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1. Processor Microarchitectural Design Patterns 2.0. Transactions and Steps

1. Processor Microarchitectural Design Patterns

Time  Instructions = AvgCycles  Time
Program  Program Instruction = Cycle

¢ Instructions / program depends on source code, compiler, ISA
¢ Avg cycles / instruction (CPI) depends on ISA, microarchitecture
* Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time
Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ~1 short

1.1. Transactions and Steps

* We can think of each instruction as a transaction
¢ Executing a transaction involves a sequence of steps

add addi mul 1w sw jal jr bne

Fetch Instruction v v v o/ 4 v v
Decode Instruction v v v o/ 4 v v
Read Registers v v v o/ v v
Register Arithmetic =~ v/ v v v o/ v
Read Memory 4

Write Memory v/

Write Registers v v o/ 4

Update PC v v v o/ v 4 4




1. Processor Microarchitectural Design PattdrisMicroarchitecture: Control/Datapath Split

1.2. Microarchitecture: Control/Datapath Split

Control Unit /-\
Control Signals l l l l l T T T T TStatus Signals
¥
Datapath
imem| imem| imem dmem |dmem [dmem
req_val req resp req_val | req resp
Memory




2. TinyRV1 Single-Cycle Processor 2.1. High-Level Idea for Single-Cycle Processors

2. TinyRV1 Single-Cycle Processor

Time  Instructions = AvgCycles  Time
Program  Program Instruction = Cycle

¢ Instructions / program depends on source code, compiler, ISA
¢ Avg cycles / instruction (CPI) depends on ISA, microarchitecture
* Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time
Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ~1 short

Technology Constraints
¢ Assume technology where Control Unit
logic is not too expensive, so Control l l l l T T T TStatus
we do not need to overly
e . Datapath
minimize the number of !
registers and combinational
logic
—»| regfile
* Assume multi-ported register o
file with a reasonable number
of ports is feasible imem imem dmem dmem
req resp req resp
* Assume a dual-ported Memory
combinational memory <1 cycle
combinational




2. TinyRV1 Single-Cycle Processor 2.1. High-Level Idea for Single-Cycle Processors

2.1. High-Level Idea for Single-Cycle Processors

add addi mul 1w sw jal jr ©bne

Fetch Instruction v/ v v o v v v v/
Decode Instruction v v v o/ v 4 4
Read Registers v v v v o/ 4 4
Register Arithmetic v/ v o v/ v
Read Memory 4

Write Memory v

Write Registers v v v v v

Update PC v v v o v v v v/

Fetch ) (Decode) { Reg
Inst . Inst ‘ Arith
add Read \ (Update

Reg PC




2. TinyRV1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

2.2. Single-Cycle Processor Datapath

ADD 31 25 24 20 19 15 14 12 11 76 0
add rd, rsl, rs2 [ 0000000 | rs2 | rs1 Jooo] ra T o110011
R[rd] < R[rs1] + R[rs2]
PC—PC+4
regfile regfile
|;| (read) (write)
pc
ADDI 31 20 19 15 14 12 11 7 6 0
addi rd, rsl, imm imm [ rs1 Jooo[ ra ] oo10011
R[rd] <« R[rs1] + sext(imm)
PC—PC+4
regfile regfile
(read) (write)

pc




2. TinyRV1 Single-Cycle Processor 2.2. Single-Cycle Processor

Datapath

Implementing ADD and ADDI Instructions

4 To control unit
117]
——> ) > )
pe_plusd io1s] | regfile 5 regfile
|1' J | (read) , = (write)
ir[24:20]
+4
- imm
ir[31:7]
pc gen T
op2_sel
imemreq. | imemresp.
addr data
MUL 31 25 24 20 19 15 14 12 11 7 6 0
mul rd, rsl, rs2 0000001 | rs2 [ rs1 Jooo] ra [ o110011
R[rd] < R[rs1] x R[rs2]
PC—PC+4
4 To control unit
ir[11:7)
—>]
E
» wb_sel
pe_plus4 ihoas] | regfile s regfile
J | (read) , = (write)
ir[24:20]
+4
>imm >
[31:7)
pe gen T
op2_sel
imemreq. | imemresp.
addr data




2. TinyRV1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

Lw 31 20 19 15 14 12 11 76 0
imm [ rs1 Jo1o] =a T ooooo1t |

lw rd, imm(rsl)
R[rd] < M[ R[rs1] + sext(imm) ]
PC—PC+4

To control unit

ir[11:7]

wb_sel

=]
g
pe_plus4 woas] | regfile s regfile
H_' J | (read) . K (write)
T24:20]

+4
- imm
ir[31:7]
pc gen T
op2_sel
imemreq. | imemresp. dmemreq. dmemresp.
addr data addr data
Sw 31 25 24 20 19 15 14 12 11 76 0
imm | rs2 | rs1 [010] imm [ 0100011 |

sw rs2, imm(rsl)
M[ R[rs1] + sext(imm) ] « R[rs2]

imm = { inst[31:25], inst[11:7] }

PC—PC+4
4 To control unit
it[11:7)
—
E rf_wen
> wh_sel |
pe_plus4 ihos] | regfile s regfile
J | (read) , = (write)
ir[24:20]
+4
- M imm >
+317]
pc ' gen T
imm_type T op2_sel
imemreq. | imemresp. dmemreq. dmemreq. dmemresp.
addr data data addr data




2. TinyRV1 Single-Cycle Processor

2.2. Single-Cycle Processor Datapath

JAL
jal rd, imm
R[rd] <« PC+4

PC « PC + sext(imm)

To control unit

12 11 76 0

imm

[ xa T 1101111 |

imm =

inst[20], inst[30:21],

{ inst[31], inst[19:12],

0}

ir[11:7]

—

ES
jalbr_targ g rf_wen
> wh_sel |
——> ' > '
pe_plus4 woas] | regfile 5 regfile
, (read) R = (write)
ir[24:20]
+4 > T
g imm alu_func
T ir[31:7] en
pc_sel PC 8 L T
imm_type T + op2_sel
imemreq. | imemresp. dmemreq. dmemreq. dmemresp.
addr data data addr data
JR 31 20 19 15 14 12 11 7 6 0
jr rsl 000000000000 | rs1 Jooo] 00000 | 1100111
PC — R[rs1]
4 To control unit
jr_targ it[11:7)
q —
3
jalbrﬁtarg E rf_wen
> wh_sel |
——> . > .
pe_plus4 ihos] | regfile 5 regfile
(read) R = (write)
ir[24:20]
+4 > T
a > imm > alu_func
l317] -
en
pc_sel PC g L T
imm_type T + op2_sel
imemreq. | imemresp. dmemreq. dmemreq. dmemresp.
addr data data addr data
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2. TinyRV1 Single-Cycle Processor

2.2. Single-Cycle Processor Datapath

BNE 31 25 24 20 19 15 1412 11 76 0
bne rsl, rs2, imm [ imm ] xs2 | rs1 [001] imm | 1100011 |
if (R[rs1]!=R[rs2]) PC « PC + sext(imm) = { inst[31], inst[7],
1nst[30 25], inst[11:8], 0 }
else PC—PC+4
4 To control unit
jr_targ H117]
'E I .
jalbr_targ g bl 1 I“‘
wb_sel
> eq _
pe_plust o5l | regfile (P regfile
, (read) R = (write)
ir[24:20]
+4 >
imm alu_func
ir[31:7]
en
pc_sel PC 8 L T
imm_ty puT + op2_sel
imemreq. | imemresp. dmemreq. dmemreq. dmemresp.
addr data data addr data

11



2. TinyRV1 Single-Cycle Processor

2.2. Single-Cycle Processor Datapath

Adding a New Auto-Incrementing Load Instruction

Draw on the datapath diagram what paths we need to use as well as
any new paths we will need to add in order to implement the following
auto-incrementing load instruction.

LW.AI

lw.ai rd, imm(rsl)

R[rd] < M[ R[rs1] + sext(imm) ]
R[rsl] < R[rsl] +4

20 19 15 14 12 11 7 6 0

imm

| rs1 Jooo| ra [ ooo1o11

PC—PC+4 4 To control unit
jr_targ ir[11:7]
3
jalbr_targ F =l
4 eq
pe_plusd st | regfile e
(read) =
ir[24:20) v
+4 > T
a imm alu_func
T ir[31:7] -
}‘l‘ \l'I pc gen L T
imm_type T + op2_sel
imemreq. | imemresp. dmemreq. dmemreq.
addr data data addr

rf_wen

wb_sel i
— regfile
(write)
)
dmemresp.
data

12



2. TinyRV1 Single-Cycle Processor 2.3. Single-Cycle Processor Control Unit

2.3. Single-Cycle Processor Control Unit

imem dmem

pc imm opl alu wb rf req req
inst sel type sel func sel wen val val
add  pc+4 - rf + alu 1 1
addi
mul  pct+d - - - mul 1 1
1w pc+4 i imm + mem 1 1 1
SwW
jal
jr jr i - - - 1
bne

Need to factor eq status signal into pc_sel signal for BNE!

