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"Let us open the Pandora’s box of parallel programming."

In this lab, you will be composing the processor, cache, and network you have designed through-
out the semester to create the baseline design (a single-core processor with its own instruction and
data cache) and the alternative design (a simple multicore processor with private instruction caches
and a shared, banked data cache). You will also have a chance to write a single-threaded and multi-
threaded sorting microbenchmark in C, explore the compiled and assembled binary, and run these
programs on the baseline and alternative designs. You are required to implement the baseline and
alternative designs, verify the designs using an effective testing strategy, and perform an evalua-
tion comparing the two implementations. As with all lab assignments, the majority of your grade
will be determined by the lab report. You should consult the course lab assignment assessment
rubric for more information about the expectations for all lab assignments and how they will be
assessed.

Some unique features of this lab assignment include its emphasis on structural composition to in-
crementally create a relatively complex system based on thoroughly unit-tested subsystems, and its
emphasis on software/hardware co-design such that students must understand the software appli-
cation, hardware/software interface, and hardware microarchitecture. You will be using various in-
cremental compositions to: (1) test composing the network from Lab 4 with special adapters to build
memory networks suitable for sending memory requests and receiving memory responses; (2) test
composing the memory networks and the cache from Lab 3 to build a shared, banked data cache;
and (3) test the entire single core and multicore systems. You will be using the standard RISC-V
cross-compiler to compile C programs down to a RISC-V binary suitable for execution on our RISC-
V simulators. You will be writing your own single-threaded quicksort microbenchmark, as well as a
multi-threaded sorting microbenchmark that uses an algorithm of your choice. You will have an op-
portunity to improve the performance of your final multi-threaded sorting microbenchmark through
either software or hardware improvements.

This lab is designed to give you experience with:

• composition of simpler subsystems to create more complex systems;
• programming single- and multi-threaded C programs;
• software/hardware co-design;
• design principles including modularity, hierarchy, encapsulation, and regularity;
• design patterns including latency insensitive message interfaces;
• agile design methodologies including incremental development and test-driven development;
• computer architecture evaluation methodologies based on architecture-level statistics;

This handout assumes that you have read and understand the course tutorials and the lab assessment
rubric. To get started, you should access the ECE computing resources and you have should have
used the ece4750-lab-admin script to create or join a GitHub group. If you have not do so already,
source the setup script and clone your lab group’s remote repository from GitHub:
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% source setup-ece4750.sh
% mkdir -p ${HOME}/ece4750
% cd ${HOME}/ece4750
% git clone git@github.com:cornell-ece4750/lab-groupXX.git

where XX is your group number. You should never fork your lab group’s remote repository! If you
need to work in isolation then use a branch within your lab group’s remote repository. If you have
already cloned your lab group’s remote repository, then use git pull to ensure you have any recent
updates before running all of the tests. You can run all of the tests in the lab like this:

% cd ${HOME}/ece4750/lab-groupXX
% git pull --rebase
% mkdir -p sim/build
% cd sim/build
% py.test ../lab5_mcore

Since we provide you the single core composition, the memory network compositions, and the
shared, banked data cache composition, many of the tests may pass if the subsystems from your
previous labs are completely functional. For this lab, you will be working in the lab5_mcore subpro-
ject which includes the following files:

• SingleCorePRTL.py PyMTL single-core composition
• SingleCoreRTL.py Verilog single-core composition
• SingleCoreVRTL.v Wrapper to choose which RTL language

• MsgAdapters.py PyMTL adapters to convert between MemMsg and NetMsg
• MsgAdapters.v Verilog adapters to convert between MemMsg and NetMsg
• CacheNetPRTL.py PyMTL CacheNet module
• CacheNetVRTL.v Verilog CacheNet module
• CacheNetRTL.py Wrapper to choose which RTL language
• MemNetPRTL.py PyMTL MemNet module
• MemNetVRTL.v Verilog MemNet module
• MemNetRTL.py Wrapper to choose which RTL language
• McoreDataCachePRTL.py PyMTL data cache system composition
• McoreDataCacheVRTL.v Verilog data cache system composition
• McoreDataCacheRTL.py Wrapper to choose which RTL language
• MultiCorePRTL.py PyMTL multi-core composition
• MultiCoreVRTL.v Verilog multi-core composition
• MultiCoreRTL.py Wrapper to choose which RTL language

• elf.py Utils for reading/writing ELF binary files
• isa-sim ISA simulator for testing programs
• score-sim Single-core simulator for evaluation
• mcore-sim Multicore simulator for evaluation
• __init__.py Package setup

• test/TestNetCacheSink.py Yet another special test sink
• test/CacheNetRTL_test.py Test for CacheNet
• test/MemNetRTL_test.py Test for MemNet
• test/McoreDataCacheRTL_test.py Test for data cache system
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• test/harnesses.py Test and simulation harnesses
• test/inst_csr.py CSR tests for multi-core
• test/inst_jal.py Staff jal tests
• test/inst_mul.py Staff mul tests
• test/inst_sw.py Simple sw tests for multi-core
• test/SingleCoreRTL_test.py Test for single-core composition
• test/MultiCoreRTL_test.py Test for multi-core composition
• test/__init__.py Package setup

1. Introduction

Ever since transistor scaling has stopped delivering exponential growth in performance within sim-
ilar area and power constraints, computer architects have tried different ways to scale the processor
performance, beyond simply exploiting more instruction-level parallelism (ILP). Two promising ap-
proaches have been to exploit data-level parallelism (DLP) and/or thread-level parallelism (TLP).
Multicore processors (a.k.a., chip multiprocessors) exploit TLP by allocating different threads within
a single program to the different cores within the chip. Ideally, fully parallelizing an application on
P processors leads to about P× speedup.

