ECE 4750 Computer Architecture, Fall 2021

T11 Advanced Processors:
Register Renaming

School of Electrical and Computer Engineering
Cornell University

revision: 2021-10-26-18-27

1 WAW and WAR Hazards 2
2 IO2L Pointer-Based Register Renaming Scheme 4
3 1IO2L Value-Based Register Renaming Scheme 9

Copyright © 2018 Christopher Batten, Christina Delimitrou. All rights reserved. This hand-
out was originally prepared by Prof. Christopher Batten at Cornell University for ECE 4750
/ CS 4420. It has since been updated by Prof. Christina Delimitrou in 2017-2021. Download
and use of this handout is permitted for individual educational non-commercial purposes
only. Redistribution either in part or in whole via both commercial or non-commercial
means requires written permission.

1. WAW and WAR Hazards

1. WAW and WAR Hazards

a: mul x1, x2, x3
b: mul x4, x1, x5
c: addi x6, x4, 1
d: addi x4, x7, 1

* RAW data hazards vs. WAW/WAR name hazards
— RAW dependencies are “true” data dependencies because we actually
pass data from the writer to the reader
- WAW/WAR dependencies are not “true” data dependencies
- WAW/WAR dependencies exist because of limited “names”

- Can always avoid WAW /WAR hazards by renaming registers in
software, but eventually we will run out of register names

— Key Idea: Provide more “physical registers” and
rename architectural to physical registers in hardware

1. WAW and WAR Hazards

WAW/WAR name hazards in IO2L microarchitecture

1Q ROB
YoHY1HHy2HH Y3
FluDlﬂﬂlIl 1W11|:|:|1C
X
ARF read write
PRF read write read
SB read / write
1Q alloc read/dealloc
ROB alloc write read/dealloc
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
a:mul x1, x2, x3
b:mul x4, x1, x5
Cc:addi x6, x4, 1
d:addi x4, x7, 1

* Explore two different schemes
— Store pointers in the IQ and ROB
— Store values in the IQ and ROB

¢ For each scheme

- overall pipeline structure
- required hardware data-structures

— example instruction sequence executing on microarchitecture

* Several simplifications

— all designs are single issue
— only support add, addi, mul

2. IO2L Pointer-Based Register Renaming Scheme

2. IO2L Pointer-Based Register Renaming Scheme

[FL J[RT]1Q YH}YH}YZ&Y?’ ROB

W {whHc

ARF write
PRF read write
SB read / write
1Q alloc read /dealloc
ROB alloc write read/dealloc
FL read/alloc dealloc
RT read /write write

¢ Increase the size of the PRF to provide more “names”

* Add free list (FL) in D stage

— FL holds list of unallocated physical registers

— Physical registers allocated in D and deallocated in C
¢ Add rename table (RT) in D stage

— RT maps architectural registers to physical registers
— Sometimes called the “map table”
— Destination register renamed in D stage
— Look up renamed source registers in D,
and write these physical register specifiers into the IQ

* Modify SB and ROB

— Scoreboard indexed by physical reg instead of architectural reg
* NOTE: Values can only be bypassed or read from the PRF

e I/X/Y/W stages only manipulate physical registers

2. IO2L Pointer-Based Register Renaming Scheme

Data Structures: FL, RT, Modified ROB

Rename Table Free List Reorder Buffer

p preg free? VvV p VvV preg areg ppreg
x1 | 1|pGp7 po [0] 1{1]|1] p7 | p8 | p9
x2 10]|pl pl |0 1{1(1| p8 | p4 | p3
x3 | 0|p2 - =1 [a1]1] 9 | p6 | p5
x4 {1 |p3 ps ps [0 [o[=]-] = - | -
x5 | 0| p4 p9 | 0]
x6 | 1]p5 p9 p10 |1
x7 [0 |p6 pll [1]
x31 | 0 | p63 p63 [0]

e Free List (FL)

— free: one if corresponding preg is free
— Use priority encoder to allocate first free preg

* Rename Table (RT)
— p: pending bit, is a write to this areg in flight?
- preg: what preg the corresponding areg maps to
— Entries in RT are always valid

e Modified Reorder Buffer (ROB)

— Include three fields with pointers to PRF and ARF
- preg: pointer to register in PRF that holds result value
- areg: pointer to register in ARF to copy value into
— ppreg: pointer to previous register in PRF for this areg

Can only free a physical register when we can guarantee no reads of
that physical register are still in flight!