2.4. Analyzing Performance

Time  Instructions Cycles " Time
Program  Program Instruction ~ Cycles

¢ Instructions / program depends on source code, compiler, ISA
¢ Cycles / instruction (CPI) depends on ISA, microarchitecture
¢ Time / cycle depends upon microarchitecture and implementation

13



2. TinyRV1 Single-Cycle Processor

2.4. Analyzing Performance

Estimating cycle time

There are many paths through the design that start at a state element
and end at a state element. The “critical path” is the longest path across
all of these paths. We can usually use a simple first-order static timing
estimate to estimate the cycle time (i.e., the clock period and thus also

the clock frequency).
4 To control unit
jr_targ ir[11:7]
3
jalbr_targ } g
4 eq
PC plus4 i19:15] | regfile " 5
(read) I
(1[24:20 "
+4 > T
- > imm > alu_func
ir[31:7]
v pc gen | L) f
imm_type T + op2_sel
imemreq. [ imemresp. dmemreq. dmemreq.
addr data data addr

e register read
e register write =17

e regfile read
e regfile write

=1t

=107
=10t

e memory read =201
e memory write = 20T

® +4 unit

e immgen
* mux

e multiplier
* alu

® adder

=4t
=27
=37
=201
=10t
=8t

wb_sel

rf_wen

|

regfile
(write)

dmemresp.

data

14



2. TinyRV1 Single-Cycle Processor 2.4. Analyzing Performance

Estimating execution time

Using our first-order equation for processor performance, how long in
nanoseconds will it take to execute the vector-vector add example

assuming n is 64?

loop:
1w
1w
add
sW
addi
addi
addi
addi
bne

jr

x5,
x6,
X7,
X7,
x13,
x14,
x12,
x15,
x15,
x1

0(x13)
0(x14)
x5, x6
0(x12)
x12, 4
x14, 4
x12, 4
x15, -1
x0, loop

Using our first-order equation for processor performance, how long in
nanoseconds will it take to execute the mystery program assuming n is
64 and that we find a match on the last element.

addi
loop:
1w
bne
addi
jr
foo:
addi
addi
bne
addi
jr

x5,

x6,
x6,
x10,
x1

x12,
x5,
x5,
x10,
x1

x0, O
0(x12)
x14, foo
x5, O
x12, 4
x5, 1
x13, loop
x0, -1
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3. TinyRV1 FSM Processor 3.1. High-Level Idea for FSM Processors

3. TinyRV1 FSM Processor

Time  Instructions = AvgCycles  Time
Program  Program Instruction = Cycle

¢ Instructions / program depends on source code, compiler, ISA
¢ Avg cycles / instruction (CPI) depends on ISA, microarchitecture
* Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time
Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ~1 short

Technology Constraints

* Assume legacy technology Control Unit
where logic is expensive, so Control l l l l T T T TStatus
we want to minimize the Datapath
number of registers and ! P
combinational logic

¢ Assume an (unrealistic) regfile
combinational memory -

¢ Assume multi-ported register o o
files and memories are too req resp

expensive, these structures Memory
can only have a single <l cycle
read /write port combinational

16



3. TinyRV1 FSM Processor 3.1. High-Level Idea for FSM Processors

3.1. High-Level Idea for FSM Processors

add addi mul 1w sw jal jr ©bne

Fetch Instruction v/ v v o v v v v/
Decode Instruction v v v o/ v 4 4
Read Registers v v v v o/ 4 4
Register Arithmetic v/ v o v/ v
Read Memory 4

Write Memory v

Write Registers v v v v v

Update PC v v v o v v v v/

Fetch Decode Reg
Inst . Inst ‘ Arith

Fetch ) [Decode) [ Reg
Inst . Inst ‘ Arith
1w Read Update

Reg PC

add Read Update
Reg PC

Fetch | {Decode) [ Reg Fetch ) [Decode) [ Reg
Inst . Inst ‘ Arith Inst ‘ Inst ‘ Arith

FSM Single-Cycle

Read | [Update Read | [Update
Reg PC Reg PC

3.2. FSM Processor Datapath

Implementing an FSM datapath requires thinking about the required
FSM states, but we will defer discussion of how to implement the
control logic to the next section.

17



3. TinyRV1 FSM Processor

3.2. FSM Processor Datapath

Implementing Fetch Sequence

1 To control unit

pc_en _
1) Ly v v
g DpC] DR ]| DA ]
<
[}
Q. v
E
]
A
C_ alu_
bus_en bus_en
rd
/N bus_en
memreq. memresp.
addr data

(pseudo-control-signal syntax)

18



3. TinyRV1 FSM Processor 3.2. FSM Processor Datapath

Implementing ADD Instruction

1 To control unit

pc_en ir_en a_en b en
T
%) Ly v v -
g DPPC] DIR]|DA]1 DB ]
5 L |
[}
Q. v v
]
w alu 1
(@) func = RF ;:2
rf_wen — rd
c_ alu_ rf_ rf_addr
bus_en bus_en bus_en _sel
alu func rd
/N bus_en
+4: A+4
+ A+B
memreq. memresp.
addr data

(pseudo-control-signal syntax)
add rd, rsl, rs2

19



3. TinyRV1 FSM Processor

3.2. FSM Processor Datapath

Full Datapath for TinyRV1 FSM Processor

1 To control unit

pc_en ir_en a_en b_sel csel -
c_en
1] L A 4 L v L
Zppc] DRI | DA
=]
[}
o L 2
% imm imm | alu x0
A type | gen | func™ RF ;:%
& rf_wen — rd
. eq . .
C_ immgen_ alu_ rf_ rf_addr
bus_en bus_en bus_en bus_en _sel
alu func imm gen rd
wd_en bus_en
+4: A+4 i: sext(Ir[31:20]) L3 -
+ A+B s: sext({IR[31:25]IR[11:7]}) WD
+?2: A+?B b: sext({IR[31],IR[7],IR[30:25],IR[11:8],0})
cmp: A== j: sext({IR[31]IR[19:12] IR[20]IR[30:21],0})
-4 A-4 memreq. memreq.| memresp.
addr data data

ADDI Pseudo-Control-Signal
Fragment

addi rd, rsl, imm

20



3. TinyRV1 FSM Processor

3.2. FSM Processor Datapath

MUL Instruction

mul rd, rsl, rs2

MO: A + RF[x0]

M1: B + RF[rs1]
M2: C + RF[rs2]
M3: A« A+?B;

B+ B<<1,C<«+C>>1

M4: A+ A +?B;

B+~ B<<1;,C«+C>>1

M35: RF[rd] <- A 4? B; goto FO

LW Instruction
lv rd, imm(rsil)
LO: A <+ RF[rs1]
L1: B + sext(imm_i)
L2: memreq.addr <— A + B
L3: RF[rd] < RD; goto FO

SW Instruction
sw rs2, imm(rsi)
S0: WD «+ RF[rs2]

S1: A + RF[rs1]
S2: B + sext(imm_s)

S3: memreq.addr < A + B; goto FO

JAL Instruction

jal rd, imm
JAO: RF[rd] + PC
JA1: B < sext(imm_j)
JA2: PC < A + B; goto FO

JR Instruction

jr rsi

JRO: PC + RF[rs1]; goto FO

BNE Instruction

bne rsl, rs2, imm

BO: A + RF[rs1]
B1: B + RF[rs2]
B2: B < sext(imm_b);
if A == B goto FO
B3: A + PC
B4 A+ A—4
B5: PC < A + B; goto FO




3. TinyRV1 FSM Processor

3.2. FSM Processor Datapath

Adding a Complex Instruction

FSM processors simplify adding complex instructions. New instructions
usually do not require datapath modifications, only additional states.

add.mm rd, rsl, rs2

M[ R[xd] ] <~ M[ R[rs1] ] + M[ R[rs2] ]

1t To control unit

pc_en ir_en a_en
g I i !
abPC| DIR || DA | DB
=
e=)
[}
% y
P . x0
< imm_ imm | alu_
A type " gen | func™ RF E:%
8 rf_wen — rd
. €q
ol % immgen_ alu_ rf_ rf_addr
bus_en bus_en bus_en bus_en _sel
alu func imm gen rd_
wd_en X"~ bus_en
+4: A+4 ir sext(IR[31:20]) IR -
+: A+B s: sext({IR[31:25]IR[11:7]}) WD
+?2: A+?B b: sext({IR[31],IR[7],IR[30:25],IR[11:8],0})
cmp: A== jo sext({IR[31]IR[19:12],IR[20],IR[30:21],0})
-4: A-4 memreq. memreq. | memresp.
addr data data

22



3. TinyRV1 FSM Processor

3.2. FSM Processor Datapath

Adding a New Auto-Incrementing Load Instruction

Implement the following auto-incrementing load instruction using
pseudo-control-signal syntax. Modify the datapath if necessary.

lw.ai rd, imm(rs1)

