
ECE 4750 Computer Architecture, Fall 2016

Course Syllabus

School of Electrical and Computer Engineering
Cornell University

revision: 2016-10-23-08-15

1. Course Information

Cross Listed CS 4420 Computer Architecture

Prereqs ECE 3140 (cross listed as CS 3420) or CS 3410

Instructor Prof. Christopher Batten, 323 Rhodes Hall, cbatten@cornell.edu
Office Hours: 323 Rhodes Hall, Tuesday, 4:00–5:30pm

Admin. Assistant Daniel Richter, 314 Rhodes Hall, tdr27@cornell.edu

Graduate Shunning Jiang sj634 Office/Lab Hours: 314 Phillips, Thu, 7:30–10:00pm
TAs Shuang Chen sc2682 Office/Lab Hours: 314 Phillips, Mon, 7:30–10:00pm

Ian Thompson ijt5 Office/Lab Hours: 314 Phillips, Wed, 7:30–10:00pm

Undergraduate Gaurab Bhattacharya gb358 Office/Lab Hours: 314 Phillips, Thu, 7:30–9:00pm
TAs Megan Leszczynski mel255 Office/Lab Hours: 314 Phillips, Tue, 7:30–9:00pm

Lectures 255 Olin Hall, Monday and Wednesday, 2:55–4:10pm

Disc. Section 203 Phillips Hall, Friday, 2:30–3:20pm

Required J. L. Hennessy and D. A. Patterson
Materials “Computer Architecture: A Quantitative Approach”

5th edition, Morgan Kaufmann, 2012
Cornell bookstore (new: $90, used: $46), Amazon ($67)
On reserve online as an e-book and in Uris Library as a hard copy

D. M. Harris and S. L. Harris
“Digital Design and Computer Architecture”
2nd edition, Morgan Kaufmann, 2012
Cornell bookstore (new: $90, used: $56), Amazon ($63)
On reserve online as an e-book and in Uris Library as a hard copy

“ECE 4750 Course Packet”
Available at Cornell bookstore ($79) or on reserve in Uris Library
Selected portions will be available electronically

Website http://www.csl.cornell.edu/courses/ece4750

Staff Email ece4750-staff-l@cornell.edu

1

ECE 4750 Computer Architecture, Fall 2016 Course Syllabus

2. Description

This course aims to provide a strong foundation for students to understand modern computer sys-
tem architecture and to apply these insights and principles to future computer designs. The course
is structured around the three primary building blocks of general-purpose computing systems: pro-
cessors, memories, and networks.

The first half of the course focuses on the fundamentals of each building block. Topics include
instruction set architecture; single-cycle, FSM, and pipelined processor microarchitecture; direct-
mapped vs. set-associative cache memories; memory protection, translation, and virtualization; FSM
and pipelined cache microarchitecture; cache optimizations; network topology and routing; buffer,
channel, and router microachitecture; and integrating processors, memories, and networks. The
second half of the course delves into more advanced techniques and will enable students to under-
stand how these three building blocks can be integrated to build a modern shared-memory multicore
system. Topics include superscalar execution, out-of-order execution, register renaming, memory
disambiguation, branch prediction, and speculative execution; multithreaded, VLIW, and SIMD pro-
cessors; non-blocking cache memories; and memory synchronization, consistency, and coherence.
Students will learn how to evaluate design decisions in the context of past, current, and future appli-
cation requirements and technology constraints.

This course includes a significant project decomposed into five lab assignments. Throughout the
semester, students will gradually design, implement, test, and evaluate a complete multicore system
capable of running simple parallel applications at the register-transfer level.

3. Objectives

This course is meant to be a capstone course in computer engineering that draws together concepts
from across the ECE curriculum including digital logic design, computer organization, system-level
software, and engineering design. The course will prepare students for jobs in the computer engi-
neering industry and can act as a springboard to more advanced material in graduate-level courses.
This course can also provide a foundation for students interested in performance programming,
compilers, and operating systems; and it can provide system-level context for students interested in
emerging technologies and digital circuits. By the end of this course, students should be able to:

• describe computer architecture concepts and mechanisms related to the design of modern
processors, memories, and networks and explain how these concepts and mechanisms interact.

