
ECE 4750 Computer Architecture, Fall 2021

T11 Advanced Processors:
Register Renaming

School of Electrical and Computer Engineering
Cornell University

revision: 2021-10-26-18-27

1 WAW and WAR Hazards 2

2 IO2L Pointer-Based Register Renaming Scheme 4

3 IO2L Value-Based Register Renaming Scheme 9

Copyright © 2018 Christopher Batten, Christina Delimitrou. All rights reserved. This hand-
out was originally prepared by Prof. Christopher Batten at Cornell University for ECE 4750
/ CS 4420. It has since been updated by Prof. Christina Delimitrou in 2017-2021. Download
and use of this handout is permitted for individual educational non-commercial purposes
only. Redistribution either in part or in whole via both commercial or non-commercial
means requires written permission.

1

1. WAW and WAR Hazards

1. WAW and WAR Hazards

a: mul x1, x2, x3

b: mul x4, x1, x5

c: addi x6, x4, 1

d: addi x4, x7, 1

• RAW data hazards vs. WAW/WAR name hazards

– RAW dependencies are “true” data dependencies because we actually
pass data from the writer to the reader

– WAW/WAR dependencies are not “true” data dependencies

– WAW/WAR dependencies exist because of limited “names”

– Can always avoid WAW/WAR hazards by renaming registers in
software, but eventually we will run out of register names

– Key Idea: Provide more “physical registers” and
rename architectural to physical registers in hardware

2

1. WAW and WAR Hazards

WAW/WAR name hazards in IO2L microarchitecture

F D1
X

Y0 Y1 Y2 Y3
I 1

SB

1 1

IQ alloc

IQ

read/dealloc

1

PRF

write

ARF

W C1 1

write

write read/dealloc

ROB

ARF

SB read/write
PRF read

ROB alloc

read
read

read/dealloc

a : mul x1, x2, x3

b : mul x4, x1, x5

c : addi x6, x4, 1

d : addi x4, x7, 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

• Explore two different schemes
– Store pointers in the IQ and ROB
– Store values in the IQ and ROB

• For each scheme
– overall pipeline structure
– required hardware data-structures
– example instruction sequence executing on microarchitecture

• Several simplifications
– all designs are single issue
– only support add, addi, mul

3

2. IO2L Pointer-Based Register Renaming Scheme

2. IO2L Pointer-Based Register Renaming Scheme

F D1
X

Y0 Y1 Y2 Y3 PRF

ARF

I 1

write

SB ARF

W C1 1

SB read/write
PRF read write

ROB writealloc read/dealloc

ROB

1

RTRTFL

FL read/alloc
RT read/write

dealloc
write

1 1

IQ alloc

IQ

read/dealloc

• Increase the size of the PRF to provide more “names”

• Add free list (FL) in D stage
– FL holds list of unallocated physical registers
– Physical registers allocated in D and deallocated in C

• Add rename table (RT) in D stage
– RT maps architectural registers to physical registers
– Sometimes called the “map table”
– Destination register renamed in D stage
– Look up renamed source registers in D,

and write these physical register specifiers into the IQ

• Modify SB and ROB
– Scoreboard indexed by physical reg instead of architectural reg

• NOTE: Values can only be bypassed or read from the PRF

• I/X/Y/W stages only manipulate physical registers

4

2. IO2L Pointer-Based Register Renaming Scheme

Data Structures: FL, RT, Modified ROB

p preg

x1
x2
x3
x4
x5
x6
x7
...

x31

...

p0
p1

free?

p8
p9
p10

p0
p1
p2
p3
p4
p5
p6

Rename Table Free List Reorder Buffer
preg areg ppregp v

1

1

1

0
0

0

0

0 p63

0
0

0
0 1

1
1

1
1
1

p7 p8 p9

p11

p63

1
1
......

......

0

p8 p4 p3
p9 p6 p5

p7

p8

p9

v

1
1
1
0 -- -- -- -- --

• Free List (FL)
– free: one if corresponding preg is free
– Use priority encoder to allocate first free preg

• Rename Table (RT)
– p: pending bit, is a write to this areg in flight?
– preg: what preg the corresponding areg maps to
– Entries in RT are always valid

• Modified Reorder Buffer (ROB)
– Include three fields with pointers to PRF and ARF
– preg: pointer to register in PRF that holds result value
– areg: pointer to register in ARF to copy value into
– ppreg: pointer to previous register in PRF for this areg

Can only free a physical register when we can guarantee no reads of
that physical register are still in flight!