R[rd] < M[ R[rs1] 4 sext(imm_i) |; R[rs1] + R[rs1] + 4

1 To control unit

-_sel
pc_en ir_en a_en 5 -
c_en
12} l A 4 l A 4
Zpbrpc] DR |EA
=
=
<
Q v
% imm imm alu x0
@) type 1 en func =¥ RF 5:;
g rf_wen —¥ rd
(S[e . .
pc immgen alu_ rf rf_addr
bus_en bus_en bus_en bus_en sel
alu func imm gen rd
wd_en bus en
+4: A+4 i sext(IR[31:20]) L4 -
+: A+B s: sext({IR[31:25]IR[11:7]}) WD
+?0 A+?B b: sext({IR[31]IR[7],IR[30:25) IR[11:8],0})
cmp: A==B jo sext({IR[31],IR[19:12],IR[20],IR[30:21],0})
—4: A-4 memreq. memreq. | memresp.
addr data data

23



3. TinyRV1 FSM Processor

3.3. FSM Processor Control Unit

3.3. FSM Processor Control Unit

®

®Een

&&EN
262626,
O-EEG
O20,0,0,
&E-®

Hardwired FSM

We will study three techniques
for implementing FSM control
units:

e Hardwired control units are
high-performance, but
inflexible

¢ Horizontal pcoding
increases flexibility, requires
large control store

e Vertical ncoding is an
intermediate design point

State

Control
Signal

Logic

Control Signals

(22)

State
Transition
Logic

I

Status Signals

(1)




3. TinyRV1 FSM Processor

3.3. FSM Processor Control Unit

Control signal output table for hardwired control unit

1 To control unit

pc_en ir_en a_en bosel csel -
c_en
1] L A 4 L v L
Zppc] DRI | DA
=
[}
o L 2
% imm imm | alu x0
A type | gen | func™ RF ;:%
& rf_wen — rd
. eq . .
C_ immgen_ alu_ rf_ rf_addr
bus_en bus_en bus_en bus_en _sel
alu func imm gen rd
wd_en bus_en
+4: A+4 i: sext(Ir[31:20]) L3 -
+ A+B s: sext({IR[31:25]IR[11:7]}) WD
+?2: A+?B b: sext({IR[31],IR[7],IR[30:25],IR[11:8],0})
cmp: A== j: sext({IR[31]IR[19:12]IR[20],IR[30:21],0})
-4 A-4 memreq. memreq.| memresp.
addr data data

FO: memreq.addr < PC; A < PC
F1: IR + RD
F2: PC <— A + 4; goto inst

AQ: A < RF[rs1]
Al: B « RF[rs2]
A2: RF[rd] < A + B; goto FO

Bus Enables

Register Enables

Mux

Func

RF MReq

state pc

ig alu

rf

rd pc ir a

b

c wd b ¢

ig

alu sel wenval op

FO 1

1

- - 1 r

F1

F2

+4

A0

Al

A2

25



3. TinyRV1 FSM Processor

3.3. FSM Processor Control Unit

Vertically Microcoded FSM

FO

opcode —»{ decoder

[ &=

Next State Encoding

n : increment uPC by one
d : dispatch based on opcode

+1

uPC

A 4

f : goto state FO
b : goto state FOif A==B

<— €q

N

I

Control Signals (22)

Control Next
Signals State
W
bus || mux
en sel

T Status Signals
1)

* Use memory array (called the control store) instead of random logic
to encode both the control signal logic and the state transition logic

* Enables a more systematic approach to implementing complex
multi-cycle instructions

* Microcoding can produce good performance if accessing the control
store is much faster than accessing main memory

* Read-only control stores might be replaceable enabling in-field
updates, while read-write control stores can simplify diagnostics
and microcode patches

26



3. TinyRV1 FSM Processor 3.3. FSM Processor Control Unit

Control signal store for microcoded control unit

1 To control unit

pc_en ir_en a_en bosel csel -
c_en
1] L A 4 L v L
Zprc] DR | DA
=
[}
o L 2
% imm imm | alu x0
A type | gen | func™ RF ;:%
& rf_wen — rd
. eq . .
pc_ immgen_ alu_ rf_ rf_addr
bus_en bus_en bus_en bus_en _sel
alu func imm gen rd
wd_en bus_en
+4: A+4 i: sext(Ir[31:20]) L3 -
+ A+B s: sext({IR[31:25]IR[117]}) WD
+?2: A+?B b: sext({IR[31],IR[7],IR[30:25],IR[11:8],0})
cmp: A == j: sext({IR[31]IR[19:12]IR[20],IR[30:21],0})
-4 A-4 memreq. memreq.| memresp.
addr data data
BO: A < RF[rs1] B3: A « PC
B1: B + RF[rs2] B4 A+—A-14
B2: B < sext(imm_b); if A == B goto FO B5: PC <— A + B; goto FO
Bus Enables Register Enables Mux  Func RF MReq

state pc ig alu rf rd pc ir a b ¢ wd b ¢ ig alu sel wenval op next

BO 1 1 - - = = r1sl -
Bl 1 1 b - - - rs2 -
B2 1 1 b - b amp - -
B3 1 1 - - - - = -
B4 1 1 - - - -4 - -
B5 1 1 - - - 4+ - -
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3. TinyRV1 FSM Processor

3.4. Analyzing Performance

3.4. Analyzing Performance

Time

Instructions Cycles Time

Program

Estimating cycle time

X
Program Instruction ~ Cycles

1t To control unit

pc_en ir_en a_en
PR i !
a2bpC] DR]|DA] DB
=
e=
<
% y
S . x0
< imm_ imm | alu_ N
A type en func = RF lr”:%
8 rf_wen — rd
. eq
pc_ % immgen_ 7 alu_ rf_ rf_addr
bus_en bus_en bus_en bus_en _sel
alu func imm gen rd_
wd_en bus_en
+4: A+4 i sext(IR[31:20]) IR B
+ A+B s: sext({IR[31:25]IR[11:7]}) WD
+?2: A+?B b: sext({IR[31],IR[7],IR[30:25],IR[11:8],0})
cmp: A==B jo sext({IR[31]IR[19:12],IR[20],IR[30:21],0})
—4: A-4 memreq. memreq. | memresp.
addr data data
o register read/write =1t
o regfile read/write =107
* mem read/write =20t
e immgen =27
* mux =37
® alu =10t
® 1b shifter =1t
® tri-state buf =1t
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3. TinyRV1 FSM Processor 3.4. Analyzing Performance

Estimating execution time

Using our first-order equation for processor performance, how long in
units of T will it take to execute the vector-vector add example

assuming n is 64?

loop:
1w
1w
add
sW
addi
addi
addi
addi
bne

jr

x5,
x6,
X7,
X7,
x13,
x14,
x12,
x15,
x15,
x1

0(x13)
0(x14)
x5, x6
0(x12)
x12, 4
x14, 4
x12, 4
x15, -1
x0, loop

Using our first-order equation for processor performance, how long in
units of T will it take to execute the mystery program assuming n is 64
and that we find a match on the last element.

addi
loop:
1w
bne
addi
jr
foo:
addi
addi
bne
addi
jr

x5,

x6,
x6,
x10,
x1

x12,
x5,
x5,
x10,
x1

x0, O
0(x12)
x14, foo
x5, O
x12, 4
x5, 1
x13, loop
x0, -1
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4. TinyRV1 Pipelined Processor 4.1. High-Level Idea for Pipelined Processors

4. TinyRV1 Pipelined Processor

Time  Instructions = AvgCycles  Time
Program  Program Instruction = Cycle

¢ Instructions / program depends on source code, compiler, ISA
¢ Avg cycles / instruction (CPI) depends on ISA, microarchitecture
* Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time
Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ~1 short

Technology Constraints

¢ Assume modern technology Control Unit
where logic is cheap and fast Control l l l l T T T TStatus
(e.g., fast integer ALU) Datapath
!