However, multicore designs also have their drawbacks. First of all, it is not possible to fully par-
allelize most applications, and serial portions of the code can quickly dominate the execution time.
In this course we are using a simplified multicore system to ensure correct execution, but a realistic
multicore system must manage coherence, consistency and synchronization. Finally, the multicore
design definitely has higher hardware complexity and more hardware overall.

In this lab, you will get the chance to explore some of these trade offs using a single core with its own
instruction and data cache, and a quad-core system with private instruction caches and a shared,
banked data cache.

We will reuse the assembly tests for a representative subset of instructions (since the simulation time
is increased due to more complex models) from Lab 2 to test the single-core system. To test the
multi-core composition, we introduce an extension to the assembly test methodology from Lab 2
that enables initializing multiple test sources and sinks (one per core). In the spirit of incremental
design, we will work with these sub-compositions first: CacheNet, MemNet, and McoreDataCache. We
unit test them, and reuse them to build larger components.

Unlike previous labs, this lab has significant portion of software. We organize files as follows:
lab-groupXX is the top level lab repo you have been using in this course, lab-groupXX/sim con-
tains PyMTL or Verilog designs and unit tests. lab-groupXX/app is the microbenchmark directory
you will be working in for the software side of this lab. We will be using the standard RISC-V cross-
compiler which compiles C programs to the full RISC-V ISA, and a modular C++ build system to
simplify running the compiler. Here is how we build applications:

% cd ${HOME}/ece4750/lab-groupXX
% mkdir app/build
% cd app/build
% ../configure --host=riscv32-unknown-elf
% make
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Figure 1: SingleCore – The SingleCore module as a whole, is hooked up to the test source, test sink,
and test memory for testing and evaluation. Each bundle of the three arrows is a msg/val/rdy port
bundle. The ports with inclined names are the top-level ports that SingleCore expose.

2. Baseline Design

For the baseline design, we are going to compose the processor from Lab 2 and two caches from
Lab 3 (one as the instruction cache, and the other as the data cache). This will give you a simple yet
realistic single-core system as the hardware part of the baseline. The software counterpart is a scalar
quicksort program.

We have provided the composition in SingleCorePRTL.py/SingleCoreVRTL.v. Note that this design
does not need a network. Although we give this file to you, you need to look into and understand the
composition and the way we count cache miss/access statistics. We set num_banks=0 for both caches
since we are only in a single-core configuration. We connect 0 to core_id port and we set num_cores=1
for the processor. These two parameters will be very important in your multicore processor, and are
explained in depth in the next section.

The composition and the connections of the single core system will look like the Figure 1. The cache
request and response ports of the caches connect to the respective i/dcache ports of the processor,
while the memory request and response ports connect to outside facing i/dmemreq/sp ports as
shown. Note that the data bitwidth from processor to caches is 32 bits, while the data bitwidth from
the caches to the test memory is the full cache line, which is 128 bits in this design.

As the software part of the baseline, you are required to implement scalar quicksort algorithm in C
in the quicksort_scalar() function of app/ubmark/ubmark-quicksort.c. Currently, this function
only has a template which copies the source array to destination, and your task is to sort the src
array using the quicksort algorithm and write the result to destination. This file also contains verifi-
cation logic to ensure the correctness of your algorithm implementation. You are welcome to consult

4



ECE 4750 Computer Architecture, Fall 2016 Lab 5: Multicore Processor

P

I$

D$

CacheNet

MemNet

MemNet

P

I$

P

I$

P

I$

D$ D$ D$

M
a

in
 M

e
m

o
ry

Figure 2: Alternative design block diagram – The alternative design consists of four processors, four
private I-caches, a four-banked shared D-cache, and several networks to route dmem request/re-
sponse from the processors and the D-cache, and refilling both the I-cache and the D-cache. Note
that each network shown in the diagram is actually two networks: one for request and the other for
response.

textbooks or online resources to learn more about quicksort, but you should cite these resources.
Copying code is not allowed; you should write it on your own.

3. Alternative Design

The alternative design is to implement the multicore system and run a parallel sorting implemen-
tation on it. The multicore system consists of four processors, four instruction caches (one private
instruction cache per processor), four data cache banks that are shared across all four cores, and four-
port networks to interconnect the subsystems. You are free to choose which design in the previous
labs to use; while there is always a trade-off between the baseline design and the alternative design,
your goal should be to achieve the highest performance possible. Choosing an appropriate network
for the cache net is particularly important.

Figure 2 illustrates the system structure at a high level. Keep in mind that we will take an incre-
mental design approach to build the whole system. We have provided you with the following sub-
compositions with unit tests.