• apply this understanding to new computer architecture design problems within the context of
balancing application requirements against technology constraints; more specifically,
quantitatively assess a design’s execution time in cycles and qualitatively assess a design’s
cycle time, area, and energy.

• evaluate various design alternatives and make a compelling quantitative and/or qualitative
argument for why one design is superior to the other approaches.

• demonstrate the ability to implement and verify designs of varying complexity at the
register-transfer-level.

• create new designs at the register-transfer-level and the associated effective testing strategies.

• write concise yet comprehensive technical reports that describe designs implemented at the
register-transfer-level, explain the testing strategy used to verify functionality, and evaluate the
designs to determine the superior approach.

2

ECE 4750 Computer Architecture, Fall 2016 Course Syllabus

4. Prerequisites

This course is targeted towards senior-level undergraduate students, although it is also appropriate
for advanced juniors, M.Eng., and first-year Ph.D. students. An introductory course on computing
is required (CS 1110 or equivalent). A course in digital logic design and computer organization
(ECE 2300 or equivalent) and a course in system-level programming (ECE 3140 or equivalent) are
also required. CS 3410 is a suitable replacement for ECE 2300 and ECE 3140 for the purposes of
satisfying the prerequisites. Students should feel comfortable working with a hardware description
language such as Verilog, SystemVerilog, or VHDL and have a reasonable understanding of digital
logic, assembly-level programming, storage systems, basic pipelining, and simple cache design.

M.Eng. and Ph.D. students coming from undergraduate institutions other than Cornell may want
to spend additional time reviewing the secondary required textbook, “Digital Design and Computer
Architecture, 2nd edition” by D. M. Harris and S. L. Harris (Morgan Kaufmann, 2012), to refresh their
understanding of basic concepts. Students who have never used Python before may want to spend
additional time reviewing the optional textbook titled “Think Python: How to Think Like a Computer
Scientist” by A. B. Downey (Green Tea Press, 2014). Students are not required to use the Verilog
hardware description language for the lab assignments. If a student has less experience working
with Verilog but still wants to use this language, then they are strongly encouraged to read Chapter 4
in Harris and Harris on digital design with Verilog and/or to review the optional text “Verilog HDL:
A Guide to Digital Design and Synthesis, 2nd edition” by S. Palnitkar (Prentice Hall, 2003). Students
should also plan to attend the optional discussion sections, which will cover the basics of the Python
and Verilog hardware modeling frameworks.

5. Topics

The course includes five parts: the first three parts cover the fundamentals of processor, memory,
and network design, while the final two parts cover more advanced processor and memory design.
In addition, the final lecture at the end of the course will present in detail an example architecture
from industry to help illustrate the concepts discussed in class. A tentative list of topics for each
part is included below. The exact topics covered in the course are subject to change based on student
progress and interest.

• Part 1: Fundamental Processors (5 lectures) – instruction set architecture; single-cycle, FSM,
and pipelined processor microarchitecture; resolving structural, data, control, and name
hazards; and analyzing processor performance

• Part 2: Fundamental Memories (4 lectures) – memory technology; direct-mapped
vs. associative caches; write-through vs write-back caches; memory protection, translation, and
virtualization; FSM and pipelined cache microarchitecture; analyzing memory performance;
and integrating processors and memories

• Part 3: Fundamental Networks (3 lectures) – network topology and routing; buffer, channel,
and router microachitecture; analyzing network performance; and integrating processors,
memories, and networks

• Part 4: Advanced Processors (10 lectures) – superscalar execution, out-of-order execution,
register renaming, memory disambiguation, branch prediction, speculative execution;
multithreaded, VLIW, and SIMD processors

• Part 5: Advanced Memories (2 lectures) – advanced cache microarchitecture; memory
synchronization, consistency, and coherence

3

ECE 4750 Computer Architecture, Fall 2016 Course Syllabus

6. Required Materials

There are three materials that students are required to have access to for the course: the primary
course textbook, the secondary course textbook, and the course packet. Note that if students are
unsure about whether or not they will enroll in the class, they should be able to delay purchasing
these items until the second or third week of class without significantly hindering their progress in
the course. These materials are on reserve at Uris Library and/or available online to Cornell students.

