()0003 > 0003
18 17: 001b000f > 000f:001b(). > .
19 18: # > # ()# > #
20 19: # > # ()# > #
21 20: # > # ()# > #
22 21: # > # ()# > #
23 22: # > # ()0000 > 0000
24 23: 00150031 > 0031:0015(). > .
25 24: # > # (). > .

Figure 48: Line Trace for CL Implementation
of GCD – Extra buffering means the GCD unit
can accept the second transaction before the
first transaction is done. Recall that various
characters indicate the status of the val/rdy in-
terface: . = val/rdy interface is not valid and
not ready; # = val/rdy interface is valid but not
ready; space = val/rdy interface is not valid
and ready; message is shown when it is actu-
ally transferred across interface.

with the flexibility of the py.test framework enable reusing tests across different models. This is an
incredibly useful feature and significantly simplifies test-driven development.

The PyMTL model is in GcdUnitCL.py and the corresponding test script is in GcdUnitCL_test.py.
We can run all of the tests and display the line trace for the basic test case with random delays in the
test sink like this:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/gcd/test/GcdUnitCL_test.py -v
% py.test ../tut3_pymtl/gcd/test/GcdUnitCL_test.py -sv -k basic_0x5

Figure 48 shows the beginning of the line trace for the basic test case. The first GCD request enters
the GCD unit on cycle 3 and the response is returned on cycle 10, for a total latency of eight cycles.
However, notice that the second GCD request is able to enter the GCD unit right away on cycle 4
even though the first GCD transaction is not done. This is a result of the extra buffering in the queue
interface adapters. The second GCD response is sent to the test sink on cycle 16. The third GCD
request stalls until cycle 11 when it can enter the GCD unit. On cycle 18, the third GCD response is
valid but it cannot be sent to the test sink, since the test sink is not ready (due to a random delay).
The GCD unit must wait until the test sink is ready on cycle 22.

H To-Do On Your Own: It should be possible to do a swap and the following subtract in a single cycle.
Modify the timing model to account for this optimization and rerun the test cases to observe how
this change impacts the cycle-level performance.

6.3. RTL Model of GCD Unit

When implementing more complicated RTL models, we will usually divide the design into two
parts: the datapath and the control unit. The datapath contains the arithmetic operators, muxes, and
registers that work on the data, while the control unit is responsible for controlling these components

57

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

is_a_lt_b

b_reg

zero?

re
q
_m
sg
.are
q
_m
sg

re
sp
_m
sgre
q
_m
sg
.b

less
than?

a_mux_sel

sub
a_reg

b_reg
_en

a_reg_en

is_b_zero

b_mux
_sel

Figure 49: Datapath Diagram for GCD – Datapath in-
cludes two state registers and required muxing and arith-
metic units to iteratively implement Euclid’s algorithm.

IDLE

CALC

DONE!resp_rdy

!req_val

req_val

resp_rdy

a < b
/swap

b != 0
/sub

b == 0

Figure 50: FSM Diagram for GCD – A
hybrid Moore/Mealy FSM for control-
ling the datapath in Figure 49. Mealy
transitions in the calc state determine
whether to swap or subtract.

to achieve the desired functionality. The control unit sends control signals to the datapath and the
datapath sends status signals back to the control unit. Figure 49 illustrates the datapath for the GCD
unit and Figure 50 illustrates the corresponding finite-state-machine (FSM) control unit. The PyMTL
source for the datapath, control unit, and the top-level module which composes the datapath and
control unit is in GcdUnitRTL.py.

Figure 51 shows the interface for the datapath and the first two datapath components. Notice how
we use a very structural implementation that exactly matches the datapath diagram in Figure 49. We
leverage several modules from pclib (e.g., Mux, RegEn). You should use a similar structural approach
when building your own datapaths for this course. Lines 41–46 illustrate using the s.connect_pairs
method to create a different style for structural composition well-suited for implementing datapaths.
The s.connect_pairs method takes a list of ports that need to be connected. The first port is con-
nected to the second port, the third is connected to the fourth and so on. Line 40 shows how we can
create a short-hand name for a model (m) which further simplifies the syntax for connections. For a
net that moves data from right to left in the datapath diagram, we need to declare a dedicated wire
right before it is used as an input (e.g., s.sub_out and s.b_reg_out).

Take a look at the control unit in GcdUnitRTL.py and notice the stylized way we write FSMs. An FSM-
based control unit should have three parts: a register for the state, an s.combinational concurrent
block for the state transitions, and an s.combinational concurrent block for the state outputs. We
use if statements in both concurrent block to determine the next state and the state outputs based
on the current state.