• CacheNet: the request/response network pair connecting four processors and four cache banks.
• MemNet: the request/response network pair connecting four caches and one main memory port.
• McoreDataCache: CacheNet + four cache banks + MemNet = the whole data cache subsystem

3.1. CacheNet: The Network Between Processors and Data Cache Banks

The most confusion often comes from this question: how do we actually compose the cache with the
network? Figure 3 shows the diagram of the CacheNet that we are going to use to interconnect the
four processors and the four data cache banks.

You can see from the diagram that we instantiate two networks (a request network and a response
network). There are several important adapters to convert between memory messages and network
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Figure 3: CacheNet – The CacheNet module as a whole, is hooked up to the test sources, test sinks,
and four-port test memory for unit testing. Each arrow is actually a msg/val/rdy port bundle whose
direction is the msg/val direction. Each "U" and "D" is an adapter which takes care of both the
request port and the response port, and has its own adapter id. The ports with inclined names are
the top-level ports that CacheNet exposes.
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Figure 4: Memory Address Formats With Banking – Addresses for the data cache include two bank
bits which are used to choose which bank to send the memory request; in other words, the bank
bits are used as the destination field when converting a memory request message into a network
message.

messages at each network terminal. "U" corresponds to UpstreamMsgAdapter, where "D" corre-
sponds to DownstreamMsgAdapter. The reason why we call them "upstream" and "downstream"
is the following. Intuitively, the processor is the upstream, and the main memory (here it’s cache) is
the downstream which passively accepts memory request and emits memory response. As a result,
the UpstreamMsgAdapter is meant to be put at the processor side of the network, and vice versa.

In general, the UpstreamMsgAdapter has two functions, one for the request network and the other
for the response network:

• Accept a memory request and turn it into a network message whose payload is the request.
• Turn a network message back to a memory response by just throwing away the header.

In contrast, the DownstreamMsgAdapter has the following two functions:

• Turn a network message back to a memory request by throwing away the header.
• Accept a memory response and turn it into a network message whose payload is the response.

You may ask where the source and the destination in the header are from when UpstreamMsgAdapter
turns a memory request into a network message. Recall from Lab 3 that in a multi-banked cache de-
sign, we use a set of “bank bits” so that cache lines are interleaved across different cache banks. Fig-
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Figure 5: MemNet – The MemNet module as a whole, is hooked up to the test sources, test sinks,
and single-port test memory for unit testing. Each arrow is actually a msg/val/rdy port bundle
whose direction is the msg/val direction. Each "U" and "D" is an adapter which takes care of both
the request port and the response port, and has its own adapter id. The ports with inclined names
are the top-level ports that MemNet exposes.

ure 4 illustrates which bits are used for the four-banked data cache. In CacheNet, the UpstreamMsgAdapter
extracts this bank index from the address of the memory message from processor and uses it as the
destination field in the header (the source field is basically the processor/adapter id). Also, don’t
forget that the corresponding cache response generated by a cache bank needs to be sent back to the
correct processor. To determine who had sent the cache request originally, we use some high bits
of the opaque field in the memory message to store the processor/adapter id. The cache and the
memory system are required to preserve the opaque field throughout the memory system. When
the DownstreamMsgAdapter gets a cache response, it will extract the destination adapter/processor
id from the opaque field, possibly restore the previous opaque field value, and then send the cache
response into the response network.

3.2. MemNet: The Network Between Caches and Main Memory

Unlike the CacheNet, the MemNet only uses one output terminal, but has four input terminals. Figure 5
shows the diagram of the MemNet. In the MemNet, we use a different mode for the UpstreamMsgAdapter
which always inserts 0 into the destination field. The rest of the module works in the same way as
CacheNet. We can use the MemNet as the refill networks for the instruction caches and the data-cache
banks, since four caches/banks need to send requests to one main memory port.

3.3. McoreDataCache: The Data Cache Subsystem

We compose the CacheNet, MemNet, and four cache banks to create the complete shared, banked data-
cache subsystem. We set num_banks=4 for each data cache to ensure they correctly handle the bank
bits. Figure 6 shows the diagram of McoreDataCache module.
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Figure 6: MCoreDataCache – The McoreDataCache module as a whole, is hooked up to the test
sources, test sinks, and single-port test memory for unit testing. Each arrow is actually a msg/-
val/rdy port bundle whose direction is the msg/val direction. We omit the details inside MemNet and
CacheNet but show the port names to match the previous diagrams. The ports with inclined names
are the top-level ports that this module exposes.

3.4. MultiCore: The Multicore Processor System

Note that we provide you the CacheNet, MemNet, and McoreDataCache compositions. You are respon-
sible for creating the final composition with four processors, four private instruction caches, and the
shared, banked data-cache subsystem to create the complete multicore system (see Figure 7). We in-
stantiate four processors with num_cores=4 and connect 0, 1, 2, 3 respectively to the core_id port of
each processor. The details of how we use these two parameters is discussed in the next subsection.
We set num_banks=0 for each of the instruction cache since they are private caches and not banked.