• Hennessy and Patterson Textbook – The primary required textbook for the course is “Computer
Architecture: A Quantitative Approach, 5th ed.,” by J. L. Hennessy and D. A. Patterson (Morgan
Kaufmann, 2012). This is the classic text in the field, recently updated in 2012. The first chap-
ter will be available on the course website for download. This textbook is on reserve in Uris
library, and is also available as an e-book to any Cornell student with a valid NetID. A link to
the e-book is on the public course website. Note that there is a limit to the number of simul-
taneous viewers, so please log out when finished with the e-book. Students can download up
to 10-pages at a time, and print up to 60-pages at a time. There have been significant changes
compared to earlier editions, but students may still be able to use an earlier edition augmented
with the newer edition on reserve.

• Harris and Harris Textbook – The secondary required textbook for the course is “Digital Design
and Computer Architecture, 2nd ed.,” by D. M. Harris and S. L. Harris (Morgan Kaufmann, 2012).
This is the primary required textbook for ECE 2300. There will be some assigned reading from
this book, but a student may or may not need to purchase the actual book depending on how
comfortable a student is with the more basic material. M.Eng. and Ph.D. students coming from
undergraduate institutions other than Cornell may want to purchase this book to solidify their
understanding of digital logic design and basic computer architecture. The book also includes
some useful background information on digital design using the Verilog hardware description
language. This textbook is on reserve in Uris library, and is also available as an e-book to any
Cornell student with a valid NetID. A link to the e-book is on the public course website. Note
that there is a limit to the number of simultaneous viewers, so please log out when finished
with the e-book. There have been some changes compared to the first edition, but students
may still be able to use an earlier edition augmented with the newer edition on reserve.

• Course Packet – The course will use a packet of additional reading material on processors,
memories, and networks that is meant to complement the course textbook. The information in
the packet is either not in the textbook, or is presented in a useful alternative way. Two copies
of the course packet are on reserve in Uris library along with the original books excerpted in the
packet. Several of the excerpts in the book will also be available on the public course website
for download, except for those which cannot be posted due to copyright restrictions.

7. Optional Materials

There are a few additional books that students may find useful for providing background on Python,
Verilog, and SystemVerilog.

• Python Book – “Think Python: How to Think Like a Computer Scientist, Version 2.0.1” by
A. Downey (Green Tea Press, 2014) is an excellent introduction to Python especially
well-suited for beginners to either the language or programming in general. This book is
available on the course website for download.

4

ECE 4750 Computer Architecture, Fall 2016 Course Syllabus

• Verilog Book – “Verilog HDL: A Guide to Digital Design and Synthesis, 2nd ed.,” by S. Palnitkar
(Prentice Hall, 2003) provides a good introduction to Verilog-2001 well suited for the beginner.

• SystemVerilog Book – “SystemVerilog for Design: A Guide to Using SystemVerilog for Hardware
Design and Modeling, 2nd ed.,” by S. Sutherland, S. Davidmann, and P. Flake (Springer, 2006)
provides a good introduction to the new features in SystemVerilog that can enable productive
hardware design.

8. Format and Procedures

This course includes a combination of lectures, short in-class quizzes, optional discussion sections,
assigned readings, problem sets, laboratory assignments, and exams.

• Lectures – Lectures will be from 2:55pm to 4:10pm every Monday and Wednesday in 255 Olin
Hall excluding the following academic holidays: Labor Day (9/5), Columbus Day (10/10), and
Thanksgiving (11/23). We will start promptly at 2:55pm so please arrive on time. Students are
expected to attend all lectures, be attentive during lecture, and participate in class discussion.
Please turn off all cellular phones during class. Use of cellular phones and laptops during
lecture is not allowed (see Section 11.C).