* Assume multi-ported register
files with a reasonable

number of ports are feasible ;.
3
* Assume small amount of very b
fast memory (caches) backed - -
imem imem dmem dmem
by large, slower memory req resp req resp
Memory
<1 cycle
combinational
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4. TinyRV1 Pipelined Processor 4.1. High-Level Idea for Pipelined Processors

4.1. High-Level Idea for Pipelined Processors

* Anne, Brian, Cathy, and Dave each have one load of clothes
* Washing, drying, folding, and storing each take 30 minutes

Fixed Time-Slot Laundry

7pm 8pm 9pm 10pm 11pm 12am lam 2am 3am
f t t

Anne's £y
o
Ben's =
o L
I
Load . D 4
Dave's = _I
Load

Pipelined Laundry Pipelined Laundry with Slow Dryers

7pm 8pm 9pm 10pm 7pm 8pm 9pm 10pm 11pm 12am

ames (90 @ e v
perts perts
Cathys Cthys
Dave's A P i

Pipelining lessons

4 4 4 4 y
1 t t t 1

* Multiple transactions operate simultaneously using different resources
¢ Pipelining does not help the transaction latency

¢ Pipelining does help the transaction throughput

* Potential speedup is proportional to the number of pipeline stages

¢ Potential speedup is limited by the slowest pipeline stage

¢ Potential speedup is reduced by time to fill the pipeline
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4. TinyRV1 Pipelined Processor 4.1. High-Level Idea for Pipelined Processors

Applying pipelining to processors

add addi mul 1w sw jal jr  Dbne

Fetch Instruction v v v v 7/ v v v
Decode Instruction v v v v / v v v
Read Registers v v v o/ v v
Register Arithmetic v/ v oo/ 7/ v
Read Memory 4
Write Memory v
Write Registers v v v v v
Update PC v v v v / v v v

v

S g—— g— —

’ BSE

<

=1

7

s =)

n Read \ {Update

=

o

£

3 EE)

£

- Reg
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4. TinyRV1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

4.2. Pipelined Processor Datapath and Control Unit

Incrementally develop an unpipelined datapath

Keep data flowing from left to right

Position control signal table early in the diagram

Divide datapath/control into stages by inserting pipeline registers
Keep the pipeline stages roughly balanced

Forward arrows should avoid “skipping” pipeline registers
Backward arrows will need careful consideration

Control Signal

jbarg
it
pe_plust ir(31:0)
N——s[immger
bc_sel_F +
result_se waddr_W
wh_sel_ M J X
wen_W
regfile regfile
i24201 | (read) (write)
imemreq. imemresp. dmemreq. dmemreq. dmemresp.
addr data data addr data

addi x1, x2, 1 [ F ] E*B 1 1
addi x3, x4, 1 ! ! E : B"B’
addi x5, x6, 1 ! ! E : B‘B’ !
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4. TinyRV1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

Adding a new auto-incrementing load instruction

Draw on the above datapath diagram what paths we need to use as well
as any new paths we will need to add in order to implement the
following auto-incrementing load instruction.

lw.ai rd, imm(rsil)

R[rd] <+ M[ R[rs1] + sext(imm) |; R[rs1] < R[rs1] + 4

val_F
Bk
. valFD 1 Control Signal Control val_xM Control | val-MW Control
Table Logic XM Logic MW Logic
***** D Stage ---- ,,,,,,,,,,,,,,r,,i,, X Smge,,,,,T,,i,, M Stage ,,,,,_,,}W Stage

of
waddr_W

f_
wen_W

ir19:15]

N—>| .
regfile
(write)

regfile
24200 | (read)

ir_FD

alu_fn_X

imemreq  imemresp dmemreq dmemreq dmemresp
addr data data addr data
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4. TinyRV1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

Pipeline diagrams

addi x1, x2, 1

addi x3, x4, 1

addi x5, x6, 1

What would be the total execution time if these three instructions were
repeated 10 times?

Hazards occur when instructions interact with each other in pipeline

* RAW Data Hazards: An instruction depends on a data value
produced by an earlier instruction

e Control Hazards: Whether or not an instruction should be executed
depends on a control decision made by an earlier instruction

¢ Structural Hazards: An instruction in the pipeline needs a resource
being used by another instruction in the pipeline

¢ WAW and WAR Name Hazards: An instruction in the pipeline is
writing a register that an earlier instruction in the pipeline is either
writing or reading

Stalling and squashing instructions

¢ Stalling: An instruction originates a stall due to a hazard, causing all
instructions earlier in the pipeline to also stall. When the hazard is
resolved, the instruction no longer needs to stall and the pipeline
starts flowing again.

* Squashing: An instruction originates a squash due to a hazard, and
squashes all previous instructions in the pipeline (but not itself). We
restart the pipeline to begin executing a new instruction sequence.
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4. TinyRV1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

Control logic with no stalling and no squashing

. , , always_ff @( posedge clk )

Stage A 2 Stage B — Stage C — if ( reset )
Control Control Control 1B <=0
~ Logic [ ] Logic [ Logic [ valb <=
- - - else
i ‘l H ‘l H i val_B <= next_val_A
Stage A Stage B Stage C
- Datapath Datapath [ Datapath [—
Logic Logic Logic next_val_B = val_B

Control logic with stalling and no squashing

control, ostall signals

T
next_
ppuniingerall T

— | . |
Stage A Stage B Stage C
Control Control Control
reg_en_B = !stall_B Logic Logic Logic [~
always_ff Q@( posedge clk ) | | [T en B 1] o
if ( reset )
- Stage A Stage B Stage C
valfB <=0 Datapath [ Datapath [ Datapath —
else if ( reg_en B ) Logic Logic Logic
val_B <= next_val_A ! ! !
ostall_ B = val_B && ( ostall_hazardl B || ostall_hazard2_B )
stall_B = val_B && ( ostall_B || ostall_C || ... )
next_val_B = val_B && !stall_B
ostall_B Originating stall due to hazards detected in B stage.
stall_B Should we actually stall B stage? Factors in ostalls due to hazards

and ostalls from later pipeline stages.

next_val_B  Only send transaction to next stage if transaction in B stage is valid
and we are not stalling B stage.
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4. TinyRV1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

Control logic with stalling and squashing

control, ostall, osquash signals

T next_
ST e | s

Stage A Stage B Stage C
reg_en_B = !stall_B Control Control Control
|| squash_B Logic Logic Logic [~
en_B
always_ff @( posedge clk ) | ________ | | T o] R
if ( reset) Stage A Stage B Stage C
val_B <= 0 Datapath Datapath Datapath [—
else if ( reg_en_B ) Logic Logic Logic
val_B <= next_val_A ' ' '
ostall_B = val_B && ( ostall_hazardl_B || ostall_hazard2_B )
stall B = val_B && ( ostall B || ostall C || ... )
osquash_ B = val_B && !'stall_B &% ( osquash_hazardl B || ... )
squash_ B = val_B && ( osquash_C || ... )
next_val_B = val_B && !stall_B && !squash_B
ostall_B Originating stall due to hazards detected in B stage.
stall_B Should we actually stall B stage? Factors in ostalls due to hazards

and ostalls from later pipeline stages.

osquash_B  Originating squash due to hazards detected in B stage. If this stage
is stalling, do not originate a squash.

squash_B Should we squash B stage? Factors in the originating squashes
from later pipeline stages. An originating squash from B stage
means to squash all stages earlier than B, so osquash_B is not
factored into squash_B.

next_val_B  Only send transaction to next stage if transaction in B stage is valid
and we are not stalling or squashing B stage.
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5. Pipeline Hazards: RAW Data Hazards

5. Pipeline Hazards: RAW Data Hazards

RAW data hazards occur when one instruction depends on a data value
produced by a preceding instruction still in the pipeline. We use
architectural dependency arrows to illustrate RAW dependencies in
assembly code sequences.

addi x1, x2, 1
addi x3, x1, 1
addi x4, x3, 1

Using pipeline diagrams to illustrate RAW hazards

We use microarchitectural dependency arrows to illustrate RAW
hazards on pipeline diagrams.

addi x1, x2, 1 [HF H] E*B I 1
addi x3, x1, 1 ] Hp| : B—Q—

addi x4, x3, 1 B—D—

addi x1, x2, 1

addi x3, x1, 1

addi x4, x3, 1
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5. Pipeline Hazards: RAW Data Hazards

Approaches to resolving data hazards

Expose in Instruction Set Architecture: Expose data hazards in ISA
forcing compiler to explicitly avoid scheduling instructions that
would create hazards (i.e., software scheduling for correctness)

Hardware Scheduling: Hardware dynamically schedules
instructions to avoid RAW hazards, potentially allowing
instructions to execute out of order

Hardware Stalling: Hardware includes control logic that freezes
later instructions until earlier instruction has finished producing
data value; software scheduling can still be used to avoid stalling
(i.e., software scheduling for performance)

Hardware Bypassing/Forwarding: Hardware allows values to be
sent from an earlier instruction to a later instruction before the
earlier instruction has left the pipeline (sometimes called forwarding)

Hardware Speculation: Hardware guesses that there is no hazard
and allows later instructions to potentially read invalid data; detects
when there is a problem, squashes and then re-executes instructions
that operated on invalid data
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5. Pipeline Hazards: RAW Data Hazards 5.1. Expose in Instruction Set Architecture

5.1. Expose in Instruction Set Architecture

Insert nops to delay read of earlier = Insert independent instructions to

write. These nops count as real delay read of earlier write, and
instructions increasing only use nops if there is not
instructions per program. enough useful work

addi x1, x2, 1 addi x1, x2, 1

nop addi x6, x7,

nop addi x8, x9, 1

nop nop

addi x3, x1, 1 addi x3, x1, 1

nop nop

nop nop

nop nop

addi x4, x3, 1 addi x4, x3, 1

Pipeline diagram showing exposing RAW data hazards in the ISA

addi x1, x2, 1

addi x6, x7, 1

addi x8, x9, 1

nop

addi x3, x1, 1

nop

nop

nop

addi x4, x3, 1

Note: If hazard is exposed in ISA, software scheduling is required for
correctness! A scheduling mistake can cause undefined behavior.
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5. Pipeline Hazards: RAW Data Hazards 5.2. Hardware Stalling

5.2. Hardware Stalling

Hardware includes control logic that freezes later instructions (in front
of pipeline) until earlier instruction (in back of pipeline) has finished
producing data value.