3.5. Software Side of Things

In addition to building the multicore composition, you also need to write a parallel sorting program.
Before we jump into the software part, let’s demystify the csrr and csrw instructions whose im-
plementations have already been provided to you in Lab 2. Here we explain the num_cores and
core_id control/status registers (CSRs) which are very important for this section, and in Section 5
we will explain the stats_en CSR. See the TinyRV ISA manual for more details http://www.csl.
cornell.edu/courses/ece4750/handouts/ece4750-tinyrv-isa.txt.

• By executing csrr x1, 0xF14, the processor puts the core id into register x1, and then one core
can differentiate itself from the others. For example, when we want processor 0 to process a[0],
processor 1 to process a[1], processor 2 to process a[2], and processor 3 to process a[3], we can
just write a[core_id] in the program after we retrieve core_id. Similarly, to ensure only one of
the processors is executing a serial part of the code, in the program we can compare the core id to
0, and only then execute the given code block.

8



ECE 4750 Computer Architecture, Fall 2016 Lab 5: Multicore Processor

procreq/resp[0]

T
es

t 
M

em
or

y
p

or
t 

1McoreDataCache mainmem 
req/resp  

MemNet 

ICache ICache ICache ICache
cachereq/resp cachereq/resp cachereq/resp cachereq/resp

memreq/resp[0]memreq/resp[1] memreq/resp[2] memreq/resp[3]

mainmem   
req/resp[0]

procreq/resp[1] procreq/resp[2] procreq/resp[3]

p
or

t 
0

Proc #2

dmemreq/resp

imemreq/resp

Proc #3

dmemreq/resp

imemreq/resp

memreq/resp memreq/resp memreq/resp memreq/resp

imemreq

imemresp

dmemreq

dmemresp

MultiCore

src

sinksrc

sinksrc

sinksrc

Proc #0

dmemreq/resp

imemreq/resp

dmemreq/resp

Proc #1

imemreq/resp
sink

Figure 7: MultiCore – The MultiCore module as a whole, is hooked up to a dual-port test memory,
four test sources and four test sinks. Note that to not to make the diagram too crowded, we omit the
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Each arrow is actually a msg/val/rdy port bundle whose direction is the msg/val direction. The
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• By executing csrr x1, 0xFC1, the processor puts the number of cores into register x1. This is
very useful when we want to distribute the work evenly across multiple cores. For instance,
to parallelize work on an array by dividing and assigning a part of this array to each core, the
program can then divide the total number of elements by the number of cores, to get the block
size for each core.

You are free to implement any parallel sorting algorithm. This is a non-trivial task since there are
many trade-offs in terms of amount of parallelism, locality, and load balancing. It can be quite
challenging to parallelize quicksort directly. We recommend you implement a bottom-up hybrid
mergesort/quicksort algorithm. Divide the input array into four blocks. Each core can use the se-
rial quicksort algorithm to sort its block. Then have core 0 merge the four blocks using mergesort.
You are welcome to consult textbooks or online resources to learn more about different sorting al-
gorithms, but you should cite these resources. Copying code is not allowed; you should write it on
your own.

We provide you a very light-weight threading library, called bthread. Note that we use thread and
core interchangeably in this lab since each core has only one thread. We call core 0 the master core and
the other cores the worker cores. Figure 8 illustrates how to use the bthread library to implement a
parallel vector-vector add microbenchmark that makes use of two cores. The bthread_init function
sets up the library and must be called at the beginning of the main function. All four cores enter
the bthread_init function; core 0 will exit the function while the remaining three worker cores will
iterate in a worker loop waiting for work. The master core can spawn work onto a worker core
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1 typedef struct {
2 int* dest; // pointer to dest array
3 int* src0; // pointer to src0 array
4 int* src1; // pointer to src1 array
5 int begin; // first element this core should process
6 int end; // (one past) last element this core should process
7 } arg_t;
8

9 void vvadd_mt( void* arg_vptr )
10 {
11 // Cast void* to argument pointer.
12 arg_t* arg_ptr = (arg_t*) arg_vptr;
13

14 // Create local variables for each field of the argument structure.
15 int* dest = arg_ptr->dest;
16 int* src0 = arg_ptr->src0;
17 int* src1 = arg_ptr->src1;
18 int begin = arg_ptr->begin;
19 int end = arg_ptr->end;
20

21 // Do the actual work.
22 for ( int i = begin; i < end; i++ )
23 dest[i] = src0[i] + src1[i];
24 }
25

26 int main( int argc, char* argv[] )
27 {
28 // Initialize bare threads (bthread).
29 bthread_init();
30

31 // This array will be where the results are stored.
32 int dest[size];
33

34 // Start counting stats.
35 test_stats_on();
36

37 // Create two argument structures that include the array pointers and
38 // what elements each core should process.
39 arg_t arg0 = { dest, src0, src1, 0, size/2 };
40 arg_t arg1 = { dest, src0, src1, size/2, size };
41

42 // Spawn work onto core 1
43 bthread_spawn( 1, &vvadd_mt, &arg1 );
44

45 // Have core 0 also do some work.
46 vvadd_mt( &arg0 );
47

48 // Wait for core 1 to finish.
49 bthread_join(1);
50

51 // Stop counting stats
52 test_stats_off();
53

54 // Core 0 will verify the results.
55 if ( bthread_get_core_id() == 0 )
56 verify_results( dest, ref, size );
57

