ECE 4750 Computer Architecture, Fall 2021
T04 Fundamental Memory Microarchitecture

School of Electrical and Computer Engineering
Cornell University

revision: 2021-10-17-17-05

Memory Microarchitectural Design Patterns
1.1. TransactionsandSteps

1.2. Microarchitecture Overview

FSM Cache

2.1. High-Levelldeafor FSMCache
22. FSM CacheDatapath
23. FSM CacheControl Unit

2.4. Analyzing Performance,

Pipelined Cache

3.1. High-Level Idea for Pipelined Cache
3.2. Pipelined Cache Datapath and Control Unit
3.3. Analyzing Performance,

3.4. Pipelined CachewithTLB

Cache Microarchitecture Optimizations
41. ReduceHitTime.
42. ReduceMissRate

43. ReduceMissPenalty 30

4.4. Cache Optimization Summary 31
5 Case Study: ARM Cortex A8 and Intel Core i7 32
51. ARMCortex A8 32
5.2. Intel Corei7 e 33

Copyright © 2018 Christopher Batten, Christina Delimitrou. All rights reserved. This hand-
out was originally prepared by Prof. Christopher Batten at Cornell University for ECE 4750
/ CS 4420. It has since been updated by Prof. Christina Delimitrou in 2017-2021. Download
and use of this handout is permitted for individual educational non-commercial purposes
only. Redistribution either in part or in whole via both commercial or non-commercial
means requires written permission.

1. Memory Microarchitectural Design Patterns

1.1. Transactions and Steps

1. Memory Microarchitectural Design Patterns

Time

_ Mem Accesses _ Avg Cycles _ Time

Mem Access Sequence Sequence Mem Access Cycle

Mem Access

Hit Num Accesses Miss

Avg Cycles Avg Cycles n (Num Misses o Avg Extra Cycles>

Extra Accesses

Microarchitecture Hit Latency for Translation
FSM Cache >1 1+
Pipelined Cache ~1 1+
Pipelined Cache + TLB ~1 ~0

1.1. Transactions and Steps

We can think of each memory access as a transaction

Executing a memory access involves a sequence of steps

Check Tag
Select Victim
Evict Victim
Refill

Write Mem
Access Data

: Check one or more tags in cache

: Select victim line from cache using replacement policy

: Evict victim line from cache and write victim to memory
: Refill requested line by reading line from memory

: Write requested word to memory

: Read or write requested word in cache

1. Memory Microarchitectural Design Patterns 1.1. Transactions and Steps

Steps for Write-Through 1.2. Microarchitecture
with No Write Allocate Overview

mmureq 32b ¥ mmuresp

Memory Management Unit

cachereq 32b Y cacheresp

Control Unit

Control l l l l I I I IStatus

Datapath

. Tag Data
Steps for Write-Back | Array | Array

with Write Allocate

mreq 128b ymresp

Main Memory u >1 cycle

combinational

2. FSM Cache

2. FSM Cache

Time _ Mem Accesses = Avg Cycles _ Time
Mem Access Sequence Sequence Mem Access Cycle

Avg Cycles Avg Cycles Num Misses o Avg Extra Cycles
Mem Access Hit Num Accesses Miss

Extra Accesses

Microarchitecture Hit Latency for Translation
FSM Cache >1 1+
Pipelined Cache ~1 1+
Pipelined Cache + TLB ~1 ~0
Assumptions mmureq 32b y mmuresp
¢ Page-based translation, no -
TLB, physically addr cache Memory Management Unit
* Single-ported combinational cachereq 32b cacheresp
SRAMs for tag, data storage —
¢ Unrealistic combinational Control Unit
main memory Control l l l l I I I I Status
Datapath
* Cache requests are 4B atapd
. . Tag Data
Configuration “ Array M Array
e Four 16 B cache lines
¢ Two-way set-associative mreq 128b) mresp
* Replacement policy: LRU - e
¢ Write policy: write-through, Main Memory \')co;bi;};iisnal

no write allocate

2. FSM Cache 2.1. High-Level Idea for FSM Cache

2.1. High-Level Idea for FSM Cache

read hit
> Access
read miss Data
Select .
write | | Victim || Refill

write hit

Access Access Select | [posn W Access) [Check) [Access
Data Data Victim Data Tag Data

read read read
hit miss hit

Check | { Access
9p] .
& read write

hit hit

2. FSM Cache 2.2. FSM Cache Datapath

2.2. FSM Cache Datapath

As with processors, we design our cache datapath by incrementally
adding support for each transaction and resolving conflicts with muxes.