5

2. IO2L Pointer-Based Register Renaming Scheme

Example Execution Diagrams

a : mul x1, x2, x3

b : mul x4, x1, x5

c : addi x6, x4, 1

d : addi x4, x7, 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p preg

...

p0
p1
p2
p3
p4
p5
p6

free?

p7
p8
p9
p10

1
1
1
1

p0
p1
p2
p3
p4
p5
p6

value

...

1
2

4

5

p0
p1
p2
p3
p4
p5
p6
p7
p8
p9
p10

R
en

am
e

T
ab

le

Fr
ee

 L
is

t

Ph
ys

ic
al

 R
eg

is
te

r
Fi

le

A
rc

hi
te

ct
ur

al
 R

eg
is

te
r

Fi
le

R
eo

rd
er

 B
uf

fe
r

Is
su

e
Q

ue
ue

value

...

1
2

4

5

preg areg ppregp v

vvv ppdest src0 src1immop v

x1
x2
x3
x4
x5
x6
x7
...

x31

x1
x2
x3
x4
x5
x6
x7
...

x31

6

2. IO2L Pointer-Based Register Renaming Scheme

5
HQ

D
P
H�
7
D
E
OH

,V
VX

H�
4
X
HX

H
5
HR

UG
HU
�%
X
II
HU

&
\F
OH

'
,

:
&

[
�

[
�

[
�

[
�

[
�

[
�

[
�

)
UH
H�
/
LV
W

�
�

�
�

�
�

�
�

�
S
�

S
�

S
�

S
�

S
�

S
�

S
�

S
��
�S
��
�S
��
�S
��

�
D

_
_

_
_

_
_

_
S
��
�S
��
�S
��
�S
��

�
E

D
S
�

_
_

_
_

_
_

S
��
�S
��
�S
��

S
��
S
��
S
�

S
�

�[
��
S
�

�
F

_
_

_
S
�

_
_

_
S
��
�S
��

S
��
S
�

�S
�

_
S
�

�[
��
S
�

�
G

_
_

_
_

_
S
�

_
S
��

_
S
��
S
�

_
_

S
�

�[
��
S
�

�
_

_
_

S
��

_
_

_
_

_
S
��
�S
�

_
_

_
S
��

�
[�

�S
�

�
E

_
_

_
_

_
_

_
Î

_
_

_
_

_
_

�
G

D
_

_
_

_
_

_
_

_
Î

_
_

_
_

�
D

S
�

_
_

_
_

_
_

_
S
��
[�

�S
�

_
_

_

�
G

_
_

_
_

_
_

_
S
�

_
_

_
_

��
F

_
_

_
S
��

_
_

_
S
�

Î
_

_
S
��
�[
��
S
�

��
E

_
_

_
_

_
_

_
S
�

_
_

_

��
F

E
_

_
_

_
_

_
_

S
�

S
��
[�

�S
�

_
_

��
F

_
_

_
_

_
S
�

_
S
��
�S
�

S
��
[�

�S
�

_

��
G

_
_

_
_

_
_

_
S
��
�S
��
�S
�

Î

��
_

_
_

_
_

_
_

S
��
�S
��
�S
��
�S
�

7

2. IO2L Pointer-Based Register Renaming Scheme

Freeing Physical Registers

8

2. IO2L Pointer-Based Register Renaming Scheme

Unified Physical/Architectural Register File

F D1
X

Y0 Y1 Y2 Y3 URF

ART

I 1

write

SB ART

W C1 1

SB read/write
URF read write

ROB writealloc read/dealloc

ROB

1

RTRTFL

FL read/alloc
RT read/write

dealloc
write

1 1

IQ alloc

IQ

read/dealloc

• Combine the PRF and ARF into one large unified register file (URF)

• Replace ARF with an architectural rename table (ART)

• Instead of copying values, C stage simply copies the preg pointer
into the appropriate entry of the ART

• URF can be smaller than area for separate PRF/ARF

• Sometimes in the literature URF is just called PRF
(and there is no “real” ARF, just the ART)