• Quizzes – There will be a short quiz at the beginning of some lectures. The quiz should take
about five minutes, and will cover some of the key topics discussed in the previous lecture.
Quizzes are not announced ahead of time, and there are no make-up quizzes. The lowest quiz
score is dropped which effectively provides for one excused absence. Students should prepare
for a potential quiz by simply reviewing the material from the previous lecture before coming
to class. Solutions to quizzes will be available online soon after the quiz is given for formative
self-assessment.

• Discussion Section – The discussion section will be most Fridays from 2:30pm to 3:20pm in
203 Phillips Hall. Attendance at the weekly discussion sections is optional but strongly encour-
aged. These discussion sections will be relatively informal, with the primary focus being on
facilitating student’s ability to complete the lab assignments and on reviewing material from
lecture using problem-based learning.

• Readings – Students are expected to complete all of the assigned reading according to the
schedule on the course website, although there is some flexibility. Some students may prefer to
complete the readings before the corresponding lecture, while others may prefer to complete
the readings after the corresponding lecture. Either strategy is acceptable. The readings are
contained within the course textbooks and the course packet.

• Problem Sets – The course will include four problem sets distributed throughout the semester
to help you put the concepts learned in lecture and reading into practice. The problem sets are
to be completed individually, although students are encouraged to study together and discuss
information and concepts covered in lecture with other students (see Section 11.F for collabo-
ration policy). Problem sets must be submitted in PDF format via the online CMS assignment
submission system (see Section 12). You can use any program you want to compose your so-
lutions, but you must convert the final document to PDF. Students are strongly encouraged to
type their solutions; if necessary students can scan hand-written diagrams and combine these
diagrams with typed solutions. If students absolutely must write up their entire solutions by
hand, then they must scan their final version into a legible PDF. Illegible scans will not be
graded. A digital photograph will almost certainly not be legible. No other means of submis-
sion or electronic format will be accepted. Problem sets are due on Thursdays at 11:59pm (see

5

ECE 4750 Computer Architecture, Fall 2016 Course Syllabus

Section 11.D for late assignment policy). Solutions to the problem sets will be available online
soon after the problem set is due for formative self-assessment.

• Lab Assignments – The course will include five lab assignments that allow students to incre-
mentally design, implement, test, and evaluate a complete multicore system with an integrated
collection of processors, memories, and networks. Students are expected to work in a group
of three students, although groups of two or four students may be allowed with explicit in-
structor permission in exceptional circumstances (see Section 11.F for collaboration policy). It
is suggested that students form a group early on and keep the same group throughout the
semester. Students can either form their own groups or ask the instructor to form a group
for them. For each lab assignment, each student will take on either an RTL design engineer
role or an RTL verification engineer role. Students must take on both roles over the course of
labs 2–4. In addition, one student must be designated as the architect for each lab. Each stu-
dent must serve as the architect at least once over the course of labs 2–4. Much more detail
about the lab assignments is provided in the Lab Assignment Assessment Rubric posted on
the public course website. Students will be using the ECE Computing Resources to complete
the lab assignments, the lab code must be submitted via GitHub, and the lab report must be
submitted in PDF format via the online CMS assignment submission system (see Section 12).
No other means of submission or electronic format will be accepted. Lab assignments are due
on Thursdays at 11:59pm (see Section 11.D for late assignment policy).

• Midterm and Final Exams – The course includes a midterm exam that covers Parts 1–3, and a
final exam that covers the entire course with a focus on Parts 4–5. If students have a scheduling
conflict with either the midterm exam or the final exam, they must let the instructor know
as soon as possible, but no later than two weeks before the exam. Graded exams and the
exam solutions are only available for review in 310/314 Rhodes Hall under the supervision of
a course instructor. You may not remove your graded exam, nor may you remove the exam
solutions from 310/314 Rhodes Hall.

9. Assignment and Exam Schedule

The current schedule is on the course website. All assignments are due on Thursdays at 11:59pm
and should be submitted electronically via the online CMS assignment submission system except for
the lab assignment code which should be submitted via GitHub (see Section 11.D for late assignment
policy). Changes to this schedule will be posted as announcements via Piazza. Please note that there
is either an assignment due or an exam almost every week. Students will need to manage their time
carefully to succeed in this course.