58 return 0;
59 }

Figure 8: Simple Parallel Vector-Vector Add Microbenchmark for Two Cores
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by using the bthread_spawn function, where the first argument is the ID of the core (thread) we
want spawn to, the second argument is the function pointer we want the worker core to execute,
and the final argument is a pointer to a structure that holds the arguments the worker core should
use to do the work. The bthread_join function will cause a core to wait for given worker core.
We provide you with four multi-threaded microbenchmarks to show how to use bthread library to
parallelize single-threaded microbenchmarks. You may also want to look at the implementation of
each bthread library in app/common/bthread.cc

A simple way to use the bthread library to implement the hybrid mergesort/quicksort mentioned
above is to divide the input array into four blocks, create four argument structures, use a bthread_spawn
to spawn work onto cores 1–3, have core 0 also do some work, then core 0 can use a join to wait for
cores 1–3 to finish, and core 0 can do the final merge.

Besides, we provide you with some additional features to facilitate debugging. Similar to what nor-
mal printf, putchar and puts in C does, you can use wprint and wprintf function as the following
examples to print char, string, or number to the terminal. The reason why we have to put "L" before
the string literal is because our TinyRV2 processor only support full-word lw/sw. As a result we have
to use wchar_t which brings the "L" prefix. Note that the simulator only looks at Core 0’s wprint(f)
messages.

wprint( L’a’); wprint( L’b’); wprint( L’c’);
wprint( L"abc" );
wprintf( L"number=%d, char=%C, string=%S", 42, L’a’, L"abc" ) # capital C and S

4. Testing strategy

Since this lab has an emphasis on both composition on the hardware side and parallel program-
ming on the software side, we have provided you with basic tests and random tests to test all of
the incremental compositions in the alternative design, and instruction tests for both the single- and
multi-core systems.

To test the single-core system with one instruction cache and one data cache, we will reuse the as-
sembly tests for a representative subset of the instructions in Lab 2. We have already done extensive
unit testing in Lab 2, so our goal in Lab 5 is to focus on those tests that might expose bugs in the
single- and multi-core compositions. We test the following instructions.

• CSR : csrr, csrw
• Reg-Reg : add, mul
• Reg-Imm : addi
• Memory : lw, sw
• Jump : jal
• Branch : bne

As explained in Section 3, we incrementally build compositions, unit test them, and reuse them to
build larger components such as the McoreDataCache and the MultiCore.

We reuse the test cases in Lab 3 to test the CacheNet and the McoreDataCache since the input messages
of these two modules are basically cache requests. The difference is that now we have four sources
and four sinks which means that we will put requests/responses in each of the test source/sink
pair, and we have to use TestNetCacheSink to allow both out-of-order delivery and ignoring the
cache test bits. The MemNet tests reuse the messages of TestMemory tests since the input of MemNet is
essentially memory requests.
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We also test the multicore composition using the same subset of instructions, except for sw and csr. In
sw test cases there might be data races when different cores are trying to store/load data to the same
address. Depending on the each core’s progress, a core might read the data that has already been
overwritten. For csr tests, all four cores have different core_ids. Thus, we introduce an extension
to our assembly test syntax which enables initializing multiple test sources and sinks. Here’s an
example of using the extended syntax.

# Example of using a list of values
csrr x2, mngr2proc < {1,3,5,7}
csrw proc2mngr, x2 > {1,3,5,7}

# Check numcores/coreid
csrr x2, numcores
csrw proc2mngr, x2 > 4
csrr x2, coreid
csrw proc2mngr, x2 > {0,1,2,3}

Each core has its own test source/sink, so the first line initializes all four tests sinks with four different
values. Here are the commands to run the tests.

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% py.test ../lab5_mcore/
% py.test ../lab5_mcore/test/SingleCoreRTL_test.py
% py.test ../lab5_mcore/test/CacheNetRTL_test.py
% py.test ../lab5_mcore/test/MemNetRTL_test.py
% py.test ../lab5_mcore/test/McoreDataCacheRTL_test.py
% py.test ../lab5_mcore/test/MultiCoreRTL_test.py

For the testing strategy, unlike the earlier labs, you are not required to come up with additional test
cases. However, if you find that the provided test cases fail to capture a bug, you are encouraged to
design additional test cases, put them in the test files, and discuss them in your report. You can look
into these test cases from previous labs and the PyMTL repo for inspiration.

Since this lab has an emphasis on both software and hardware, you definitely need to develop a testing
strategy for your single- and multi-threaded sorting microbenchmarks!. We recommend testing that your
single and multi-core sorting microbenchmarks work on arrays with different values and different
sizes.

Your report should briefly summarize the testing strategy used to test each subsystem in the first
four labs, and also summarize the testing strategy that we provide you in this lab. You should go
into some nice detail on how we do the incremental testing, the single-core testing, and the multicore
testing in this lab. Make sure you include at least a paragraph about your software testing strategy
for the single- and multi-threaded sorting microbenchmarks. Discuss how all of this comes together
to ensure we have a very sophisticated working design that can execute multi-threaded programs
with realistic caches and networks.