Implementing READ transactions that hit

lcachereq_val tag [iax] off [00]

|
(‘\ 27b b 2b
cache idx i
!‘Eq.

addr tarray0

read match

hit

Tag
Array

tarray0_en

TTT
Data
darray_en = Array

111
MT: Check tag

MRD: Read data array, return cacheresp

Implementing READ transactions that miss

tcachereq_val | tag |idx | Offl 00 |
27b b 2b
cache i i
req.
addr

]
MT: Check tag

memreq. memresp. MRD: Read data array, return cacheresp
addr data RO: Send refill memreq, get memresp
R1: Write data array with refill cache line

2. FSM Cache 2.2. FSM Cache Datapath

Implementing WRITE transactions that miss

Icachereq_val [tag Jiax[off [00]
27b b 2b
write cache tag\ i i
l'CqA
addr

read \ read
miss \ hit

MT: Check tag

memreq. memreq. memresp. MRD: Read data array, return cacheresp
addr data data RO: Send refill memreq, get memresp

R1: Write data array with refill cache line

MWD: Send write memreq, write data array

Implementing WRITE transactions that hit

tcachereq_val [tag JidxJoff[00]
27b 1b 2b
writt cache - -
req.
addr

1111

word
enable

data z4b 128b

e 128b

MT: Check tag

memreq. memreq. memresp. MRD: Read Adata array, return cacheresp
addr data data RO: Send refill memreq, get memresp

R1: Write data array with refill cache line

MWD: Send write memreq, write data array

2. FSM Cache 2.3. FSM Cache Control Unit

2.3. FSM Cache Control Unit

We will need to keep valid bits in the control unit, with one valid bit for
every cache line. We will also need to keep use bits which are updated
on every access to indicate which was the last “used” line. Assume we
create the following two control signals generated by the FSM control
unit.

hit = (tarrayO_match && validO[idx])
[l (tarrayl_match && validil[idx])
victim = !use[idx]
tarray0 tarrayl darray darray worden z4b memreq cachresp
en wen en wen en wen sel sel sel wval op val
MT
MRD
RO
R1
MWD

2. FSM Cache 2.4. Analyzing Performance

2.4. Analyzing Performance

Time _ Mem Accesses = Avg Cycles _ Time
Mem Access Sequence Sequence Mem Access Cycle

Avg Cycles Avg Cycles n Num Misses y Avg Extra Cycles
Mem Access Hit Num Accesses Miss

Estimating cycle time

tcachereq_val [tag JidxJoff 00]
27b 1b 2b
write cac‘he‘D tag idx tag idx
req.
addr

read \ read
miss | hit

Tag
Array
32b [Tpl] 128b
cache unit

req.

data z4b 128b

128b
- MT: Check tag
memreq. memreq. memresp. MRD: Read data array, return cacheresp

addr data data RO: Send refill memreq, get memresp
R1: Write data array with refill cache line
MWD: Send write memreq, write data array
o register read/write =17
e tag array read/write =107
¢ data array read/write = 107

* mem read/write =201
® decoder =37
e comparator =101
* mux =37
e repl unit =0t
* z4b =0t

10

2. FSM Cache

2.4. Analyzing Performance

Estimating AMAL

Consider the following sequence of memory acceses which might
correspond to copying 4 B elements from a source array to a destination
array. Each array contains 64 elements. What is the AMAL?

rd
wr
rd
wr
rd
wr

rd

wr

0x1000
0x2000
0x1004
0x2004
0x1008
0x2008

0x1040
0x2040

Consider the following sequence of memory acceses which might
correspond to incrementing 4 B elements in an array. The array contains