Also take a look at the top-level module which composes the datapath and control unit. We use
the s.connect_auto method to connect the control and status signals between the datapath and
control unit. The s.connect_auto method will inspect the port lists for the given models and connect
ports with the same name. For example, the a_mux_sel port in the datapath will be automatically
connected to the is_b_zero port in the control unit.

The PyMTL model is in GcdUnitCL.py and the corresponding test script is in GcdUnitCL_test.py.
As with the GCD unit CL model, our RTL model is able use the exact same test setup as the GCD unit

58

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 #===
2 # GCD Unit RTL Datapath
3 #===
4

5 class GcdUnitDpathRTL (Model):
6

7 # Constructor
8

9 def __init__(s):
10

11 #---
12 # Interface
13 #---
14

15 s.req_msg_a = InPort (16)
16 s.req_msg_b = InPort (16)
17 s.resp_msg = OutPort (16)
18

19 # Control signals (ctrl -> dpath)
20

21 s.a_mux_sel = InPort (A_MUX_SEL_NBITS)
22 s.a_reg_en = InPort (1)
23 s.b_mux_sel = InPort (B_MUX_SEL_NBITS)
24 s.b_reg_en = InPort (1)
25

26 # Status signals (dpath -> ctrl)
27

28 s.is_b_zero = OutPort (1)
29 s.is_a_lt_b = OutPort (1)
30

31 #---
32 # Structural composition
33 #---
34

35 # A mux
36

37 s.sub_out = Wire(16)
38 s.b_reg_out = Wire(16)
39

40 s.a_mux = m = Mux(16, 3)
41 s.connect_pairs(
42 m.sel, s.a_mux_sel,
43 m.in_[A_MUX_SEL_IN], s.req_msg_a,
44 m.in_[A_MUX_SEL_SUB], s.sub_out,
45 m.in_[A_MUX_SEL_B], s.b_reg_out,
46)
47

48 # A register
49

50 s.a_reg = m = RegEn(16)
51 s.connect_pairs(
52 m.en, s.a_reg_en,
53 m.in_, s.a_mux.out,
54)

Figure 51: Excerpt from Datapath in GCD Unit RTL Model – We use top-level constants for various
control signal encodings (e.g., A_MUX_SEL_NBITS, A_MUX_SEL_IN), and we use s.connect_pair to
enable more succinct structural composition in datapaths.

59

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

1 cycle src A B Areg Breg ST out sink
2 ---
3 2: > (0005 000f I) >
4 3: 000f0005 > 0005:000f(0005 000f I) >
5 4: # > # (0005 000f Cs) >
6 5: # > # (000f 0005 C-) >
7 6: # > # (000a 0005 C-) >
8 7: # > # (0005 0005 C-) >
9 8: # > # (0000 0005 Cs) >
10 9: # > # (0005 0000 C) >
11 10: # > # (0005 0000 D)0005 > 0005
12 11: 00030009 > 0009:0003(0005 0000 I). > .
13 12: # > # (0009 0003 C-) >
14 13: # > # (0006 0003 C-) >
15 14: # > # (0003 0003 C-) >
16 15: # > # (0000 0003 Cs) >
17 16: # > # (0003 0000 C) >
18 17: # > # (0003 0000 D)0003 > 0003
19 18: 00000000 > 0000:0000(0003 0000 I). > .
20 19: # > # (0000 0000 C). > .
21 20: # > # (0000 0000 D)# > #
22 21: # > # (0000 0000 D)# > #
23 22: # > # (0000 0000 D)# > #
24 23: # > # (0000 0000 D)0000 > 0000
25 24: 001b000f > 000f:001b(0000 0000 I). > .

Figure 52: Line Trace for RTL Imple-
mentation of GCD – State of A and B
registers at the beginning of the cycle is
shown, along with the current state of
the FSM. I = idle, Cs = calc with swap,
C- = calc with subtract, D = done. Recall
that various characters indicate the status
of the val/rdy interface: . = val/rdy in-
terface is not valid and not ready; # =
val/rdy interface is valid but not ready;
space = val/rdy interface is not valid and
ready; message is shown when it is actu-
ally transferred across interface.