5. Evaluation

We provide you with four single-threaded micro-benchmarks: vvadd, mfilt, cmult, and bsearch, whose
assembly sequences have been studied in Lab 2. All single-threaded microbenchmarks are in the
app/ubmark directory with their C source code and the dataset files. Take a look at all of them and
familiarize yourself with what each one does.

12
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In addition to the single-threaded benchmarks, we have provided multi-threaded benchmarks in the
app/mtbmark directory, which are the parallel version of the same microbenchmarks: vvadd, mfilt,
cmult, and bsearch. All of these multi-threaded microbenchmarks statically partition the input for the
number of cores (threads) that are available in the system.

5.1. Compile a Program and Investigate the Assembly Code

As the first step, we recommend you to compile microbenchmarks natively on x86/x64, instead of
debugging them on your processor directly. We leverage a modular C++ build system to provide
one-stop compilation solution in this lab, and hence compiling your program natively is very similar
to compiling it for RISC-V. The only difference is the target host of the configure command, which
by default is x86/x64. Thus we don’t need to specify it for native compilation.

Below are the commands to build the programs natively. Note that we always create a temporary
build directory to avoid cluttering up the source directories. We create one build directory for native
builds and a different build directory for RISC-V builds. Also note that You can also type make
ubmark-vvadd to compile a specific benchmark.

% cd ${HOME}/ece4750/lab-groupXX/app
% mkdir build-native
% cd build-native
% ../configure
% make
% make ubmark-vvadd

When you run your binaries natively, it will tell you if it passed or failed the verification. If you need
further debugging, you can add printf statements, or use a debugger such as gdb. When you get
your app working, make sure you remove any printf statements because this is not supported on
our TinyRV2 architecture.

After the native build succeeds with no error and hopefully passes the verification, you can com-
pile the microbenchmarks for the TinyRV2 processor. The only difference is to specify the target to
RISC-V by setting host to riscv32-unknown-elf. We usually term this compilation process as "cross-
compilation".

% cd ${HOME}/ece4750/lab-groupXX/app
% mkdir -p build
% cd build
% ../configure --host=riscv32-unknown-elf
% make
% make ubmark-vvadd

After the cross-compilation finishes, you can use objdump in the gcc toolchain to see the compiled
assembly. Specifically, we have to use riscv32-unknown-elf-objdump which is part of the RISC-V
gcc toolchain. We have provided an alias for you to avoid typing these objdump options every time.
You are also encouraged to change options and search online to learn about objdump. Here we use
vvadd as an example, and we assume we have already built the microbenchmarks using the above
commands.

% riscv32-unknown-elf-objdump -dC --no-show-raw-insn -Mno-aliases -Mnumeric ubmark-vvadd
...
00000248 <vvadd_scalar(int*, int*, int*, int)>:
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248: bge x0,x13,274 <vvadd_scalar(int*, int*, int*, int)+0x2c>
24c: slli x13,x13,0x2
250: add x13,x11,x13
254: lw x15,0(x11)
258: lw x14,0(x12)
25c: addi x11,x11,4
260: addi x12,x12,4
264: add x15,x15,x14
268: sw x15,0(x10)
26c: addi x10,x10,4
270: bne x11,x13,254 <vvadd_scalar(int*, int*, int*, int)+0xc>}
274: jalr x0,x1,0

...
% riscv32-objdump ubmark-vvadd # this command is an alias of the above command

Look familiar? Yes, the code sequence from pc=0x254 to pc=0x270 is almost identical to the vector-
vector add code snippet we have seen throughout the course.

5.2. Run a Cross-Compiled Program

After making sure your application works natively, the second step is to run your program on the
single-core or multi-core FL model. An ISA simulator, called isa-sim, supports both single- and
multi-core mode, and it will serve as the FL model in this lab. This simulator simply instantiates one
or four ProcFLs from Lab 2 based on the command line options.

It is important to debug your application on the ISA simulator before moving onto RTL. By default
the ISA simulator is single-core. The --mcore command line option makes the ISA simulator simulate
a quad core. Here are the commands to run apps on the ISA simulator. Note that you can add
--trace option to turn on line tracing.

% cd ${HOME}/ece4750/lab-groupXX/sim/
% mkdir -p build
% cd build
% ../lab5_mcore/isa-sim ../../app/ubmark-vvadd

[ passed ]

In stats_en region:
total_committed_inst = 811

% ../lab5_mcore/isa-sim --mcore --trace ../../app/mtbmark-vvadd
...

[ passed ]

In stats_en region:
total_committed_inst = 1400

core0_committed_inst = 341
core1_committed_inst = 353
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core2_committed_inst = 353
core3_committed_inst = 353

Here is one more recipe of isa-sim. Recall that in the iron law of processor performance, there is a
term called instruction per program. Although the ISA simulator doesn’t know the cycle count, it
can provide you with the number of committed instructions.