Pipeline diagram showing hardware stalling for RAW data hazards

addi x1, x2, 1

addi x3, x1, 1

addi x4, x3, 1

Note: Software scheduling is not required for correctness, but can
improve performance! Programmer or compiler schedules independent
instructions to reduce the number of cycles spent stalling.

Modifications to datapath/control to support hardware stalling

vaLF [T - . .
w Val_FD 4 A ]

varb CSig Table Control Al Control | V- Control

Logic XM D“ Logic S MW D“ Logic

Stall Logic

ir(31:0] @

mm_type

"l

irl19:15)
regfile

regfile
it2s20 | (read)

(write)

2 sel D ©p2_DX

sd_DX

imemreq. imemresp. dmemreq. dmemreq. dmemresp.
addr data data addr data
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5. Pipeline Hazards: RAW Data Hazards 5.3. Hardware Bypassing/Forwarding

Deriving the stall signal

add addi mul 1w sw jal jr bne

rsl_en

rs2_en

rf_wen

ostall_waddr_X_rsl1_D =
val_D && rsl_en_ D && val_X && rf_wen_X
&% (inst_rs1_D == rf_waddr_X) && (rf_waddr_X != 0)

ostall_waddr_M_rs1_D =
val_D && rsl_en_D && val_M && rf_wen_M
&% (inst_rs1_D == rf_waddr_M) && (rf_waddr_M != 0)

ostall_waddr_W_rsl1_D =
val_D && rsl_en_D && val_W && rf_wen_W
&% (inst_rs1_D == rf_waddr_W) && (rf_waddr_W != 0)

similar for ostall signals for rs2 source register ...

ostall_D = val_D
&& ( ostall_waddr_X_rsl_D || ostall_waddr_X_rs2_D
|| ostall_waddr_M_rs1_D || ostall_waddr_M_rs2_D
|| ostall_waddr_W_rs1_D || ostall_waddr_W_rs2_D )

5.3. Hardware Bypassing/Forwarding

Hardware allows values to be sent from an earlier instruction (in back
of pipeline) to a later instruction (in front of pipeline) before the earlier
instruction has left the pipeline. Sometimes called “forwarding”.
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5. Pipeline Hazards: RAW Data Hazards 5.3. Hardware Bypassing/Forwarding

Pipeline diagram showing hardware bypassing for RAW data hazards

addi x1, x2, 1

addi x3, x1, 1

addi x4, x3, 1

Adding single bypass path to support limited hardware bypassing

val_F l i 7

val_FD T CSig Table
Stall & Bypass
Logic

]
Control
Logic

| | of
sel X! v waddr_W
b_sel_M

f_
' ' wen_W
result result

XM MW

i19:15]

regfile

regfile
24201 | (read)

(write)

alu_fn_X

imemreq  imemresp dmemreq dmemreq dmemresp
addr data data addr data

Deriving the bypass and stall signals

ostall_waddr_X_rs1_D
bypass_waddr_X_rs1_D

val_D && rsl_en_D && val_X && rf_wen_X
&& (inst_rs1_D == rf_waddr_X) && (rf_waddr_X != 0)

0
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5. Pipeline Hazards: RAW Data Hazards 5.3. Hardware Bypassing/Forwarding

Pipeline diagram showing multiple hardware bypass paths

addi x2, x10, 1

addi x2, x11, 1

addi x1, x2, 1

addi x3, x4, 1

addi x5, x3, 1

add x6, x1, x3

sw x5, 0(x1)

jr x6

Adding all bypass path to support full hardware bypassing

Ty — ] . ]

: A -]
Stclsll&gr ']l;able Control val XM Control | valLMW Control
a Logi}é pass Logic XM |" Logic S MW |" Logic
77777 D Stage -~ -f-----------oon ,,,l,, M Stage """"iw Stage

310 [———m

e

imm_type

rf_
waddr_W

wh_sel_ M 1 rf_
wen_W

result result
MW

ir[19:15]
regfile
(write)

regfile [
irl2420) | (read) | |

op2_sel D °P2DX
op2_

byp_

sel_D IAl

bypass_from_X sd_DX

alu_fn_X

bypass_from_W. : : .

imemreq  imemresp dmemreq dmemreq dmemresp
addr data data addr data
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5. Pipeline Hazards: RAW Data Hazards 5.3. Hardware Bypassing/Forwarding

Handling load-use RAW dependencies

ALU-use latency is only one cycle, but load-use latency is two cycles.

1w x1, 0(x2)

addi x3, x1, 1

1w x1, 0(x2)

addi x3, x1, 1

ostall_load_use_X_rsl1_D =
val_D && rsl_en_D && val_X && rf_wen_X
&& (inst_rs1_D == rf_waddr_X) && (rf_waddr_X !'= 0)
&& (op_X == 1lw)

ostall_load_use_X_rs2_D =
val_D && rs2_en_D && val_X && rf_wen_X
&& (inst_rs2_D == rf_waddr_X) && (rf_waddr_X !'= 0)
&& (op_X == 1lw)

ostall_D =
val_D && ( ostall_load_use_X_rsl_D || ostall_load_use_X_rs2_D )

bypass_waddr_X_rsl_D =
val_D && rsl_en_D && val_X && rf_wen_X
&& (inst_rs1_D == rf_waddr_X) && (rf_waddr_X !'= 0)
&& (op_X != 1lw)

bypass_waddr_X_rs2_D =
val_D && rs2_en_D && val_X && rf_wen_X
&& (inst_rs2_D == rf_waddr_X) && (rf_waddr_X !'= 0)
&& (op_X != 1lw)
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5. Pipeline Hazards: RAW Data Hazards 5.4. RAW Data Hazards Through Memory

Pipeline diagram for simple assembly sequence

Draw a pipeline diagram illustrating how the following assembly
sequence would execute on a fully bypassed pipelined TinyRV1
processor. Include microarchitectural dependency arrows to illustrate
how data is transferred along various bypass paths.

1w x1, 0(x2)

1w x3, 0(x4)

add x5, x1, x3

sw x5, 0(x6)

addi x2, x2, 4

addi x4, x4, 4

addi x6, x6, 4

addi x7, x7, -1

bne x7, x0, loop

5.4. RAW Data Hazards Through Memory

So far we have only studied RAW data hazards through registers, but
we must also carefully consider RAW data hazards through memory.

sw x1, 0(x2)
lw x3, 0(x4) # RAW dependency occurs if R[x2] == R[x4]

‘sw x1, 0(x2)

‘ 1w x3, 0(x4) ‘

46



6. Pipeline Hazards: Control Hazards

6. Pipeline Hazards: Control Hazards

Control hazards occur when whether or not an instruction should be
executed depends on a control decision made by an earlier instruction
We use architectural dependency arrows to illustrate control
dependencies in assembly code sequences.

Static Instr Sequence Dynamic Instr Sequence
addi x1, x0, 1 addi x1, x0, 1
jal x0, foo jal x0, foo
opA addi x2, x3, 1
opB bne x0, x1, bar
foo: addi x2, x3, 1 addi x4, x5, 1
bne x0, x1, bar
opC
opD
opE

bar: addi x4, x5, 1

Using pipeline diagrams to illustrate control hazards

We use microarchitectural dependency arrows to illustrate control
hazards on pipeline diagrams.

addi x1, x0, 1

jal x0, foo

addi x2, x3, 1

bne x0, x1, bar

addi x4, x5, 1
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6. Pipeline Hazards: Control Hazards 6.1. Expose in Instruction Set Architecture

The jump resolution latency and branch resolution latency are the
number of cycles we need to delay the fetch of the next instruction in
order to avoid any kind of control hazard. Jump resolution latency is
two cycles, and branch resolution latency is three cycles.

addi x1, x0, 1

jal x0, foo

addi x2, x3, 1

bne x0, x1, bar

addi x4, x5, 1

Approaches to resolving control hazards

* Expose in Instruction Set Architecture: Expose control hazards in
ISA forcing compiler to explicitly avoid scheduling instructions that
would create hazards (i.e., software scheduling for correctness)

* Software Predication: Programmer or compiler converts control
flow into data flow by using instructions that conditionally execute
based on a data value

e Hardware Speculation: Hardware guesses which way the control
flow will go and potentially fetches incorrect instructions; detects
when there is a problem and re-executes instructions that are along
the correct control flow

¢ Software Hints: Programmer or compiler provides hints about
whether a conditional branch will be taken or not taken, and
hardware can use these hints for more efficient hardware speculation
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6. Pipeline Hazards: Control Hazards 6.1. Expose in Instruction Set Architecture

6.1. Expose in Instruction Set Architecture

Expose branch delay slots as part of the instruction set. Branch delay
slots are instructions that follow a jump or branch and are always
executed regardless of whether a jump or branch is taken or not taken.
Compiler tries to insert useful instructions, otherwise inserts nops.

addi x1, x0, 1

jal x0, f . .
1J1 2 x, oo Assume we modify the TinyRV1
i instruction set to specify that JAL,
ZPB and JR instructions have a
p

single-instruction branch delay
slot (i.e., one instruction after a
JAL and JR is always executed)

foo: addi x2, x3, 1
bne x0, x1, bar

zzg and the BNE instruction has a

opC two-instruction branch delay slot

opD (i.e., two instructions after a BNE
P are always executed).

opE

bar: addi x4, x5, 1

Pipeline diagram showing using branch delay slots for control hazards

addi x1, x0, 1

jal x0, foo

nop

addi x2, x3, 1

bne x0, x1, bar

nop

nop

addi x4, x5, 1
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6. Pipeline Hazards: Control Hazards 6.2. Hardware Speculation

6.2. Hardware Speculation

Hardware guesses which way the control flow will go and potentially
fetches incorrect instructions; detects when there is a problem and
re-executes instructions the instructions that are along the correct
control flow. For now, we will only consider a simple branch prediction
scheme where the hardware always predicts not taken.