FL model, even though the FL, CL, and RTL models all take different amounts of time to calculate
the GCD. This illustrates the power of using latency-insensitive interfaces. We can run all of the tests
and display the line trace for the basic test case with random delays in the test sink like this:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/gcd/test/GcdUnitRTL_test.py -v
% py.test ../tut3_pymtl/gcd/test/GcdUnitRTL_test.py -sv -k basic_0x0

Figure 52 shows the beginning of the line trace for the basic test case. We use the line trace to show
the state of the A and B registers at the beginning of each cycle and use specific characters to indicate
which state we are in (i.e., I = idle, Cs = calc with swap, C- = calc with subtract, D = done). We can see
that the test source sends a new message into the GCD unit on cycle 3. The GCD unit is in the idle
state and transitions into the calc state. It does two swaps, three subtractions, and one final calc state
before transitioning into the done state on cycle 10. This very first GCD request takes eight cycles.
Notice that the second GCD request stalls until the first request is done. The second GCD response
is sent to the test sink on cycle 17. Compare this to the line trace from our GCD unit CL model
shown in Figure 48. Notice that the extra buffering in the CL model means that the second GCD
response is sent to the test sink one cycle too early, and thus the second GCD response is returned on
cycle 16 instead of cycle 17. The extra buffering in the output queue adapter can also result in timing
discrepancies between the CL and RTL models. We can see now that our GCD unit CL model is a
cycle-approximate CL model; while it reasonably reflects the cycle-level behavior of the RTL model
it is not cycle accurate.

60

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

H To-Do On Your Own: Optimize the GCD implementation to improve the performance on the given
input datasets.

A first optimization would be to transition into the done state if either a or b are zero. If a is zero
and b is greater than zero, we will swap a and b and then end the calculation on the next cycle
anyways. You will need to carefully modify the datapath and control so that the response can
come from either the a or b register.

A second optimization would be to avoid the bubbles caused by the IDLE and DONE states.
First, add an edge from the CALC state directly back to the IDLE state when the calculation is
complete and the response interface is ready. You will need to carefully manage the response
valid bit. Second, add an edge from the CALC state back to the CALC state when the calculation
is complete, the response interface is ready, and the request interface is valid. These optimizations
should eliminate any bubbles and improve the performance of back-to-back GCD transactions.

A third optimization would be to perform a swap and subtraction in the same cycle. This will
require modifying both the datapath and the control unit, but should have a significant impact
on the overall performance. Consider the effort required to explore this optimization in the CL
model vs. the RTL model.

6.4. Exploring the GCD Implementation

As in the previous section, you can test the translated Verilog using the --test-verilog command
line option to py.test:

% cd ${TUTROOT}/build
% py.test ../tut3_pymtl/gcd --test-verilog

We have also provided you with a simulator script to evaluate the performance of the GCD imple-
mentations. You can run the simulators and look at the average number of cycles to compute a GCD
for each input dataset like this:

% cd ${TUTROOT}/build
% ../tut3_pymtl/gcd/gcd-sim --stats --impl cl --input random
% ../tut3_pymtl/gcd/gcd-sim --stats --impl rtl --input random

Notice that since our GCD unit CL model is a cycle-approximate model, the total number of cycles
for the two models do not match exactly. You can generate the Verilog and waveforms to drive an
FPGA or ASIC toolflow using the simulator like this:

% cd ${TUTROOT}/build
% ../tut3_pymtl/gcd/gcd-sim --impl rtl --input random --translate --dump-vcd
% ../tut3_pymtl/gcd/gcd-sim --impl rtl --input small --translate --dump-vcd
% ../tut3_pymtl/gcd/gcd-sim --impl rtl --input zeros --translate --dump-vcd

7. TravisCI for Continuous Integration

As discussed in the Git tutorial, TravisCI is an online continuous integration service that is tightly
coupled to GitHub. TravisCI will automatically run all tests for a students’ lab assignment every
time the students push their code to GitHub. We will be using the results reported by TravisCI to

61

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

Figure 53: TravisCI Settings Page

evaluate the code functionality of the lab assignments. In this section, we do a small experiment to
illustrate how TravisCI works for PyMTL projects.

