PyMTL: A Python-Based Framework for Hardware Modeling

Shunning Jiang and Shuang Chen

Computer Systems Laboratory
School of Electrical and Computer Engineering
Cornell University

Computer Architecture Development Methodologies

Applications

Algorithms

Compilers

Instruction Set Architecture

Microarchitecture

VLSI

Transistors

Functional-Level Modeling

Behavior

Cycle-Level Modeling

- Behavior
- Cycle-Approximate
- Analytical Area, Energy, Timing

Register-Transfer-Level Modeling

- Behavior
- Cycle-Accurate Timing
- Gate-Level Area, Energy, Timing

Computer Architecture Development Methodologies

Computer Architecture Methodology Gap

FL, CL, RTL modeling
use very different
languages, patterns,
tools, and methodologies

PyMTL Approch: Modeling Towards Layout

Unified Python-based framework for FL, CL, and RTL modeling

Functional-Level Modeling

- Algorithm/ISA Development
- MATLAB/Python, C++ ISA Sim

Cycle-Level Modeling

- Design-Space Exploration
- C++ Simulation Framework
- SW-Focused Object-Oriented
- gem5, SESC, McPAT

Register-Transfer-Level Modeling

- Prototyping & AET Validation
- Verilog, VHDL Languages
- HW-Focused Concurrent Structural
- EDA Toolflow

Why Python?

- Python is well regarded as a highly productive language with lightweight, pseudocode-like syntax
- Python supports modern language features to enable rapid, agile development (dynamic typing, reflection, metaprogramming)

- Python has a large and active developer and support community
- Python includes extensive standard and third-party libraries
- Python enables embedded domain-specific languages
- Python facilitates engaging application-level researchers
- Python includes built-in support for integrating with C/C++
- Python performance is improving with advanced JIT compilation

What is PyMTL?

- A Python DSEL for concurrent-structural hardware modeling
- A Python API for analyzing models described in the PyMTL DSEL
- A Python tool for simulating PyMTL FL, CL, and RTL models
- A Python tool for translating PyMTL RTL models into Verilog
- A Python testing framework for model validation

What Does PyMTL Enable?

- Incremental refinement from algorithm to accelerator implementation
- Automated testing and integration of PyMTL-generated Verilog

What Does PyMTL Enable?

- Incremental refinement from algorithm to accelerator implementation
- Automated testing and integration of PyMTL-generated Verilog
- Multi-level co-simulation of FL, CL, and RTL models

What Does PyMTL Enable?

- Incremental refinement from algorithm to accelerator implementation
- Automated testing and integration of PyMTL-generated Verilog
- Multi-level co-simulation of FL, CL, and RTL models
- Construction of highly-parameterized RTL chip generators

The PyMTL Toolflow

Using PyMTL RTL for ECE 4750

Using Verilog RTL for ECE 4750