Pipeline diagram when branch is not taken

addi x1, x0, 1

jal x0, foo

opA

addi x2, x3, 1

bne x0, x1, bar

opC

opD

Pipeline diagram when branch is taken

addi x1, x0, 1

jal x0, foo

opA

addi x2, x3, 1

bne x0, x1, bar

opC

opD

addi x4, x5, 1
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6. Pipeline Hazards: Control Hazards 6.2. Hardware Speculation

Modifications to datapath/control to support hardware speculation

val_F l I | . ‘

"—P‘—\mﬂ_' . aCHSigyszbslse . val_ XM Cﬁ)nt.rol v 2] Control
Squ’ash Log;c s XM ogic s MW Logic
77777 D Stage ---- ,,,,,,,,,,,,,,r,,i” X Stage'""v**i” ’""‘"’iw Stage

of
waddr_W
b_sel M 1

rf_
' wen_W
result

MW

ir{1915] i
regfile [ regfile
ii2e0] | (read) | | (write)

op2_
byp.
sél_D

alu_fn_X

bypass_from_X sd_DX

bypass_from_W.

imemreq  imemresp
addr data

dmemreq dmemreq dmemresp
data addr data

Deriving the squash signals

osquash_j_D = (op_D == jal) || (op_D == jr)
osquash_br_X = (op_X == bne) && 'eq_X

Our generic stall/squash scheme gives priority to squashes over stalls.

osquash_D = val_D && !'stall_D && osquash_j_D
squash_D = val_D && osquash_X

osquash_X = val_D && !stall_X && osquash_br_X
squash_X 0

Important: PC select logic must give priority to older instructions
(i.e., prioritize branches over jumps)! Good quiz question?
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6. Pipeline Hazards: Control Hazards 6.2. Hardware Speculation

Pipeline diagram for simple assembly sequence

Draw a pipeline diagram illustrating how the following assembly
sequence would execute on a fully bypassed pipelined TinyRV1
processor that uses hardware speculation which always predicts
not-taken. Unlike the “standard” TinyRV1 processor, you should also
assume that we add a single-instruction branch delay slot to the
instruction set. So this processor will partially expose the control
hazard in the instruction, but also use hardware speculation. Include
microarchitectural dependency arrows to illustrate both data and
control flow.

addi x1, x2, 1

bne x0, x3, foo # assume R[rs] !'= 0

addi x4, x5, 1 # instruction is in branch delay slot
addi x6, x7, 1

foo:
add x8, x1, x4
addi x9, x1, 1
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

6.3. Interrupts and Exceptions

Interrupts and exceptions alter the normal control flow of the program.
They are caused by an external or internal event that needs to be
processed by the system, and these events are usually unexpected or
rare from the program’s point of view.

¢ Asynchronous Interrupts

— Input/output device needs to be serviced
— Timer has expired
— Power distruption or hardware failure

* Synchronous Exceptions

— Undefined opcode, privileged instruction
— Arithmetic overflow, floating-point exception
Misaligned memory access for instruction fetch or data access

Memory protection violation
— Virtual memory page faults
System calls (traps) to jump into the operating system kernel

Interrupts and Exception Semantics

¢ Interrupts are asynchronous with respect to the program, so the
microarchitecture can decide when to service the interrupt

* Exceptions are synchronous with respect to the program, so they
must be handled immediately
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

¢ To handle an interrupt or exception the hardware/software must:

Stop program at current instruction (I), ensure previous insts finished
Save cause of interrupt or exception in privileged arch state

Save the PC of the instruction I in a special register (EPC)

Switch to privileged mode

Set the PC to the address of either the interrupt or the exception handler
Disable interrupts

Save the user architectural state

Check the type of interrupt or exception

Handle the interrupt or exception
Enable interrupts
Switch to user mode

Set the PC to EPC if I should be restarted
Potentially set PC to EPC+4 if we should skip I

Handling a misaligned data address and syscall exceptions

Static Instr Sequence Dynamic Instr Sequence
addi x1, x0, 0x2001 addi x1, x0, 0x2001
1w x2, 0(x1) lw  x2, 0(x1) (excep)
syscall opD
opB opE
opC opF

opG

exception_hander: opH
opD # disable interrupts addi EPC, EPC, 4
opE # save user registers eret
opF # check exception type syscall (excep)
opG # handle exception opD
opH # enable interrupts opE
addi EPC, EPC, 4 opF
eret
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

Interrupts and Exceptions in a RISC-V Pipelined Processor

AH
[ FHHD M W
R e

Inst Address Tllegal Arithmetic Data Address
Exceptions Instruction Overflow Exceptions

¢ How should we handle a single instruction which generates
multiple exceptions in different stages as it goes down the pipeline?

— Exceptions in earlier pipeline stages override later exceptions for a given
instruction

¢ How should we handle multiple instructions generating exceptions
in different stages at the same or different times?

— We always want the execution to appear as if we have completely
executed one instruction before going onto the next instruction

— So we want to process the exception corresponding to the earliest
instruction in program order first

- Hold exception flags in pipeline until commit point

— Commit point is after all exceptions could be generated but before any
architectural state has been updated

— To handle an exception at the commit point: update cause and EPC,
squash all stages before the commit point, and set PC to exception handler

* How and where to handle external asynchronous interrupts?

— Inject asynchronous interrupts at the commit point

— Asynchronous interrupts will then naturally override exceptions caused
by instructions earlier in the pipeline
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

Xcept_XM

Modifications to datapath/control to support exceptions
Exception

xcepLFli.D xcept_DX
Handling Logic

v ¥y — —1

T val_FD E‘ CSig Table Control val_XM Control| val-MW onol
' Stall, Bypass, & g q N
. ! Squas{l%og‘ic Logic XM Logic MW Logic
,,,,, D Stage -~ ”fTﬂf"f”":rﬂiﬁ X Stage- f"v:*"l*' M Stage ————3———iw Stage
- ' '
10— :
:‘n‘vp;] '
andler |_T_,
I '
imm_type : of
| waddr W
wh_sel M 1 J T
' wen_
[19:15] Mw l
regfile [ regfile
ii2e0] | (read) | | (write)

ns

rf_
waddrl_W

op2_
byp_
1.D

sel

alu_fn_X

bypass_from_X sd_DX
bypass_from_M ;
bypass_from W

imemreq  imemresp dmemreq dmemreq dmemresp
addr data data addr data

Deriving the squash signals

osquash_j_D = (op_D == jal) || (op_D == jr)
osquash_br_X = (op_X == bne) && 'eq_X
osquash_xcept_M = exception_M

Control logic needs to redirect the front end of the pipeline just like for a
jump or branch. Again, squashes take priority over stalls, and PC select

logic must give priority to older instructions (i.e., priortize exceptions,
over branches, over jumps)!
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6. Pipeline Hazards: Control Hazards

6.3. Interrupts and Exceptions

Pipeline diagram of exception handling

addi x1, x0, 0x2001

lw  x2, 0(x1) # assume causes misaligned address exception

syscall # causes a syscall exception

opB
opC

exception_hander:
opD # disable interrupts
opE # save user registers
opF # check exception type
opG # handle exception
opH # enable interrupts
addi EPC, EPC, 4
eret
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7. Pipeline Hazards: Structural Hazards

7. Pipeline Hazards: Structural Hazards

Structural hazards occur when an instruction in the pipeline needs a
resource being used by another instruction in the pipeline. The TinyRV1
processor pipeline is specifically designed to avoid structural hazards.