9

3. IO2L Value-Based Register Renaming Scheme

3. IO2L Value-Based Register Renaming Scheme

F D1
X

Y0 Y1 Y2 Y3

ARF

I 1

write

SB ARF

W C1 1

SB read/write

ROB writeread/alloc read/dealloc

ROB

1

RT

RT read/write write

1 1

IQ alloc

IQ

read/dealloc

read

• Instead of storing future values in a separate PRF, we store them
these future values in the actual ROB

• No need for FL, since “physical registers” are now really ROB entry
IDs and managed naturally through ROB allocation/deallocation

• Add rename table (RT) in D stage
– RT maps architectural registers to physical registers
– Registers renamed in D stage, entries cleared in C
– Destination register renamed in D stage
– Look up renamed source registers in D,

and write these physical register specifiers into the IQ

• Modify scoreboard, IQ, ROB
– Scoreboard indexed by preg instead of areg

• NOTE: Values can be bypassed or read from either the ROB or ARF

• I/X/Y/W stages only manipulate physical registers

10

3. IO2L Value-Based Register Renaming Scheme

Data Structures: RT, Modified IQ, ROB

--

p preg

...

R
en

am
e

T
ab

le

R
eo

rd
er

 B
uf

fe
r

Is
su

e
Q

ue
ue

value aregp v

vvv ppdest src0 src1immop v

p0
p1
p2
p3

v

Source fields can be ID of ROB
entry (e.g., "preg specifier") or

the actual value

v

1 mul 0 1 1 10 0--
--

--
1
1
0

mul
addiu

0
1 1

1 1
1

1 0
1 p2

p1
p0

p0
p1

1 2
41

1

1 1

1 1

1 1

-- --
-- --

-- --

-- --

-- --

0
0

0

0

0

1

---------------- --
--1

1
1 1

1
1 x1

x4
x6

0 -- -- --

p0

p0

p0

p0

x1
x2
x3
x4
x5
x6
x7
...

x31

• Rename Table (RT)
– v: valid bit
– p: pending bit, is a write to this areg in flight?
– preg: what preg the corresponding areg maps to
– Entries are only valid if instruction is in-flight
– Valid bit is cleared after instruction has committed

• Modified Issue Queue (IQ)
– src0/src1: when pending bit is set, source fields contain the preg specifier

(i.e., ROB entry ID) that we are waiting on; when pending bit is clear,
source fields contain the values

• Modified Reorder Buffer (ROB)
– Replace single rdest field with two new fields
– value: actual result value
– areg: pointer to register in ARF to copy value into

11

3. IO2L Value-Based Register Renaming Scheme

Example Execution Diagrams

a : mul x1, x2, x3

b : mul x4, x1, x5

c : addi x6, x4, 1

d : addi x4, x7, 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p preg

...

R
en

am
e

T
ab

le

A
rc

hi
te

ct
ur

al
 R

eg
is

te
r

Fi
le

R
eo

rd
er

 B
uf

fe
r

Is
su

e
Q

ue
ue

value

...

1
2

4

5

value aregp v

vvv ppdest src0 src1immop v

p0
p1
p2
p3

v

x1
x2
x3
x4
x5
x6
x7
...

x31

x1
x2
x3
x4
x5
x6
x7
...

x31

12

3. IO2L Value-Based Register Renaming Scheme

We can use a table to compactly illustrate how IO2L value-based
register renaming works. We show the state of the RT and ROB at the
beginning of every cycle.

5HQDPH�7DEOH ,VVXH�4XHXH 5HRUGHU�%XIIHU

&\FOH ' , : & [� [� [� [� [� [� [� � � � � � � � �

�

� D

� E D S�
 S��[��[� S�
�[�

� F _ S�
 S��S�
�[� _ S�
�[�

� G _ _ S�
 _ S��S�
 _ _ S�
�[�

� _ S�
 _ _ _ S��U� _ _ _ S�
�[�

� E _ _ _ Î _ _ _ _ _ _

� D _ _ _ _ _ _ _ _ _

� G D Î _ _ _ Î S��[� _ _ _

� G _ _ _ _ _ _

�� F S� _ Î _ _ S��[�

�� E _ _ _ _ _

�� F E _ _ S��[� _ _

�� F _ Î S��[� _

�� G Î Î

��

13