64 elements. What is the AMAL?

rd
wr
rd
wr
rd
wr

rd

wr

0x1000
0x1000
0x1004
0x1004
0x1008
0x1008

0x1040
0x1040

11

3. Pipelined Cache

3. Pipelined Cache

Time _ Mem Accesses = Avg Cycles _ Time
Mem Access Sequence Sequence Mem Access Cycle

Avg Cycles Avg Cycles Num Misses o Avg Extra Cycles
Mem Access Hit Num Accesses Miss

Extra Accesses

Microarchitecture Hit Latency for Translation
FSM Cache >1 1+
Pipelined Cache ~1 1+
Pipelined Cache + TLB ~1 ~0
Assumptions mmureq 32b) mmuresp
¢ Page-based translation, no -
TLB, physically addr cache Memory Management Unit
* Single-ported combinational cachereq 32b cacheresp
SRAMs for tag, data storage —
¢ Unrealistic combinational Control Unit
main memory Control l l l l I I I I Status
Datapath
* Cache requests are 4B atapd
. . Tag Data
Configuration “ Array M Array
e Four 16 B cache lines
d DireCt-mapped mreq 128b ymresp
* Replacement policy: LRU - e
¢ Write policy: write-through, Main Memory \')co;bi;};iisnal

no write allocate

12

3. Pipelined Cache 3.1. High-Level Idea for Pipelined Cache

3.1. High-Level Idea for Pipelined Cache

read hit

> Access
read miss Data
Select .
: — Refill
write Victim
write hit
: (@HEHEDDEEHE®®E
&) read write read read read
hit hit hit miss hit
M\ S\
o
9]}
e
m
2.
5

read Tag Select Refill Access
hit Check Victim Data
o
miss hit _Tas Data

13

3. Pipelined Cache 3.2. Pipelined Cache Datapath and Control Unit

3.2. Pipelined Cache Datapath and Control Unit

As with processors, we incrementally adding support for each
transaction and resolving conflicts using muxes.

Implementing READ transactions that hit

MO Stage |_| M1 Stage
cache idx 3 tag u idx

req.
addr

tarray
match

TTT
Tag

’—' Array

L1l

tarray_en

tag JidxJoffJ 00]
26b % 2b [TT
Data
Array
L1l

Implementing WRITE transactions that hit

MO Stage |_| M1 Stage
cache idx tag Ll off idx off
req.
addr tarray
TTT
Tag
’—. Array
’ LIl
32b 128b
repl LI TTT
cache unit Data
req. darray_| Array
data wen L | ||
128b

memreq. memreq.
addr data

14

3. Pipelined Cache 3.2. Pipelined Cache Datapath and Control Unit

Implementing transactions that miss

MO St:
0 Stage MO Stage |_| M1 Stage
cache tag idx tag u idx

req.
addr e

miss Tag

@ Array

L1
128b

; TTT
cac e umt Data
req. darray_| ArTay
data zex wen | | |]

darray_

write,

128b 128b mux_sel

memreq. memreq. memresp.
addr data data

e Hybrid pipeline/FSM design pattern
¢ Hit path is pipelined with two-cycle hit latency
* Miss path stalls in MO stage to refill cache line

Pipeline diagram for pipelined cache with 2-cycle hit latency

rd (hit)

wr (hit)

rd (miss)

rd (miss)

wr (miss)

rd (hit)

15

3. Pipelined Cache 3.2. Pipelined Cache Datapath and Control Unit

Parallel read with pipelined write datapath

M%Sﬁgc MO Stage M1 Stage
cache tagy idx tag off idx

addr

tarray
match

miss

128b
° cache umt Data
req. darray | ATy
data zex i ven L] |]
darray
write
128b 128b J !

memreq memreq memresp.
addr data data

Pipeline diagram for parallel read with pipelined write

rd (hit)

rd (hit)

rd (hit)

wr (hit)

wr (hit)

rd (hit)

¢ Achieves single-cycle hit latency for reads

¢ Two-cycle hit latency for writes, but is this latency observable?
* With write acks, send write-ack back in M0 stage

* How do we resolve structural hazards?