Let’s introduce a structural hazard by allowing instructions that do not
do any real work in the M stage (i.e., non-memory instructions) to
effectively skip that stage. This would require adding an extra path
which “skips over” the pipeline reigster between the X and M stages
and connects directly to the writeback mux at the end of the M stage.
For non-memory instructions we set wb_sel_M to choose the value from
the end of the X stage, while for memory instructions we set wb_sel_M
to choose the value coming back from memory.

val_F l I : ] . | : ‘
T o s o TN B I B e
T val_FD T CSig Table val_DX Control|  val-xm Control|  val-MW ot
\ Stall, Bypass, & : : :
S il Logic 4—|c~;xM |“ Logic 4’|&MW |“ Logic
fffff D Stage ---- ""”""”"rffif—x Stage—fﬂ#fﬂf M Stage ,,,,,3,,,£w Stage

of
waddr_W

_sel Mt tf

result
_MW

irl19:15] ||
regfile

regfile
i2420, | (vead) | |

(write)

bypass_from_X sd_DX
bypass_from M T
bypass_from W

imemreq  imemresp dmemreq dmemreq dmemresp
addr data data  addr  data
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7. Pipeline Hazards: Structural Hazards 7.1. Expose in Instruction Set Architecture

Using pipeline diagrams to illustrate structural hazards

We use structural dependency arrows to illustrate structural hazards.

addi x1, x2, 1

addi x3, x4, 1

1w x5, 0(x8)

addi x7, x8, 1

Note that the key shared resources that are causing the structural
hazard are the pipeline registers at the end of the M stage. We cannot
write these pipeline registers with the transaction that is in the X stage
and also the transaction that is the M stage at the same time.

Approaches to resolving structural hazards

* Expose in Instruction Set Architecture: Expose structural hazards in
ISA forcing compiler to explicitly avoid scheduling instructions that
would create hazards (i.e., software scheduling for correctness)

¢ Hardware Stalling: Hardware includes control logic that freezes
later instructions until earlier instruction has finished using the
shared resource; software scheduling can still be used to avoid
stalling (i.e., software scheduling for performance)

¢ Hardware Duplication: Add more hardware so that each instruction
can access separate resources at the same time

7.1. Expose in Instruction Set Architecture

Insert independent instructions or nops to delay non-memory
instructions if they follow a LW or SW instruction.
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7. Pipeline Hazards: Structural Hazards 7.2. Hardware Stalling

Pipeline diagram showing exposing structural hazards in the ISA

addi x1, x2, 1

addi x3, x4, 1

1w x5, 0(x8)

nop

addi x7, x8, 1

7.2. Hardware Stalling

Hardware includes control logic that stalls a non-memory instruction if
it follows a LW or SW instruction.

Pipeline diagram showing hardware stalling for structural hazards

addi x1, x2, 1

addi x3, x4, 1

1w x5, 0(x6)

addi x7, x8, 1

Deriving the stall signal
ostall_wport_hazard_D = val_D && !mem_inst_D && val_X && mem_inst_X

where mem_inst is true for a LW or SW instruction and false otherwise.
Stall far before the structural hazard actually occurs, because we know
exactly how instructions move down the pipeline. Also possible to use
dynamic arbitration in the back-end of the pipeline.
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7. Pipeline Hazards: Structural Hazards

7.3. Hardware Duplication

7.3. Hardware Duplication

Add more pipeline registers at the end of M stage and a second write
port so that non-memory and memory instructions can writeback to the
register file at the same time.

val_F

I | ‘

CSig Table Control | val-MW Control
Stall, Bypass, & . .
Squash Logic Logic S MW Logic
77777 D Stage ---- ,,,,,,,,,,,,,,r,,iﬁ X Stage—ﬂﬂvﬂflf' M Stage *""f’"}w Stage

i3] ————) :

non_mem
W

imm_type

imemreq

addr

imemresp
a

ta

ir19:15]

regfile [
2420 | (read) | |

op2_DX

alu_fn_X

mem_result
MwW

sd_DX

Bypass_from_W.

data

addr

data

dmemreq dmemreq dmemresp

v

regfile
(write)

of
weni_W

rf_
waddrl_W

Does allowing early writeback help performance in the first place?

addi

x1,

x2,

addi

x3,

x1,

addi

x4,

x3,

addi

x5,

x4,

addi

x6,

x5,

addi

X7,

x6,
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8. Pipeline Hazards: WAW and WAR Name Hazards

8. Pipeline Hazards: WAW and WAR Name Hazards

WAW dependencies occur when an instruction overwrites a register
than an earlier instruction has already written. WAR dependencies
occur when an instruction writes a register than an earlier instruction
needs to read. We use architectural dependency arrows to illustrate
WAW and WAR dependencies in assembly code sequences.

mul x1, x2, x3
addi x4, x1, 1

addi x1, x5, 1

WAW name hazards occur when an instruction in the pipeline writes a
register before an earlier instruction (in back of the pipeline) has had a
chance to write that same register.

WAR name hazards occur when an instruction in the pipeline writes a
register before an earlier instuction (in back of pipeline) has had a
chance to read that same register.

The TinyRV1 processor pipeline is specifically designed to avoid any
WAW or WAR name hazards. Instructions always write the registerfile
in-order in the same stage, and instructions always read registers in the
front of the pipeline and write registers in the back of the pipeline.

Let’s introduce a WAW name hazard by using an iterative variable
latency multiplier, and allowing other instructions to continue
executing while the multiplier is working.
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8. Pipeline Hazards: WAW and WAR Name Hazards 8.1. Software Renaming

Using pipeline diagrams to illustrate WAW name hazards

We use microarchitectural dependency arrows to illustrate WAW
hazards on pipeline diagrams.

mul x1, x2, x3

addi x4, x6, 1

addi x1, x5, 1

Approaches to resolving structural hazards

¢ Software Renaming: Programmer or compiler changes the register
names to avoid creating name hazards

¢ Hardware Renaming: Hardware dynamically changes the register
names to avoid creating name hazards

¢ Hardware Stalling: Hardware includes control logic that freezes
later instructions until earlier instruction has finished either writing
or reading the problematic register name

8.1. Software Renaming

As long as we have enough architectural registers, renaming registers in
software is easy. WAW and WAR dependencies occur because we have
a finite number of architectural registers.

mul x1, x2, x3
addi x4, x1, 1
addi x7, x5, 1
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9. Summary of Processor Performance 8.2. Hardware Stalling

8.2. Hardware Stalling

Simplest approach is to add stall logic in the decode stage similar to
what the approach used to resolve other hazards.

mul x1, x2, x3

addi x4, x6, 1

addi x1, x5, 1

Deriving the stall signal

ostall_struct_hazard_ D = val_D && (op_D == MUL) && !imul_rdy_D
ostall_waw_hazard_D =

val_D && rf_wen_D && val_Z && rf_wen_Z
&& (rf_waddr_D == rf_waddr_Z) && (rf_waddr_Z !'= 0)

9. Summary of Processor Performance

Time  Instructions Cycles Time
Program  Program ~ Instruction = Cycles

Results for vector-vector add example

Microarchitecture Inst CPI Cycle Time Exec Time
Single-Cycle Processor 576 1.0 74T 43kt
FSM Processor 576 6.7 40T 154kt

Pipelined Processor 576
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9. Summary of Processor Performance

Estimating cycle time for pipelined processor

val_F l l 7

CSig Table
Stall, Bypass, &
Squash Logic

[ A
Control | val-MW Control
Logic MW D“ Logic
- "i**XStage'"W *"l”MStage ******** iWSlage

| ‘
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imm_type
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 sel D 0P2_DX

alu_fn_X

result result
XM MW

i19:15] | |
regfile opl_sel
' 2420 | (read) | |
: op2
| bypass_from_M
! bypass_from W
imemreq  imemresp
addr ata
e registerread =17

e register write =17

e regfileread =101
o regfile write =107
e memory read =201
e memory write = 207

® +4 unit =4t
e immgen =27
* mux =37
e multiplier =201
® alu =10t
® adder =871

dmemreq dmemreq dmemresp
data addr data

rf_
waddr_W

f_
wen_W

regfile
(write)
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9. Summary of Processor Performance

Estimating execution time

Using our first-order equation for processor performance, how long in T
will it take to execute the vvadd example assuming n is 64?

loop:

1w x5, 0(x13)
1w x6, 0(x14)
add x7, x5, x6
sw x7, 0(x12)
addi x13, x12, 4
addi x14, x14, 4
addi x12, x12, 4
addi x15, x15, -1
bne x15, x0, loop
jr x1

1w

1w

add

SW

addi

addi

addi

addi

bne

opA

opB

1w
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9. Summary of Processor Performance

Using our first-order equation for processor performance, how long in T
will it take to execute the mystery program assuming n is 64 and that
we find a match on the last element.

addi x5, x0, O
loop:

1w x6, 0(x12)
bne x6, x14, foo
addi x10, x5, O
jr x1

foo:

addi x12, x12, 4
addi x5, x5, 1
bne x5, x13, loop
addi x10, x0, -1
jr x1
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10. Case Study: Transition from CISC to RISC