Thu Sep 8 Lab 1 – Iterative Integer Multiplier
Thu Sep 22 Problem Set 1
Thu Sep 29 Lab 2 – Pipelined Processor
Thu Oct 6 Problem Set 2
Thu Oct 13 Midterm Exam from 7:30–10:30pm in B14 & 110 Hollister Hall (covers Parts 1–3)
Thu Oct 27 Lab 3 – Blocking Cache
Thu Nov 3 Problem Set 3
Thu Nov 10 Lab 4 – Bus/Ring Network
Thu Nov 17 Problem Set 4
Thu Dec 1 Lab 5 – Multicore System

Dec Final Exam (covers Parts 1–5)

6

ECE 4750 Computer Architecture, Fall 2016 Course Syllabus

10. Grading Scheme

Each part or criteria of every assignment is graded on a four-point scale. A score of 4.25 is an A+,
4 roughly corresponds to an A, 3 roughly corresponds to a B, 2 roughly corresponds to a C, and
so on. A score of 4.0 usually indicates that the submitted work demonstrates no misunderstanding
(there may be small mistakes, but these mistakes do not indicate a misunderstanding) or there may
be a very small misunderstanding that is vastly outweighed by the demonstrated understanding.
A score of 3.0 usually indicates that the submitted work demonstrates more understanding than
misunderstanding. A score of 2.0 usually indicates that the submitted work demonstrates a balanced
amount of understanding vs. misunderstanding. A score of 1.0 usually indicates that the submitted
work demonstrates more misunderstanding than understanding. A score of 4.25 is reserved for when
the submitted work is perfect with absolutely no mistakes or is exceptional in some other way.

Total scores are a weighted average of the scores for each part or criteria. Parts or criteria are usually
structured to assess a student’s understanding according to four kinds of knowledge: basic recall of
previously seen concepts, applying concepts in new situations, qualitatively and quantitatively eval-
uating design alternatives, and creatively implementing new designs; these are ordered in increasing
sophistication and thus increasing weight. In almost all cases, scores are awarded for demonstrat-
ing understanding and not for effort. Detailed rubrics for all quizzes, problem sets, and exams are
provided once the assignment has been graded to enable students to easily see how the score was
awarded. For lab assignments, a detailed Lab Assignment Assessment Rubric is available on the
public course webpage.

Note that only a subset of the problems on each problem set may be graded for a score. Which
problems will be graded for a score will not be announced ahead of time; students are expected to
complete all problems. Those problems not graded for a score will still be graded for effort, and in-
complete submissions will be penalized. As mentioned above, solutions to all problems are released
soon after the problem set is due; this will allow students to compare their submission to the correct
solutions for formative self-assessment. Students are always encouraged to review their solutions
with the instructor or TAs during office hours.

The final grade is calculated using a weighted average of all assignments. Each problem set and lab
assignment is weighted equally. All quiz grades are averaged to form a single total. Students can
drop their lowest quiz score. At the instructor’s discretion, additional quiz scores may be dropped
depending on the total number quizzes in the semester and pseudo-quiz grades may be used to
encourage participation, completing student evaluations, etc. The weighting for the various assign-
ments is shown below.

Quizzes 5% (students can drop lowest score)
Problem Sets 15% (all problem sets weighted equally)
Lab Assignments 30% (all lab assignments weighted equally)
Midterm Exam 20%
Final Exam 30%

Note that the midterm and final exam account for half of a student’s final grade. The exams in this
course are very challenging. Successful students begin preparing for the exams far in advance by
carefully reviewing the assigned readings, independently developing study problems, and partici-
pating in critical study groups.

To pass the course, a student must at a bare minimum satisfy the following requirements: (1) submit
two out of the four problem sets; (2) submit three out of the five lab assignments; (3) take the midterm

7

ECE 4750 Computer Architecture, Fall 2016 Course Syllabus

exam; and (4) take the final exam. If a student does not satisfy these criteria then that student may
fail the course regardless of the student’s numerical grade.