16

3. Pipelined Cache 3.2. Pipelined Cache Datapath and Control Unit

Resolving structural hazard by exposing in ISA

rd (hit)

wr (hit)

nop

rd (hit)

Resolving structural hazard with hardware stalling

rd (hit)

wr (hit)

rd (hit)

ostall_MO = val_MO && (type_MO == RD)
&% val_M1 && (type_M1 == WR)

Resolving structural hazard with hardware duplication

rd (hit)

wr (hit)

rd (hit)

Resolving RAW data hazard with software scheduling

Software scheduling: hazard depends on memory address, so difficult
to know at compile time!

Resolving RAW data hazard with hardware stalling

ostall_MO = ...

17

3. Pipelined Cache 3.2. Pipelined Cache Datapath and Control Unit

Resolving RAW data hazard with hardware bypassing

We could use the previous stall signal as our bypass signal, but we will
also need a new bypass path in our datapath. Draw this new bypass
path on the following datapath diagram.

req.
addr

tarray
match

MO Stage MO Stage
FSM
@ cache tag\ idx 3 tag

. TTT
miss Tag

@ ﬁ Array

111
° cache
req.
o
128b

memreq. memreq. memresp.
addr data data

read addr 32b
cache
resp.
data

TTT
Data
darray_| Array

wen ™ | | |

—1 write addr

18

3. Pipelined Cache 3.2. Pipelined Cache Datapath and Control Unit

Parallel read and pipelined write in set associative caches

To implement parallel read in set-associative caches, we must
speculatively read a line from each way in parallel with tag check. This
can be expensive in terms of latency, motivating two-cycle hit latencies
for highly associative caches.

M%Sﬁge MO Stage M1 Stage
cache tag idx i off \ idx off
@ req. B

addr

tarrayl
match

tarray0
match

miss

word_en_sel : 32b

word

32b 128b enable cache
(o) o
cache unt
req. data

darray
write__
mux_sel

data z4b

24b,_sel 128b 128b Array
memrqu memreq. memresp.
addr data data

19

3. Pipelined Cache 3.3. Analyzing Performance

3.3. Analyzing Performance

Time _ Mem Accesses _ Avg Cycles _ Time
Mem Access Sequence Sequence Mem Access Cycle

Avg Cycles Avg Cycles n (Num Misses o Avg Extra Cycles)

Mem Access Hit Num Accesses Miss

Estimating cycle time

Mggﬁge MO Stage M1 Stage
cache tag\ idx tag off idx
req.
addr tarray =%
TTT 1 85

miss Tag

Array
@ 5511
32b ,Tpl\ 128b
cache unit
req.
b el 128b 128b |, e

ITT
Data
Array
L1

memreq. memreq. memresp.
addr data data
o register read/write =17

e tag array read/write =107
¢ data array read/write = 107

* mem read/write =201
® decoder =37
e comparator =101
* mux =37
e repl unit =0t
* z4b =0t

20

3. Pipelined Cache 3.3. Analyzing Performance

Estimating AMAL

Assume a parallel-read / pipelined-write microarchitecture with
hardware duplication to resolve the structural hazard and stalling to
resolve RAW hazards. Consider the following sequence of memory
accesses which might correspond to copying 4 B elements from a source
array to a destination array. Each array contains 64 elements. What is
the AMAL?

rd

0x1000

wr

0x2000

rd

0x1004

wr

0x2004

rd

0x1008

wr

0x2008

rd

0x100c

wr

0x200c

wr

0x1010

21

3. Pipelined Cache 3.4. Pipelined Cache with TLB

3.4. Pipelined Cache with TLB

How should we integrate a MMU (TLB) into a pipelined cache?