10. Case Study: Transition from CISC to RISC

* Microcoding thrived in the 1970’s

ROM s significantly faster than DRAMSs

For complex instruction sets, microcode was cheaper and simpler
New instructions supported without modifying datapath

- Fixing bugs in controller is easier

ISA compatibility across models relatively straight-forward

From
order . 1‘ +

register -
Register Il
b
&
o
Register | Macrix A Matrix B
e,
e = EEARRL T
------ ' ! I
! I r i
._I ! | H
j T [ 1
. 1 I T T T
Contral : b 4 -
| ' ' ; i
ulses i )
P & box d L.
1 1 ¥ :
Decoding B 3 _It : '
tree | T | | .
ol L bl e 4
B e —
To arithmetical ' From
unit, concral conditional
registers, eic. flip-flop
— Maurice Wilkes, 1954
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10. Case Study: Transition from CISC to RISC 10.1. Example CISC: IBM 360/M30

10.1. Example CISC: IBM 360/M30

MB30 M40 M50 Meé65

Datapath width (bits) 8 16 32 64
pinst width (bits) 50 52 85 87
pcode size (1K pinsts) 4 4 2.75 2.75
pstore technology CCROS TROS BCROS BCROS
pstore cycle (ns) 750 625 500 200
Memory cycle (ns) 1500 2500 2000 750
Rental fee ($K/month) 4 7 15 35

TROS = transformer read-only storage (magnetic storage)
BCROS = balanced capacitor read-only storage (capacitive storage)
CCROS = card capacitor read-only storage (metal punch cards, replace in field)
Only the fastest models (75,95) were hardwired

IBM 360/M30 microprogram for register-register logical OR

wof | o1———-1161| | 111117 nn 1150 . ncﬁ
Ins ructlon etc
44 J+0+1 = JC R—=G *1=-JC 101\[:
J ~ MN,MS WRITE 1 = MN, MS WRITE
14 RO, R1 70 GZ G3 G4, G5 GS G7
CA C2- -CB C4———— o

10--——11CA| 00- ~11D0| 01— ~ 1105 T
Fegtch flrst t
R-G Uige'?
f operands
i G2, G3 D4 ; ;
,,,,, Fl |- fc7——————-ca' |--cs. —CH |-

-11E8| —-11E ~11EA| -—-11E8
Prepare or ext Byte
V+0+1— V| +C - U, LUV - MN, LS|
LT - MN, LS WR TE

s E; S --| A -
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10. Case Study: Transition from CISC to RISC 10.1. Example CISC: IBM 360/M30

IBM 360/M30 microprogram for register-register binary ADD

Analyzing Microcoded Machines

¢ John Cocke and group at IBM

- Working on a simple pipelined processor, 801, and advanced compilers

— Ported experimental PL8 compiler to IBM 370, and only used simple
register-register and load/store instructions similar to 801

— Code ran faster than other existing compilers that used all 370
instructions! (up to 6 MIPS, whereas 2 MIPS considered good before)

¢ Joel Emer and Douglas Clark at DEC

— Measured VAX-11/780 using external hardware

— Found it was actually a 0.5 MIPS machine, not a 1 MIPS machine

— 20% of VAX instrs = 60% of pcode, but only 0.2% of the dynamic execution
e VAX 8800, high-end VAX in 1984

— Control store: 16K x147b RAM, Unified Cache: 64K x8b RAM
— 4.5x more microstore RAM than cache RAM!
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10. Case Study: Transition from CISC to RISC 10.1. Example CISC: IBM 360/M30

From CISC to RISC

¢ Key changes in technology constraints
— Logic, RAM, ROM all implemented with MOS transistors
- RAM = same speed as ROM

¢ Use fast RAM to build fast instruction cache of user-visible
instructions, not fixed hardware microfragments

— Change contents of fast instruction memory to fit what app needs

¢ Use simple ISA to enable hardwired pipelined implementation

— Most compiled code only used a few of CISC instructions
— Simpler encoding allowed pipelined implementations
- Load/Store Reg-Reg ISA as opposed to Mem-Mem ISA

* Further benefit with integration

— Early 1980’s — fit 32-bit datapath, small caches on single chip
— No chip crossing in common case allows faster operation

Vertical pCode RISC
Controller Controller

uPC |_UserPC_|
ROM for RAM for

pinst Instr Cache

Small "Larger"
Decoder Decoder

222

2222




10. Case Study: Transition from CISC to RISC

10.2. Example RISC: MIPS R2K

10.2. Example RISC: MIPS R2K

* MIPS R2K is one of the first popular
pipelined RISC processors

e MIPS R2K implements the MIPS I
instruction set

¢ MIPS = Microprocessor without
Interlocked Pipeline Stages

MIPSI

!

MIPSII

'

MIPSIII  MIPS32

!

MIPSIV

!

MIPS64

MIPS16

* MIPS I used software scheduling to avoid some RAW hazards by
including a single-instruction load-use delay slot

¢ MIPS I used software scheduling to avoid some control hazards by
including a single-instruction branch delay slot

One-Instr Branch Delay Slot One-Instr Load-Use Delay Slot
addiu r1, r2, 1 1w rl, 0(r2)
j foo lw r3, 0(rd)
addiu r3, r4, 1 # BDS addiu r2, r2, 4 # LDS
addu r5, r1, r3
foo:
addiu r5, r6, 1 Deprecated in MIPS II instruction
bne 17, r8, bar set; legacy code can still execute
addiu r9, r10, 1 # BDS on new microarchitectures, but
code using the MIPS II instruction
bar: set can rely in hardware stalling

Present in all MIPS instruction
sets; not possible to depricate and
still enable legacy code to execute
on new microarchitectures
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10. Case Study: Transition from CISC to RISC 10.2. Example RISC: MIPS R2K

MIPS R2K Microarchitecture

The pipelined datapath and control

were located on a single die. Cache | Control Unit I:I Datapath |
control and memory management unit [ —— 1
were also integrated on-die, but the | 13 CO“I""“er | | D$ C‘“I‘"O”er |
actual tag and data storage for the l l

| I$ (4-32KB) | | DS (4-32KB) |

cache was located off-chip.

Used two-phase clocking to enable five pipeline stages to fit into four
clock cycles. This avoided the need for explicit bypassing from the W
stage to the end of the D stage.

IF Ro MEM w8
from to

Instruction 1 from e AU from .
: register Db re?i.‘: er

file

I-cache

Instriction 2
H RD AU MEM WB

-

Time >

l |nsm;¢'i°n3 ’ IF l RD AU MEM WB ‘

Two-phase clocking enabled a single-cycle branch resolution latency
since register read, branch address generation, and branch comparison
can fit in a single cycle.

Branch
instryction

Branch
address

RD MEM WB

I

Branch ’ IF \ I RD AU MEM wa ‘
delay .

IF | RD ALU MEM | WB ‘

Brech ’
target H H
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10. Case Study: Transition from CISC to RISC 10.2. Example RISC: MIPS R2K

MIPS R2K VLSI Design

Process: 2 um, two metal layers
Clock Frequency: 8-15 MHz
Size: 110K transistors, 80 mm?2




10. Case Study: Transition from CISC to RISC 10.2. Example RISC: MIPS R2K

40
Performance Ratio
35+
Ratio of
mMiPps 39
to o5
VAX
20+ ; :
Instructions Executed Ratio
15+
2x more instr
1.0+ 6x lower CPI
2-4x higher perf
05}
0.0 @ & A L N © Q R N
Y N S Q TS & = o
@ O L & <3 3¢
& FE S
-- H&P, Appendix J, from Bhandarkar and Clark, 1991
CISC/RISC Convergence
s e Jeml el ) | () Ll AR
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aE —1 | 168 Pre-Decode, Fetch Buffer |
§ o Instruction $6 instructions
Fetch Unit
L I 18 Entry Instruction Queue I
] ! Y ! !
Complex | Simple || Simple || Simple
ELiE **IDecoder] [Decoder| [Decoder] Decode

System Interface

‘ ‘—*Mops $luop $1qu ‘lduop
e [ 28 Entry pop LSD Buffer ]

64 enties 32K, two-way associaive
L 4 pops

MIPS R10K uses sophisticated Intel Nehalem frontend breaks x86 CISC

out-of-order engine; branch into smaller RISC-like pops; pcode engine
delay slot not useful handles rarely used complex instr
— Gwennap, MPR, 1994 — Kanter, Real World Technologies, 2009
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10. Case Study: Transition from CISC to RISC 10.2. Example RISC: MIPS R2K

Microprogamming Today

¢ Microprogramming is far from extinct

Played a crucial role in microprocessors of the 1980s
(DEC VAX, Motorola 68K series, Intel 386/486)

* Microprogramming plays assisting role in many modern processors
(AMD Phenom, Intel Nehalem, Intel Atom, IBM Z196)

— 761 Z196 instructions executed with hardwired control
— 219 Z196 “complex” instructions always executed with microcode
— 24 7196 instructions conditionally executed with microcode

Patchable microcode common for post-fabrication bug fixes (Intel
processors load pcode patches at bootup)

76