11. Policies

This section outlines various policies concerning auditors, usage of cellular phones and laptops in
lecture, turning in assignments late, regrading assignments, collaboration, and accommodations for
students with disabilities.

11.A Auditor Policy

Casual listeners that attend lecture but do not enroll as auditors are not allowed; you must enroll
officially as an auditor. Auditors are allowed to enroll in the course as long as there is sufficient
capacity in the lecture room. The requirements for auditors are: (1) attend most of the lectures;
(2) take the short in-class quizzes; and (3) perform reasonably well on these quizzes. If you do not
plan on attending the lectures for the entire semester, then please do not audit the course. Please
note that students are not allowed to audit the course and then take it for credit in a later year unless
there is some kind of truly exceptional circumstance.

11.B Course Re-Enrollment Policy

Students are not allowed to enroll for credit for a significant fraction of the course, drop or switch
to auditor status, and then re-enroll for credit in a later year. A “significant fraction of the course”
means after the second problem set is due; by this time the student will have: attended eight lectures,
completed two lab assignments and two problem sets, and completed several short in-class quizzes.
The student should have plenty of experience to decide whether or not they should drop and take the
course in a later year. It is not fair for students to have access to assignment solutions and possibly
even take the midterm before deciding to drop the course and take it again in a later year; this would
essentially enable students to take the course twice to improve their grade.

11.C Cellular Phones and Laptops in Lecture Policy

Students are prohibited from using cellular phones and laptops in lecture unless they receive explicit
permission from the instructor. It is not practical to take notes with a laptop for this course. Students
will need to write on the handouts, quickly draw pipeline diagrams, and sketch microarchitectural
block diagrams during lecture. The distraction caused by a few students using (or misusing) laptops
during lecture far outweighs any benefit. Tablets are allowed as long as they are kept flat and used
exclusively for note taking. If you feel that you have a strong case for using a laptop during lecture
then please speak with the instructor.

11.D Late Assignment Policy

Problem sets must be submitted electronically in PDF format, lab reports must be submitted elec-
tronically in PDF format, and lab code must be submitted electronically via GitHub (as explained in
the lab handout). No other formats will be accepted! Problem sets and lab assignments must be
submitted by 11:59pm on the due date. No late submissions will be accepted and no extensions will
be granted except for a family or medical emergency. We will be using the online CMS assignment
submission system. You can continue to resubmit your files as many times as you would like up
until the deadline, so please feel free to upload early and often. If you submit an assignment even
one minute past the deadline, then the assignment will be marked as late.

8

ECE 4750 Computer Architecture, Fall 2016 Course Syllabus

As an exception to this rule, each student has a set of slip days that may be used when submitting
problem sets and lab assignments throughout the semester. Each slip-day provides an automatic
24-hour extension. You may use up to two slip-days on any single assignment, meaning that the
maximum automatic extension is 48 hours. For lab assignments, we use the majority to determine
how many slip days. So if after some changes in lab groups, two students have three slip days and
one student has one slip day then the group essentially now has three slip days available. If one
student has three slip days, one student has two slip days, and one student has one slip day, then
the group essentially now has two slip days. Students have three slip days exclusively for use on
problem sets and three slip days exclusively for use on lab assignments. These slip days are not
interchangeable. To use a slip day, simply submit your assignment late; CMS will allow assignments
to be uploaded up to two days late. You are responsible for keeping track of how many slip days you
have remaining. If you accidentally submit an assignment late without the proper number of slip
days remaining then although the system will allow the upload we will not grade the assignment (or
we will grade the latest upload before the due date). The purpose of the slip-day system is to give
you the freedom to more effectively manage your time. The due dates for the course are available
at the beginning of the semester, so please plan ahead so you can handle weeks with many other
deadlines.