The most exciting step is to execute the native-tested and isa-simulated program on our SingleCore
or MultiCore system. We have provided you with two simulators, score-sim and mcore-sim to
simulate these two systems respectively. You can run the vvadd microbenchmark using the following
two simulation commands:

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% ../lab5_mcore/score-sim --stats ../../app/build/ubmark-vvadd
% ../lab5_mcore/mcore-sim --stats ../../app/build/mtbmark-vvadd

The --stats option dumps all statistics during the stats_en region (explained in the next subsec-
tion). The --trace displays the line tracing. The --dump-vcd enables .vcd waveform generation.

When you run a simulation, the simulator will also report whether the verification passed or failed.
Make sure all of the verifications pass. If not, please go back to our systematic debugging strategy to
isolate and resolve the error using test cases instead of debugging directly on simulator.

5.3. The Real Evaluation: Data and Statistics

Before we talk about statistics, let’s go back and think critically about what the performance means
for our system with respect to a real binary executable file. We have done evaluations for Lab 1-4
separately, so we might ask the following questions.

What is the difference between a compiled binary, and the assembly sequences we used in Lab 2?

A typical compiled program includes a lot of code to bootstrap, manage the stack, various library
calls, etc. The code that we are interested in might be masked out by the uninteresting parts of
this boilerplate code, so we only enable stats collection when we are actually in the piece of code of
interest. To do so, we need to know about one more CSR.

• By executing addi x1, x0, {1 or 0}; csrr 0x7C1, x1, the processor set a special "stats" bit to
high or low, to tell the simulator if the program has entered the "statistics enabled" region, which
we usually abbreviate as the "stats_en region".

From the above example of using objdump, we can see that the vvadd-unopt assembly sequence in
Lab 2 actually corresponds to a subset of the stats_en region.

OK, we agree to focus on the stats_en region only, but what is our goal?

In this lab, we want to finish the stats_en region as soon as possible which means that the cycle count
is the ultimate metric we want to optimize for. Notice that when we have multiple cores, CPI might
not be suitable because we need the number of actually useful instructions to do fair comparison,
which is very hard under most parallel programming frameworks involving busy-waiting, including
our bthread library.

Fine, what else should we look at besides cycle count?

We have evaluated each component we use in the multicore composition separately using different
metrics: CPI for processor, average memory access latency and miss rate for caches, and network
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latency vs. offered bandwidth for networks. We have already provided you some statistics in the
simulators. The simulators will report the correct cycle count. score sim will report the number of
committed instructions, CPI, and the number of instruction/data cache misses/accesses/missrate.

As mentioned in Section 5.2, before you jump into the detailed statistics in score-sim and mcore-sim,
you may need to first look at the committed instruction count in ISA simulator to get a feel for how
good/bad your program is. For example, no matter how hard you optimize your system in this lab,
it is impossible to finish one million instructions in 10,000 cycles.

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% ../lab5_mcore/score-sim --stats ../../app/build/ubmark-vvadd

[ passed ]

In stats_en region:

num_cycles = 4311
total_committed_inst = 811
total_cpi = 5.32

total_icache_miss = 5
total_icache_access = 912
total_icache_miss_rate = 0.0055

total_dcache_miss = 76
total_dcache_access = 300
total_dcache_miss_rate = 0.2533

We leave it up to you to add per cache access/miss/missrate for instruction caches and hook them
up in MultiCore. You also need to hook up the statistics in McoreDataCache to ports in MultiCore.
We already expose some output ports (hooks) to the simulator as shown below. A 4-bit port concate-
nates the four status bits from the four processors/caches/banks. For example, icache_access[0]
indicates whether the first instruction cache has a handshake transaction. If you are interested in how
a simulator count statistics, you can read the code snippet below and look for them in score-sim and
mcore-sim. You may also need to look at how we count miss/access in SingleCore. How we count
cache miss in SingleCoreVRTL.v is also shown in the below code snippet.

# from MultiCoreRTL.py

s.commit_inst = OutPort( 4 )
s.icache_miss = OutPort( 4 )
s.icache_access = OutPort( 4 )
s.dcache_miss = OutPort( 4 )
s.dcache_access = OutPort( 4 )

# from mcore-sim

for i in xrange(4):
if model.model.icache_access[i]:

icache_access[i] += 1
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num_cycles = 2260 icache0_miss = 26
total_committed_inst = 1492 icache0_access = 379
total_cpi = 1.51 icache0_miss_rate = 0.0686

icache1_miss = 9
total_icache_miss = 55 icache1_access = 424
total_icache_access = 1646 icache1_miss_rate = 0.0212
total_icache_miss_rate = 0.0334 icache2_miss = 10

icache2_access = 424
total_dcache_miss = 89 icache2_miss_rate = 0.0236
total_dcache_access = 408 icache3_miss = 10
total_dcache_miss_rate = 0.2181 icache3_access = 419

icache3_miss_rate = 0.0239
core0_committed_inst = 341
core0_cpi = 6.63 dcache_bank0_miss = 23
core1_committed_inst = 385 dcache_bank0_access = 125
core1_cpi = 5.87 dcache_bank0_miss_rate = 0.1840
core2_committed_inst = 385 dcache_bank1_miss = 22
core2_cpi = 5.87 dcache_bank1_access = 96
core3_committed_inst = 381 dcache_bank1_miss_rate = 0.2292
core3_cpi = 5.93 dcache_bank2_miss = 21

dcache_bank2_access = 85
dcache_bank2_miss_rate = 0.2471
dcache_bank3_miss = 23
dcache_bank3_access = 102
dcache_bank3_miss_rate = 0.2255