2. IO2L Pointer-Based Register Renaming Scheme

Example Execution Diagrams

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a:mul x1, x2, x3

b:mul x4, x1, x5

c:addi x6, x4, 1

d:addi x4, x7, 1

op v imm v dest v p src0 v p srcl

]
=
v
=
Q
]
=
3
p preg free? value value
x1 pO pO | | p0 2 xl
x2 pl pl | | pl | 1 2 x2 |1
2 x| |p2 pz_é’pz % 3|2
S x4 p3 p3| | § p3 EJ x4
)] k7 -
§X5 p4 £p4_.§0p44 Sx54
§x6 p5 8p5_mp5 d§x6
7 X7 p6 m p6| | 8 P65 £ X7 |5
p7 L i p7 §
x31 p8 [1| & p8 < x31
p9 1] P9
plo | 1| p10
.. P Vv preg areg ppreg
s
3
/A
o
o
b
©
U
&~

2. IO2L Pointer-Based Register Renaming Scheme

gd ‘cd ‘gd‘od| | | | | | | | St

. cdedod| | | | | | | [| i

| sd/gx/6d edod| | ed | | | | [|2 €1

I | edjpx/gd odf | I I I I I ||« 41

| I | od | I I I I I | 41
8d/px/ord I | . od | | | od | | | o1
I | | | [0 R O e e N B 6

| | | od/rx/.d | | | | | | | e 8

| | | | . | o L

| | | | | | . o 9
8d/px/,01d I | | 9djord | | b wed | S
5d/9x/,6d | | +8d/6d | ord| | wed |1 I | p| ¥
ed/px/.8d | pd/.Ld/gd orded| | | | .8d | | | 1| ¢

0d/1x/,d zd/rd/d ord ‘ed ‘gd| | | | | | | wd a| z

otd ‘6d ‘gd zd| | | | | | eI

ord‘ed‘gd,d| 9d sd pd ed zd 1d od 0
€ z 3 0 € 4 1 0 ISITAII| LX 9X SX PX €X gX IX | D a [ap4d

Jayyng JapIoay

anany ansst

J[qe] dureuay

2. IO2L Pointer-Based Register Re

naming Scheme

Freeing Physical Registers

ApD r|,rZ rj <~ AIVM 4/\.9(3 c\ mApey 1 PM‘:) 0o
/DO r‘1 el -5
AdD ,6 F = NZXT ke of Arey c\, mapmes =y X
ADP (8. ¥, rlo
o pnt Al 3 . «’X wrc]
| ADD \1|r|‘rf —_— ; X W C
T sas clocb,rd = — IYX Wr - Te—)
2 A (B,rﬁ,,lo FOT XVJ('AV—’—' '
g \
2 y) \
\M‘r\"‘-?o Qru,po plloc po wetke po Neans wres
VO W S ?l‘
© AT, 3 - T xx)c,
| ADD ¢‘4|r‘|('5 = //,’ E— — —@ x W e
oA 6 — T xw T ———— e
3 om0 (84 10 (D x W —«ZL
weie po allec O’L ke PL) Heatloc o
b Aren £C 15 MARRY 1o Prea b | W S Frew p) wied
Tree NEXT \AITOUE TS D quaT wrides CL tommiTs

2. IO2L Pointer-Based Register Renaming Scheme

Unified Physical/Architectural Register File

[FL][RT]1Q YOﬂYlﬂYZﬂY3ﬂ-’+ ROB
1

F Rt Dl 15 Wik c
X i

ART write
URF read write
SB read / write
1Q alloc read/dealloc
ROB alloc write read/dealloc
FL read/alloc dealloc
RT read / write write

¢ Combine the PRF and ARF into one large unified register file (URF)
¢ Replace ARF with an architectural rename table (ART)