Physically Addressed Caches

Perform memory translation before cache access

Main

Processor | VA TLB PA | cache |PA v
> emory

»!
» <

\ 4

¢ Advantages:

— Physical addresses are unique, so cache entries are unique
- Updating memory translation simply requires changing TLB

¢ Disadvantages:

— Increases hit latency

Virtually Addressed Caches

Perform memory translation after or in parallel with cache access

PA Main
Memory

v

Processor <VA‘ Cache | VA TLB

» &
» < P <

VA Cache , | PA ety

i Memory

Processor

TLB

22

3. Pipelined Cache 3.4. Pipelined Cache with TLB

¢ Advantages:

- Simple one-step process for hits

¢ Disadvantages:

— Intra-program protection (store protection bits in cache?)
1/0 uses physical addr (map into virtual addr space?)
Virtual address homonyms

— Virtual address synonyms (aliases)

Virtual Address Homonyms

Single virtual address points to two physical address.

Physical Address

Space
P X Physical| PAOQ Wav ‘1/ - T;)goo - Dat:
rogram e ay " e
Pagg Table/ 8¢ 10x7000 Way 1
VAO Way 2
0x3000 — Way 3
> Physical| PA1
age
Program 2 0x5000
Page Table Physical
VAO b
0x3000 r
.\ .
\ Physical []| PageinPMem
— |/ /‘ Page not allocated

¢ Example scenario

— Program 1 brings VA 0x3000 into cache
— Program 1 is context swapped for program 2
— Program 2 hits in cache, but gets incorrect data!

e Potential solutions

— Flush cache on context swap
— Store program ids (address space IDS) in cache

23

3. Pipelined Cache 3.4. Pipelined Cache with TLB

Virtual Address Synonyms (Aliases)

Physical Address

Space
Physical vV Tag Data
Program 1 Page Way 0 |1] 0x3000 Oxcafe
Page Table/ Way 1 [1] 0x1000 Oxbeef
VAO Way 2
0x3000 & Way 3
= Physical
age
Program 2
Page Table Physical| PAOQ
Page 10x4000
« /
VAl
0x1000 [~

Physical| | Pagein PMem

8¢ % /] Page not allocated

¢ Example scenarios
— User and OS can potentially have different VAs point to same PA
— Memory map the same file (via mmap) in two different programs
* Potential solutions

— Hardware checks all ways (and potentially different sets) on a miss to
ensure that a given physical address can only live in one location in cache

— Software forces aliases to share some address bits (page coloring)
reducing the number of sets we need to check on a miss (or reducing the
need to check any other locations for a direct mapped cache)

24

3. Pipelined Cache 3.4. Pipelined Cache with TLB

Virtually Indexed and Physically Tagged Caches

Virtual Address
[vPN | [idx |off]
~—— .
Virtual Page \Iflrctiual
Page Num Offset nb.e X
(vbits) | (m bits) (n bits)
- Direct Mapped $
TLB 21 lines
2b_byte cacheline
[PPN | off |
Physical
. N Tag
Ph%jjofal @ (k bits)
(k bits)

hit?
* Page offset is the same in VA and PA

¢ Up to n bits of physical address available without translation

¢ If index bits + cache offset (n+b) < page offset bits (m), can do
translation in parallel with reading out the physical tag and data

e Complete (physical) tag check once tag/data access complete
¢ With 4KB pages, direct-mapped cache must be <= 4 KB

¢ Larger page sizes (decrease k) or higher associativity (decrease n)
enable larger virtually indexed, physically tagged caches

25

4. Cache Microarchitecture Optimizations 4.2. Reduce Hit Time

4. Cache Microarchitecture Optimizations

& D) & D]

<

Processor | Hit MMU Cache Miss
Latency Penalty

Main
Memory

AMAL = Hit Latency + (Miss Rate x Miss Penalty)
¢ Reduce hit time e Reduce miss rate

— Small and simple caches Large block size

Large cache size

High associativity

— Hardware prefetching
Compiler optimizations

¢ Reduce miss penalty

— Multi-level cache hierarchy
— Prioritize reads

4.1. Reduce Hit Time

Cache Microarchitecture Optimizations

2.50 ’r

Access time (ns)