Figure 9: Reference mcore-sim Statistics for Multithreaded vvadd

if model.model.icache_miss[i]:
icache_miss[i] += 1

# from SingleCoreVRTL.v

assign icache_miss = icache_resp_val & icache_resp_val & ~icache_resp_msg.test[0];

If you add some logic to set the performance hooks correctly, mcore-sim will also report the accu-
mulated statistics along with the per core/cache/bank breakdowns. It will report the number of
committed instructions and CPI (per core and total), the number of cache access, misses, and miss
rate (per cache and total), and the number of data cache bank accesses, misses, and miss rate (per
bank and total). We recommend collecting this data for your parallel sorting implementation and re-
porting it in lab report as part of the evaluation section. Figure 9 shows the statistics from mcore-sim
running the multithreaded using the staff solution for the MultiCore composition. Notice that the
instruction cache miss rate is very low and the data cache miss rate is reasonable. Since vector-
vector-add streams through the input and output arrays, there is significant spatial locality but little
temporal locality. With four words per cache line we might expect a miss rate of around 0.25 since
we will experience one compulsory miss every four words, which is similar to what we see in the
statistics. Also noticed that the accesses are relatively balanced across the four data cache banks
suggesting there are no hot spots.

You can also experiment with running single-threaded benchmarks on the multicore system. This
allows you to see the impact of the extra hardware. Note that some of the benchmarks might not
pass the verification because each core will try to execute the same exact code over the same exact
data. Depending on whether the benchmark is written in an idempotent way or not, these additional
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cores might corrupt each others’ data. There is a simple workaround to let other cores stop execution.
Simply add the following code at the top of your single-threaded microbenchmarks.

int main( int argc, char* argv[] )
{

if (bthread_get_core_id() != 0) return 0;
...

In your lab report, discuss how each benchmark performed in each configuration. Did all of the
benchmarks perform better on the multicore? Did they get the theoretical speedup of 4X over the
single core? If you ran single-threaded benchmarks on the multicore system, is it slower than running
on the single-core system? What is the slowdown due to? How do the two versions of sorting
implementations perform on these two architectures? Can the parallel sort get a speedup over the
serial version of sorting? Dive deeper into the result and discuss why you get the specific speedup.

6. Extensions

Advanced students might want to consider modifying the software and/or hardware to improve
the performance of their parallel sorting microbenchmark. A small bonus will be given to the fastest
few designs. We will run your sorting microbenchmark on your multicore system using one or more
of our own private datasets. These datasets will be similar in size to the dataset we give you, but
may not necessarily have exactly 128 elements. You can assume the data in these datasets will be
uniformly distributed 32-bit random integers. Note that students should only attempt improving
the software and/or hardware once everything is completely working and they have finished a draft
of the lab report. The rest of this section includes some ideas on how you might want to improve
your design.

You will definitely want to experiment with the network. You will want to think critically about
whether or not a bus or a ring makes the most sense for CacheNet or MemNet, and then run some
experiments to see which achieves the best performance for a certain network composition. Some
extra performance hooks may help you understand the injection rate/latency in a realistic multicore
system context. You might also want to use bus for some networks and and ring for other networks
to get better performance. You will also want to experiment with different parallel sorting algorithms
as algorithmic changes can often have the largest impact.

When you evaluate your SingleCore, you will quickly find that the performance of your baseline
and even alternative multicore system is limited by the hit latency of the cache you designed in Lab
3. While we could move to a more aggressive pipelined cache microarchitecture, you can achieve
much of the same benefit by simply merging states in the FSM control unit used in this lab. Ideally,
you would merge enough states to enable a single-cycle hit latency for reads (i.e., a single state
for read hits) and a sustained throughput of one read hit per cycle. This requires performing tag
check and data access in parallel, and carefully handling the val/rdy signals for the cache request
and response interfaces. Writes can potentially use two states to do tag check and data access in
sequence, although single-cycle hit latency for writes is still possible if the cache response is sent
back in the first state. Reducing the read hit latency is the most critical since this would improve the
performance of instruction fetch in your processor.

After you finish the cache hit latency, you might also notice that you are wasting some cycles due
to control hazards. Our sorting microbenchmark will have one or more loops, and the pipelined
processor designed in this lab will almost always mispredict the backwards branch used in these
loops. Adding a simple branch target buffer (BTB) in the F stage could improve the performance
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of the provided microbenchmarks, and the sorting implementation, by effectively eliminating most
squashes due to the backwards branch used in loops. A simple, yet effective approach would be to
include a four entry BTB in the F stage. Each entry would include a valid bit, the PC of the branch,
and the target address for the branch when it is taken. In the F stage, your processor would need to
search the BTB for the current PC. If there is a hit, then the F stage can use the corresponding target
address in the BTB. If there is a miss, then the F stage can simply use PC+4. If a branch is taken, then
in the X stage we would need to write the BTB with the corresponding PC of the branch and target
address. More complicated schemes are certainly possible.
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