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1. WAW and WAR Hazards

1. WAW and WAR Hazards

a: mul x1, x2, x3

b: mul x4, x1, x5

c: addi x6, x4, 1

d: addi x4, x7, 1

• RAW data hazards vs. WAW/WAR name hazards

– RAW dependencies are “true” data dependencies because we actually
pass data from the writer to the reader

– WAW/WAR dependencies are not “true” data dependencies

– WAW/WAR dependencies exist because of limited “names”

– Can always avoid WAW/WAR hazards by renaming registers in
software, but eventually we will run out of register names

– Key Idea: Provide more “physical registers” and
rename architectural to physical registers in hardware
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1. WAW and WAR Hazards

WAW/WAR name hazards in IO2L microarchitecture
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a : mul x1, x2, x3

b : mul x4, x1, x5

c : addi x6, x4, 1

d : addi x4, x7, 1
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• Explore two different schemes
– Store pointers in the IQ and ROB
– Store values in the IQ and ROB

• For each scheme
– overall pipeline structure
– required hardware data-structures
– example instruction sequence executing on microarchitecture

• Several simplifications
– all designs are single issue
– only support add, addi, mul
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2. IO2L Pointer-Based Register Renaming Scheme

2. IO2L Pointer-Based Register Renaming Scheme
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• Increase the size of the PRF to provide more “names”

• Add free list (FL) in D stage
– FL holds list of unallocated physical registers
– Physical registers allocated in D and deallocated in C

• Add rename table (RT) in D stage
– RT maps architectural registers to physical registers
– Sometimes called the “map table”
– Destination register renamed in D stage
– Look up renamed source registers in D,

and write these physical register specifiers into the IQ

• Modify SB and ROB
– Scoreboard indexed by physical reg instead of architectural reg

• NOTE: Values can only be bypassed or read from the PRF

• I/X/Y/W stages only manipulate physical registers
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2. IO2L Pointer-Based Register Renaming Scheme

Data Structures: FL, RT, Modified ROB
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• Free List (FL)
– free: one if corresponding preg is free
– Use priority encoder to allocate first free preg

• Rename Table (RT)
– p: pending bit, is a write to this areg in flight?
– preg: what preg the corresponding areg maps to
– Entries in RT are always valid

• Modified Reorder Buffer (ROB)
– Include three fields with pointers to PRF and ARF
– preg: pointer to register in PRF that holds result value
– areg: pointer to register in ARF to copy value into
– ppreg: pointer to previous register in PRF for this areg

Can only free a physical register when we can guarantee no reads of
that physical register are still in flight!
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2. IO2L Pointer-Based Register Renaming Scheme

Example Execution Diagrams

a : mul x1, x2, x3

b : mul x4, x1, x5

c : addi x6, x4, 1

d : addi x4, x7, 1
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2. IO2L Pointer-Based Register Renaming Scheme

5
HQ

D
P
H�
7
D
E
OH

,V
VX

H�
4
X
HX

H
5
HR

UG
HU
�%
X
II
HU

&
\F
OH

'
,

:
&

[
�

[
�

[
�

[
�

[
�

[
�

[
�

)
UH
H�
/
LV
W

�
�

�
�

�
�

�
�

�
S
�

S
�

S
�

S
�

S
�

S
�

S
�

S
��
�S
��
�S
��
�S
��

�
D

_
_

_
_

_
_

_
S
��
�S
��
�S
��
�S
��

�
E

D
S
�


_
_

_
_

_
_

S
��
�S
��
�S
��

S
��
S
��
S
�

S
�

�[
��
S
�

�
F

_
_

_
S
�


_
_

_
S
��
�S
��

S
��
S
�

�S
�

_
S
�

�[
��
S
�

�
G

_
_

_
_

_
S
�


_
S
��

_
S
��
S
�


_
_

S
�

�[
��
S
�

�
_

_
_

S
��



_
_

_
_

_
S
��
�S
�

_
_

_
S
��

�
[�

�S
�

�
E

_
_

_
_

_
_

_
Î

_
_

_
_

_
_

�
G

D
_

_
_

_
_

_
_

_
Î

_
_

_
_

�
D

S
�

_
_

_
_

_
_

_
S
��
[�

�S
�

_
_

_

�
G

_
_

_
_

_
_

_
S
�

_
_

_
_

��
F

_
_

_
S
��

_
_

_
S
�

Î
_

_
S
��
�[
��
S
�

��
E

_
_

_
_

_
_

_
S
�

_
_

_

��
F

E
_

_
_

_
_

_
_

S
�

S
��
[�

�S
�

_
_

��
F

_
_

_
_

_
S
�

_
S
��
�S
�

S
��
[�

�S
�

_

��
G

_
_

_
_

_
_

_
S
��
�S
��
�S
�

Î

��
_

_
_

_
_

_
_

S
��
�S
��
�S
��
�S
�

7



2. IO2L Pointer-Based Register Renaming Scheme

Freeing Physical Registers

8



2. IO2L Pointer-Based Register Renaming Scheme

Unified Physical/Architectural Register File
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• Combine the PRF and ARF into one large unified register file (URF)

• Replace ARF with an architectural rename table (ART)

• Instead of copying values, C stage simply copies the preg pointer
into the appropriate entry of the ART

• URF can be smaller than area for separate PRF/ARF

• Sometimes in the literature URF is just called PRF
(and there is no “real” ARF, just the ART)
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3. IO2L Value-Based Register Renaming Scheme

3. IO2L Value-Based Register Renaming Scheme

F D1
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• Instead of storing future values in a separate PRF, we store them
these future values in the actual ROB

• No need for FL, since “physical registers” are now really ROB entry
IDs and managed naturally through ROB allocation/deallocation

• Add rename table (RT) in D stage
– RT maps architectural registers to physical registers
– Registers renamed in D stage, entries cleared in C
– Destination register renamed in D stage
– Look up renamed source registers in D,

and write these physical register specifiers into the IQ

• Modify scoreboard, IQ, ROB
– Scoreboard indexed by preg instead of areg

• NOTE: Values can be bypassed or read from either the ROB or ARF

• I/X/Y/W stages only manipulate physical registers
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3. IO2L Value-Based Register Renaming Scheme

Data Structures: RT, Modified IQ, ROB
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• Rename Table (RT)
– v: valid bit
– p: pending bit, is a write to this areg in flight?
– preg: what preg the corresponding areg maps to
– Entries are only valid if instruction is in-flight
– Valid bit is cleared after instruction has committed

• Modified Issue Queue (IQ)
– src0/src1: when pending bit is set, source fields contain the preg specifier

(i.e., ROB entry ID) that we are waiting on; when pending bit is clear,
source fields contain the values

• Modified Reorder Buffer (ROB)
– Replace single rdest field with two new fields
– value: actual result value
– areg: pointer to register in ARF to copy value into
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3. IO2L Value-Based Register Renaming Scheme

Example Execution Diagrams

a : mul x1, x2, x3

b : mul x4, x1, x5

c : addi x6, x4, 1

d : addi x4, x7, 1
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3. IO2L Value-Based Register Renaming Scheme

We can use a table to compactly illustrate how IO2L value-based
register renaming works. We show the state of the RT and ROB at the
beginning of every cycle.
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