0.50

128 KB 256 KB 512 KBE 03
Cache size £

025

Energy per read

2

16 KB 32KB 64 KB 128 KB 256 KB

Cache size

26

4. Cache Microarchitecture Optimizations 4.2. Reduce Miss Rate

4.2. Reduce Miss Rate
Large Block Size

10%

Fr—— . 3. A
- | * * T 256K
" 16 32 64 128 256
Block size

® Less tag overhead

Exploit fast burst transfers from DRAM and over wide on-chip busses
¢ Can waste bandwidth if data is not used

Fewer blocks — more conflicts

Large Cache Size or High Associativity

If cache size is doubled,
miss rate usually drops

0.10

0.09
e by about V2
@ 1- .
0.07 B2 Direct-mapped cache of
E 4-way 3
0.06 b size N has about the
Miss rate 0,05 1 Capacity same miss rate as a
per type [Compulsory .
0.04 two-way set-associative
0.03 cache of size N/2

0.02

0.01

(AR Rz e e A

8 16 32 64 128 256 512 1024
Cache size (KB)

27

4. Cache Microarchitecture Optimizations

4.2. Reduce Miss Rate

Hardware Prefetching

L1 Prefetch Main
D$ Buffer Memory
/ag Cache Line

Previous techniques only help capacity and conflict misses
Hardware prefetcher looks for patterns in miss address stream

Attempts to predict what the next miss might be
Prefetches this next miss into a pfetch buffer

Very effective in reducing compulsory misses for streaming accesses

28

4. Cache Microarchitecture Optimizations 4.2. Reduce Miss Rate

Compiler Optimizations

* Restructuring code affects the data block access sequence
— Group data accesses together to improve spatial locality
— Re-order data accesses to improve temporal locality

* Prevent data from entering the cache

— Useful for variales that will only be accessed once before eviction
— Needs mechanism for software to tell hardware not to cache data
(“no-allocate” instruction hits or page table bits)

¢ Kill data that will never be used again

— Streaming data exploits spatial locality but not temporal locality
- Replace into dead-cache locations

Loop Interchange and Fusion

What type of locality does each optimization improve?

for(%=0;(_j0< I‘_1;<j'{d+) '-{0-+) ‘ for(i=0; i < N; i++)
or (i=0; i ;i i1 — 1 % s .
x[1103] = 2 * x[i1[31; alil = blal * eldl;
) for (i=0; i < N; i++)
2 di] = a[il * c[il;
for(i=0; i < M; i++) {
iRl AR Z
x[5103] = 2 * x[41[31;
) } for(i=0; i < N; i++)
{
a[i] = b[i] * c[i];
d[i] = a[i] * c[i];

29

4. Cache Microarchitecture Optimizations 4.2. Reduce Miss Rate

Matrix Multiply with Naive Code

for(i=0; i < N; i++) z J
for(j=0; j < N; j++) {
r =0;
for(k=0; k < N; k++) k
r =r + y[i] [k] * z[k][]j];

x[1i][3]1 = x;

y k X

meansa s smen

[J Nottouched [OId access I New access

Matrix Multiply with Cache Tiling

for(jj=0; jj < N; jj=jj+B)
for (kk=0; kk < N; kk=kk+B) z j
for(i=0; i < N; i++)

for(j=3jj; j < min(jj+B,N); j++) {
r=20;
for (k=kk; k < min(kk+B,N); k++) k

r =r + y[i][k] * z[k][]];
x[i][3] = x[i][3] + =;

y k x

meegaaie ==

30

4. Cache Microarchitecture Optimizations 4.3. Reduce Miss Penalty

4.3. Reduce Miss Penalty

Multi-Level Caches

Hit
< D

Processor «(uummmmly |1 Cache <l |2 Cache M’;Arigry

<

D
L1 Miss -- L2 Hit

AMAL}, = Hit Latency of L1 + (Miss Rate of L1 x AMAL};)