11.E Regrade Policy

Addition errors in the total score are always applicable for regrades. Regrades concerning the ac-
tual solution should be rare and are only permitted when there is a significant error. Please only
make regrade requests when the case is strong and a significant number of points are at stake. Re-
grade requests should be submitted online via a private post on Piazza within one week of when an
assignment is returned to the student. You must provide a justification for the regrade request.

11.F Collaboration Policy

The work you submit in this course is expected to be the result of your individual effort only, or in the
case of lab assignments, the result of you and your group’s effort only. Your work should accurately
demonstrate your understanding of the material. The use of a computer in no way modifies the
standards of academic integrity expected under the University Code.

You are encouraged to study together and to discuss information and concepts covered in lecture
with other students. You can give “consulting” help to or receive “consulting” help from other stu-
dents. Students can also freely discuss basic computing skills or the course infrastructure. However,
this permissible cooperation should never involve one student (or lab group) having possession
of or observing in detail a copy of all or part of work done by someone else, in the form of an
email, an email attachment file, a flash drive, a hard copy, or on a computer screen. Students are
not allowed to seek consulting help from online forums outside of Cornell University. Students are
not allowed to use online solutions (e.g., from Course Hero) from previous offerings of this course.
Students are encouraged to seek consulting help from their peers and from the course staff via office
hours and the online Piazza discussion forums. If a student receives consulting help from any-
one outside of the course staff, then the student must acknowledge this help on the submitted
assignment.

During examinations, you must do your own work. Talking or discussion is not permitted during the
examinations, nor may you compare papers, copy from others, or collaborate in any way. Students
must not discuss an exam’s contents with other students who have not taken the exam. If prior
to taking it, you are inadvertently exposed to material in an exam (by whatever means) you must
immediately inform the instructor or a TA.

9

ECE 4750 Computer Architecture, Fall 2016 Course Syllabus

Should a violation of the code of academic integrity occur, then a primary hearing will be held. See
http://theuniversityfaculty.cornell.edu/dean/the-rules/academic-integrity1 for more in-
formation about academic integrity proceedings.

Examples of acceptable collaboration:

• Bob is struggling on a problem set about processor pipelining, so he seeks consulting help from
Alice, a fellow student in the course. Alice goes through various examples from the lecture and
reading materials to help Bob understand the concepts, and they sketch a few pipeline diagrams
related to the problem solution together on a whiteboard. Bob and Alice work independently to
flesh out the details of the problem solution and they each write up their work independently.
Bob acknowledges the help he received from Alice on his submission.

• Bob, Ben, and Beth are struggling to complete a lab assignment which requires implementing
a direct-mapped cache. They talk with Alice, Amy, and Adam and learn that both groups are
really struggling. So the six students get together for a brainstorming session. They review the
lecture and reading materials and then sketch on a whiteboard some ideas on how to implement
a direct-mapped cache. They might also sketch out some code snippets to try and understand
the best way to describe some of the hardware. Then each group independently writes the code
for the assignment and includes an acknowledgment of the help they received from the other
group. At no time do the groups actually share code.

• Bob, Ben, and Beth are having difficulty figuring out difficult test cases for their pipelined pro-
cessor. They make a post on Piazza to see if anyone has some general ideas for tricky corner
cases. Alice, Amy, and Adam figured out an interesting test case that ensures their pipelined
processor correctly forwards the address to a store instruction, so Alice, Amy, and Adam post a
qualitative description of this test case. Bob, Ben, and Beth independently write the code for this
test case and then include an acknowledgment of the help they received from the other group.
At no time do the groups actually share test code.

Examples of unacceptable collaboration:

• Bob is struggling on a problem set about processor pipelining, so he seeks consulting help from
Alice, a fellow student in the course. Alice shows Bob her completed problem set solutions and walks
him through the various steps required to solve the problem. Bob takes some notes during their discus-
sion, and then independently writes up his solutions. Bob acknowledges the help he received
from Alice on his submission, but it doesn’t matter since Alice explicitly shared her solutions
with Bob.

