
ECE 4750 Computer Architecture, Fall 2016

T12 Advanced Processors:
Memory Disambiguation

School of Electrical and Computer Engineering
Cornell University

revision: 2016-11-14-09-49

1 Adding Memory Instructions to an OOO Processor 2

2 In-Order Load/Store Issue with Unified Stores 6

3 In-Order Load/Store Issue with Split Stores 8

4 Out-of-Order Load/Store Issue 9

1



1. Adding Memory Instructions to an OOO Processor

1. Adding Memory Instructions to an OOO Processor

• Adding memory instructions to I2OE microarchitecture

– Add M pipe in parallel to X and Y pipe
– Commit point is in D so no problem with writing memory in M pipe
– Early commit point can be difficult to achieve in practice

• Adding memory instructions to I2OL/IO2L microarchitectures

– Must wait to do stores after commit point (in C stage)
– Do not want to wait until C stage to handle loads

F D1

X

Y0 Y1 Y2 Y3

I 1

SB

1 1

IQ

L0

S

L1
1

PRF ARF

W C

ROB

FSB

• Add finished-store buffer (FSB) in parallel to ROB
– Sometimes called the “store queue”
– Allocate entries in FSB in-order in D stage (like ROB)
– Write entries in FSB out-of-order in W stage (like ROB)
– Deallocate entries from FSB in-order in C stage (like ROB)

• L0: generate load address
• L1: access data cache to load data
• S: pass along store data, generate store address
• W (load): write load data into PRF and clear pending bit in ROB
• W (store): write store address and store data into FSB

and clear pending bit in ROB
• C (store): send write request out to memory and wait for write ack

2



1. Adding Memory Instructions to an OOO Processor

Data Structures: FSB

• Finished-Store Buffer (FSB)

– v: valid bit
– addr: generated store address
– data: store data

Finished Store Buffer
addr datav

Example Execution Diagrams

a : lw x1, 0(x2)

b : lw x3, 0(x4)

c : mul x5, x1, x3

d : sw x5, 0(x6)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Aside: Example Execution Diagrams

Can we avoid stalling entire pipeline on a store miss?

F D1

X

Y0 Y1 Y2 Y3

I 1

SB

1 1

IQ

L0

S

L1
1

PRF ARF

W C

ROB

FSB

R
CSB

3



1. Adding Memory Instructions to an OOO Processor

Without R stage, stall in C stalls all younger instructions

a : opA

b : sw x1, 0(x2)

c : opB

d : opC

e : opD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

With R stage, stall due to cache miss is decoupled from C stage

a : opA

b : sw x1, 0(x2)

c : opB

d : opC

e : opD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

WAW dependencies assuming IO issue

a : sw x1, 0(x2)

b : sw x3, 0(x4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Assume R[x2] == R[x4]

WAW dependencies assuming OOO issue

a : sw x1, 0(x2)

b : sw x3, 0(x4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4



1. Adding Memory Instructions to an OOO Processor

WAR dependencies assuming IO issue

a : lw x1, 0(x2)

b : sw x3, 0(x4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Assume R[x2] == R[x4]

WAR dependencies assuming OOO issue

a : lw x1, 0(x2)

b : sw x3, 0(x4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Assume R[x2] == R[x4]

RAW dependencies assuming IO issue

a : sw x1, 0(x2)

b : lw x3, 0(x4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Assume R[x2] == R[x4]

RAW dependencies assuming OOO issue

a : sw x1, 0(x2)

b : lw x3, 0(x4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Assume R[x2] == R[x4]

5



2. In-Order Load/Store Issue with Unified Stores

2. In-Order Load/Store Issue with Unified Stores

F D1

X

Y0 Y1 Y2 Y3

I 1

SB

L0

S

L1
1

PRF ARF

W C

ROB

FSB

Int IQ

Mem IQ

• Integer IQ supports out-of-order issue

• Memory IQ only supports in-order issue

• Two IQs can act as distributed IQ to facilitate superscalar execution

• Detecting potential RAW hazards

– L0 stage searches FSB addresses (could also do this in L1)
– Also search CSB if we are using an extra R stage for retirement
– If no match in FSB then no RAW dependency exists, load can continue
– If match in FSB then RAW dependency exists with in-flight store

• Stall to resolve RAW dependency

– Stall load in L0 stage until store commits
– Address comparison can be conservative to simplify hardware

• Bypass/Forward to resolve RAW dependency

– Bypass data from FSB into end of L0
– Need to bypass from youngest store in FSB
– Address comparison must be exact to avoid bypassing incorrect value

6



2. In-Order Load/Store Issue with Unified Stores

Example with RAW Dependency

a : sw x1, 0(x2)

b : lw x3, 0(x4)

c : add x5, x6, x7

d : lw x8, 0(x9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Assume R[x2] == R[x4] == R[x9]

• Inst b searches FSB in L0 and finds no match, but need to
aggressively bypass store address/data from W stage

• Inst d searches FSB in L0 and finds match, bypasses data from FSB

Example without RAW Dependency

a : lw x1, 0(x2)

b : mul x3, x1, x4

c : mul x5, x3, x6

d : sw x5, 0(x7)

e : lw x8, 0(x9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Assume R[x2] != R[x7] != R[x9]

• Inst e is stuck behind store due to inorder issue ...