* Instead of copying values, C stage simply copies the preg pointer
into the appropriate entry of the ART

* UREF can be smaller than area for separate PRF/ARF

¢ Sometimes in the literature URF is just called PRF
(and there is no “real” AREF, just the ART)

3. IO2L Value-Based Register Renaming Scheme

3. IO2L Value-Based Register Renaming Scheme

e B Ao Ty v] vs Rop. [ARF]
M R e

ARF read write
SB read / write
1Q alloc read /dealloc

ROB read/alloc write read/dealloc
RT read / write write

¢ Instead of storing future values in a separate PRF, we store them
these future values in the actual ROB

* No need for FL, since “physical registers” are now really ROB entry
IDs and managed naturally through ROB allocation/deallocation

* Add rename table (RT) in D stage

— RT maps architectural registers to physical registers
— Registers renamed in D stage, entries cleared in C

Destination register renamed in D stage
Look up renamed source registers in D,
and write these physical register specifiers into the IQ

* Modify scoreboard, IQ, ROB
— Scoreboard indexed by preg instead of areg

* NOTE: Values can be bypassed or read from either the ROB or ARF

* I/X/Y/W stages only manipulate physical registers

10

3. IO2L Value-Based Register Renaming Scheme

Data Structures: RT, Modified IQ, ROB

x1
x2
x3
x4
x5
X6
x7

Rename Table

x31

v op v imm v dest v p src0 v p srcl
3 fa-fmutfo po-ifo] 1+ afo] 2
5
S [1|mul|0] - 1] pl |1/1] p0 |1]0] 4
g1 addiu| 1| 1 |1| p2 |1]1| pl |1|--| --
vV p preg - p v value areg
1[1] po £ po [1]1 x1
0]-- - A pl|1]1 x4
Tt
0|-] - 5 p2 1|1 x6
i~
1[1] po gpfof-] -[-
0 - -—

1[1 o Source fields can be ID of ROB
0]- - entry (e.g., "preg specifier") or
p0 the actual value

0 - _—

¢ Rename Table (RT)
v: valid bit
p: pending bit, is a write to this areg in flight?
preg: what preg the corresponding areg maps to
Entries are only valid if instruction is in-flight
Valid bit is cleared after instruction has committed

* Modified Issue Queue (IQ)

— src0/srcl: when pending bit is set, source fields contain the preg specifier
(i.e., ROB entry ID) that we are waiting on; when pending bit is clear,
source fields contain the values

e Modified Reorder Buffer (ROB)

- Replace single rdest field with two new fields
— value: actual result value
- areg: pointer to register in ARF to copy value into

11

3. IO2L Value-Based Register Renaming Scheme

Example Execution Diagrams

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a:mul x1, x2, x3

b:mul x4, x1, x5

c:addi x6, x4, 1

d:addi x4, x7, 1

op v imm v dest v p src0 v p srcl

(7]
=
v
=
o
v
3
&
vV p preg g p Vv value areg value
[
x1 £ po @ x1
; =
x2 R pl Hox2 |1
2 X3 5 p2 2 6|2
= x4 g p3 & x4
v = R
£ x5 = X5 [4
g x6 3 %6
é X7 § X7 | 5
=
>
x31 < x31

12

3. IO2L Value-Based Register Renaming Scheme

We can use a table to compactly illustrate how IO2L value-based
register renaming works. We show the state of the RT and ROB at the

beginning of every cycle.

Rename Table Issue Queue Reorder Buffer

Cyclel D I W C|x1 x2 x3 x4 x5 X6 X7 0 1 2 3 0 1 2 3
0
1 a
2 b a po* po/x2/x3 po*/x1
3 c | p1* P1/p0*/x5 | pl¥/x4
4 |d | | p2* | p2/p1* | | p2¥/x6
5 [p3* | [I p3n7 | | I | p3¥ixd
6 b I I | . I I [I \ [
7 a I | | I I \ I \ \
8 d a | | | po/x1 | | |
9 d | | | | | |
10 c p3 | . | | p3/x4
11 b I | I \ \
12 c b | | pl/x4 | |
13 c | . P2/x6 |
14 d
15

13