• Bob, Ben, and Beth are struggling to complete a lab assignment which requires implementing
a direct-mapped cache. They talk with Alice, Amy, and Adam and learn that both groups are
really struggling. So the six students get together for a joint coding session. Each student works
on one module in the cache, then they combine the modules together to create the final working
direct-mapped cache. The six students share and copy each others code often in order to finish the
assignment. Each group submits the final code independently. Each group acknowledges the
help it received from the other group, but it doesn’t matter since they explicitly shared code.

• Bob, Ben, and Beth are having difficulty figuring out difficult test cases for their pipelined pro-
cessor. They make a post on Piazza to see if anyone has some general ideas for tricky corner
cases. Alice, Amy, and Adam figured out an interesting test case that ensures their pipelined
processor correctly forwards the address to a store instruction, so Alice, Amy, and Adam send their
test code to Bob, Ben, and Beth via email. Bob, Ben, and Beth modify this test code and then include

10

ECE 4750 Computer Architecture, Fall 2016 Course Syllabus

it in their submission. Bob, Ben, and Beth include an acknowledgment of the help they received
from the other group, but it doesn’t matter since they explicitly shared code.

Notice that the key is that students should not share the actual solutions or code with each other.
Consulting with your fellow students is fine and is an important part of succeeding in this course.

11.G Accommodations for Students with Disabilities

In compliance with the Cornell University policy and equal access laws, the instructor is available to
discuss appropriate academic accommodations that may be required for students with disabilities.
Requests for academic accommodations are to be made during the first three weeks of the semester,
except for unusual circumstances, so arrangements can be made. Students are encouraged to register
with Student Disability Services to verify their eligibility for appropriate accommodations.

12. Online and Computing Resources

We will be making use of a variety of online websites and computing resources.

• Public Course Website – http://www.csl.cornell.edu/courses/ece4750
This is the main public course website which has the course details, updated schedule, reading
assignments, and most handouts.

• Piazza Discussion Forums – http://www.csl.cornell.edu/courses/ece4750/piazza
Piazza is an online question-and-answer platform. We will be using Piazza for all announce-
ments and discussion on course content, problem sets, and lab assignments. We will enroll
students that sign up for the course in Piazza. The course staff is notified whenever anyone
posts on the forum and will respond quickly. Using the forum allows other students to con-
tribute to the discussion and to see the answers. Use common sense when posting questions
such that you do not reveal solutions. Please prefer posting to Piazza as opposed to directly
emailing the course staff unless you need to discuss a personal issue.

• CMS – http://www.csl.cornell.edu/courses/ece4750/cms
CMS is an online assignment management system developed by the Cornell Computer Science
department. Students will use CMS for all submitting all assignments. The only exception is
for the lab assignment code which will be submitted via GitHub. We will enroll students that
sign up for the course in CMS. We will also be posting restricted materials (e.g., problem sets,
quizzes, solutions) on the CMS site, and we will use CMS to distribute grades. We will not be
using CMS to post announcements.

• ECE Computing Resources –
The ECE department has a cluster of Linux-based workstations and servers which we will be
using for the lab assignments. You can access the ECE computing resources by using the ECE
Linux Computing Lab in 314 Phillips Hall, you can use the CIT Windows Computing Lab in
318 Phillips Hall, or you can log into the ecelinux servers remotely from your own personal
workstation. You do not need a special account; you will instead simply use your NetID and
Cornell password to log into the ECE computing resources.

• GitHub – http://www.csl.cornell.edu/courses/ece4750/github
GitHub is an online Git repository hosting service. We will be using GitHub to distribute lab
assignment harnesses and as a mechanism for student collaboration on the lab assignments.
Students will also use GitHub for submitting the code-portion of their lab assignments. Stu-
dents are expected to become familiar with the Git version control system.

11

ECE 4750 Computer Architecture, Fall 2016 Course Syllabus

• TravisCI – http://www.csl.cornell.edu/courses/ece4750/travisci
TravisCI is an online continuous integration service that is tightly coupled to GitHub. TravisCI
will automatically run all tests for a students’ lab assignment every time the students push
their code to GitHub. We will be using the results reported by TravisCI to evaluate the code
functionality of the lab assignments.

12