The first step is to enable TravisCI for the remote repository in GitHub. Log into TravisCI using your
GitHub ID and password:

• https://travis-ci.org/profile

Once you have signed in, you should go to your TravisCI profile and find the list of your public
GitHub repositories. You may need to click Sync to ensure that TravisCI has the most recent view of
your public repositories on GitHub. Turn on TravisCI with the little “switch” next to the repository
we have been using in this tutorial (<githubid>/ece4750-tut3-pymtl). Figure 53 shows what the
TravisCI settings page should look like and the corresponding “switch”. After enabling TravisCI for
the <githubid>/ece4750-tut3-pymtl repository, you should be able to go to the TravisCI page for
this repository:

• https://travis-ci.org/<githubid>/ece4750-tut3-pymtl

TravisCI will report that there are no builds for this repository yet. Go ahead and commit all of
the work you have done in this tutorial, then push your local commits to the remote repository on
GitHub. If you revisit the TravisCI page for this repository, you should see TravisCI starting to build
and run all of your tests. Figure 54 shows what the TravisCI build log will look like for a brand new
fork of the tutorial repository. Study the TravisCI log output to verify that TravisCI is: (1) installing
Verilator; (2) installing PyMTL; (3) creating a build directory; and (4) running all of your unit tests.
Confirm that if all of the tests pass on ecelinux then they also pass on TravisCI.

62

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

Figure 54: TravisCI Log

Acknowledgments

This tutorial was developed for ECE 4750 Computer Architecture course at Cornell University by
Christopher Batten. The PyMTL hardware modeling framework was developed primarily by Derek
Lockhart at Cornell University, and this development was supported in part by NSF CAREER Award
#1149464, a DARPA Young Faculty Award, and donations from Intel Corporation and Synopsys, Inc.

63

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

Appendix A: Constructs Allowed in Synthesizable Concurrent Blocks

Always Allowed in Allowed in Synthesizable Explicitly Not Allowed
Synthesizable Concurrent Blocks in Synthesizable
Concurrent Blocks With Limitations Concurrent Blocks

Bits accessing Python lists2 * / // % **
BitStruct writing signals += -= *= /= %= **= //=7

& | ^ ^~ ~ with .value/.next3 for, while, break, continue
and or not writing temporary variables4 def, global, class
+ - reading reset signal5 try, except, raise
>> << read-modify-write signal6 as, is, in
== != > <= < <= with, return, yield
reduce_and(), reduce_or() import, from
reduce_xor() del, exec, pass
sext(), zext(), concat() lambda
if, else, elif finally
s.signal[n], s.signal[n:m] constructing Python lists
reading constant variables constructing/using Python dicts
reading signals1 reading/writing non-signals8

writing signals
without .value/.next9

reading/writing clk signal
writing reset signal

1 Signals are instances of InPort, OutPort, InValRdyBundle, OutValRdyBundle, or Wire. Signals can only
communicate bit-specific value types (e.g., Bits, BitStruct).

2 Accessing lists of signals or lists of models is allowed although students should be careful to keep the
indexing logic relatively simple.

3 Signals must only be written using .value in s.combinational concurrent blocks. Signals must only be
written using .next in s.tick_rtl concurrent blocks.

4 Writing temporary variables is allowed as long as the type of the temporary variable (e.g., the bitwidth) can
be reasonably inferred.

5 Reading the special reset signal is allowed, but only in a s.tick_rtl concurrent block. Reading the reset
signal in a s.combinational concurrent block is not allowed. If you need to factor the reset signal into
some combinational logic, you should instead use the reset signal to reset some state bit, and the output
of this state bit can be factored into some combinational logic. In other words, students should only use
synchronous and not asynchronous resets.

6 Reading a signal, performing some arithmetic on the corresponding value, and then writing this value
back to the same signal (i.e., read-modify-write) is not allowed within an s.combinational concurrent
block. This is a combinational loop and does not model valid hardware. Read-modify-write is allowed
in an s.tick_rtl concurrent block using .next, although we urge students to consider separating the
sequential and combinational logic. Students can use an s.combinational concurrent block to read the
signal, perform some arithmetic on the corresponding value, and then write a temporary wire; and use an
s.tick_rtl concurrent block to flop the temporary wire into the destination signal.

64

ECE 4750 Computer Architecture, Fall 2016 Tutorial 3: PyMTL Hardware Modeling Framework

7 These assignment operators essentially perform a read-modify-write of a signal. See the above footnote.
Technically, these operators might model valid hardware if used within a s.tick_rtl, but this syntax is not
currently supported and will result in strange simulator behavior. Therefore, these assignment operators
are never allowed in synthesizable concurrent blocks.

8 Students cannot use non-signals (i.e., normal Python variables) to communicate between concurrent blocks.
Students must use instances of InPort, OutPort, InValRdyBundle, OutValRdyBundle, or Wire.

9 Writing a signal without using .value or .next is not synthesizable and will likely result in strange simu-
lator behavior.

65