AMAL], = Hit Latency of L2 + (Miss Rate of L2 x Miss Penalty of L2)

e Local miss rate = misses in cache / accesses to cache
* Global miss rate = misses in cache / processor memory accesses
* Misses per instruction = misses in cache / number of instructions

e Use smaller L1 is there is also a L2
— Trade increased L1 miss rate for reduced L1 hit time & L1 miss penalty
— Reduces average access energy
¢ Use simpler write-through L1 with on-chip L2
— Write-back L2 cahce absorbs write traffic, doesn’t go off-chip
- Simplifies processor pipeline
— Simplifies on-chip coherence issues
¢ Inclusive Multilevel Cache
— Inner cache holds copy of data in outer cache
— External coherence is simpler
¢ Exclusive Multilevel Cache

— Inner cache may hold data in outer cache
— Swap lines between inner/outer cache on miss

31

4. Cache Microarchitecture Optimizations 4.4. Cache Optimization Summary

Prioritize Reads

Hit S5 Write Buffer
< Main
Processor «(ummmlpi Cache Memory
D

<

Miss

® Processor not stalled on writes, and read misses can go ahead of writes to
main memory

* Write buffer may hold updated value of location needed by read miss

— On read miss, wait for write buffer to be empty
— Check write buffer addresses and bypass

4.4. Cache Optimization Summary

Hit Miss Miss
Technique Lat Rate Penalty BW HW

Smaller caches — +
Avoid TLB before indexing —

Large block size — +
Large cache size + —
High associativity + —
Hardware prefetching -
Compiler optimizations -

Multi-level cache —
Prioritize reads -

_ =N ON R = O = O

Pipelining + +

32

5. Case Study: ARM Cortex A8 and Intel Core i7 5.1. ARM Cortex A8

5. Case Study: ARM Cortex A8 and Intel Core i7
5.1. ARM Cortex A8

[Virtual add ress <32> |

\ Virual page mumber <1 [rasatsacs]

i1
‘ L1 cache index <7> ‘ Block offset <6> ‘
TLBtag <19> TLB ata <19>

To CPU

Ltcachetag<19>| L1 data <64>

[Physical address <32> |

[L2 tag compare address <15> | L2 cache index <11> | Block offset <6> |

To CPU

[

||||| 2 cache tag <15> L2 data <512>

To L1 cache or CPU

e L1 data cache
— 32KB, 64 B cache lines, 4-way set-associative with random replacement
— 32K/64 = 512 cache lines, 128 lines per set (set index = 7 bits)
— Virtually indexed, physically tagged with single-cycle hit latency

¢ Memory management unit

— TLB with multi-level page tables in physical memory

— TLB has 32 entries, fully associative, hardware TLB miss handler

— Variable page size: 4KB, 16 KB, 64 KB, 1 MB, 16 MB (fig shows 16 KB)
— TLB tag entries can have wildcards to support multiple page sizes

e L2 cache

— 1MB, 64 B cache lines, 8-way set-associative
— 1M/64 = 16K cache lines, 2K lines per set (set index = 11 bits)
— Physically addressed with multi-cycle hit latency

33

5. Case Study: ARM Cortex A8 and Intel Core i7 5.2. Intel Core i7

5.2. Intel Core i7

Characteristic L1 L2 L3

Size 32 KB 1/32 KB D 256 KB 2 MB per core

Associativity 4-way 1/8-way D 8-way 16-way

Access latency 4 cycles, pipelined 10 cycles 35 cycles

Replacement scheme Pseudo-LRU Pseudo- Pseudo-LRU but with an
LRU ordered selection algorihtm

Write-back with merging write buffer (more like no write allocate)
e L3isinclusive of L1/L2

¢ Hardware prefetching from L2 into L1, from L3 into L2

e Virtually indexed, physically tagged L1 caches

Physically addressed L2/L3 caches

Characteristic Instruction TLB Data DLB Second-level TLB

Size 128 64 512

Associativity 4-way 4-way 4-way

Replacement Pseudo-LRU Pseudo-LRU Pseudo-LRU

Access latency 1 cycle 1 cycle 6 cycles

Miss 7 cycles 7 cycles Hundreds of cycles to access
page table

® 48bit virtual addresses and 36 bit physical addresses (36 GB physical mem)
e 4KB pages except for few large 2-4MB pages in L1 TLBs

34