• ... but there is no RAW dependency between d and e

• ... and we know the addresses earlier!

7



3. In-Order Load/Store Issue with Split Stores

3. In-Order Load/Store Issue with Split Stores

F D1

X

Y0 Y1 Y2 Y3

I 1

SB

L0

S

L1
1

PRF ARF

W C

ROB

FSB

Int IQ

Mem IQ

• Key Idea: split stores into store-data and store-addr micro-ops

– Potentially split stores in D and merge store in W
– FSB needs a valid bit for address and a valid bit for data

• In D stage for a store

– If store data is not pending, then enqueue store in in-order memory IQ
– If store data is pending, split store into two micro-ops: store-data

micro-op goes in integer IQ and store-addr micro-op goes in mem IQ

• In I stage for store micro-ops

– Store-data micro-ops use X-pipe
– Store-addr micro-ops use S-pipe

• In W stage for store micro-ops

– Store-data micro-op writes data field and sets data valid bit
– Store-addr micro-op writes address field and sets address valid bit

• In C stage for stores

– When store is at head of ROB, can only commit if both valid bits set

• What if L0 finds an address match in FSB, but data not valid?

– Stall load in L0 if address match, but data not valid
– Enable re-issue by keeping load in mem IQ until there is no match

8



4. Out-of-Order Load/Store Issue

Example without RAW Dependency

a : lw x1, 0(r2)

b : mul x3, x1, r4

c : mul x5, x3, r6

d : sw x5, 0(x7)

e :

f : lw x8, 0(x9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Assume R[r2] != R[r7] != R[r9]

• Inst f checks address in L0, finds no match, and can continue

• Assume D can put micro-ops into int and mem IQ in same cycle

4. Out-of-Order Load/Store Issue

a : sw x1, 0(x2)

b : lw x3, 0(x4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Assume R[x2] == R[x4]

• Checking FSB in L0 will not help, store address is not in the FSB yet!

• Speculatively issue loads assuming no RAW hazard

– Check later to see if RAW hazard has occurred
– Squash all instructions after load and restart if detect hazard

9



4. Out-of-Order Load/Store Issue

F D1

X

Y0 Y1 Y2 Y3

I 1

SB

1 1

IQ

L0

S

L1
1

PRF ARF

W C

ROB

FSB

FLB

• Only one IQ required (combining with split stores still possible)

– Searching FSB more complicated
– Need “age” logic to track which stores are older vs younger than the load

in L0 searching the FSB
– Stall/bypass from “youngest older” store

• Add finished-load buffer (FLB)

– Sometimes called the “load queue”
– FLB holds address of loads that have finished but not committed
– Allocate entries in FLB in-order in D stage (like ROB)
– Write entries in FLB out-of-order in W stage (like ROB)
– Deallocate entries from FLB in-order in C stage (like ROB)

• Checking for RAW hazards

– Store in S stage searches the FLB
– Need “age” logic to track which loads are older vs younger than the store

in S searching the FLB
– If store finds an address match for a younger load, then there has been a

memory RAW hazard (memory dependence violation)
– Mark the corresponding load, when that load commits, squash all

instructions in the pipeline, and re-execute from load

• FSB (store queue) and FLB (load queue) sometimes combined into a
single complex data-structure called the load-store queue (LSQ)

10



4. Out-of-Order Load/Store Issue

Loads checking FSB

a : sw x1, 0(x2)

b : lw x3, 0(x4)

c : sw x5, 0(x6)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Assume R[x2] == R[x4] == R[x6]

Stores checking FLB

a : lw x1, 0(x2)

b : sw x3, 0(x4)

c : lw x5, 0(x6)

d : addi x7, x5, 1

e : addi x8, x7, 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Assume R[x2] == R[x4] == R[x6]

Complex example

a : sw x1, 0(x2)

b : sw x3, 0(x4)

c : lw x5, 0(x6)

d : sw x7, 0(x8)

e : addi x9, x5, 1

f : addi x10, x9, 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Assume R[x2] == R[x4] == R[x6] == R[x8]

11


