
ECE 2400 Computer Systems Programming, Fall 2021
PA4: Handwriting Recognition Systems – Linear vs. Binary Search

School of Electrical and Computer Engineering
Cornell University

revision: 2021-11-16-10-08

1. Introduction

The fourth programming assignment will enable you to apply all of the concepts you have learned
throughout the semester in the context of a simple machine learning system. You will leverage what
you have learned on algorithms (e.g., iteration vs. recursion), data structures (e.g., vectors), com-
plexity analysis, C++ basics (e.g., namespaces, references, exceptions, and dynamic allocation), and
object-oriented programming (e.g., classes, member functions, constructors, operator overloading,
the rule of three, data encapsulation, interface vs. implementation). You will apply this understand-
ing to implement, test, and evaluate a handwriting recognition system that can classify handwritten
numbers into ten classes, the digits from zero through nine, with high accuracy.

Research in the field of machine learning today has demonstrated remarkable success in a wide range
of applications, including object detection and decision making for autonomous vehicles, natural
language processing, and even world-class board game playing. Machine learning encompasses the
design of software programs that detect and learn features from inputs before generalizing what
they learn and applying it in new contexts. There are broadly three classic learning paradigms:
(1) supervised learning where the learner is provided with a set of inputs together with the desired
outputs; (2) unsupervised learning where the learner is only given training examples as input patterns
with no associated output; and (3) reinforcement learning where the learner is only given evaluative
output (e.g., reward for a certain action) to learn a mapping from states to actions to maximize the
long-term reward.

In this assignment, you will implement a supervised learning model that classifies handwritten dig-
its. This model has two main phases: training and classification. In the training phase, the model
is provided with a large set of images, each with a label (e.g., ‘1’, ‘7’, ‘9’) that indicates the corre-
sponding digit. In the classification phase, the model is provided with new inputs that it has never
seen before and predicts their label based on what it has learned in the training phase. You will use
the classic MNIST database of handwritten digits. The database is composed of 70,000 examples of
images each with 28× 28 grayscale pixels. Each pixel has a value between 0 and 255 where 0 repre-
sents white, 255 represents black, and intermediate values represent intermediate levels of gray. The
dataset is divided into a training dataset of 60,000 images and a classification dataset of 10,000 images
for evaluation. Figure 1 shows a few images from the MNIST dataset. The digits were handwritten
by several hundred different writers ranging from average high school students to Census Bureau
employees. This means that the legibility of the handwritten digits varies significantly. The goal of
the assignment is to design a system that can classify images of these handwritten digits with high
accuracy into one of ten classes: the numbers zero through nine. You will start off by first imple-
menting three classes: VectorInt, Image, and VectorImage. Then you will leverage these classes to
construct two simple classification algorithms; one is based on linear search and the other is based on
binary search. As in the previous assignments, we will leverage the CMake framework for building
programs, the CTest framework for unit testing, GitHub Actions for continuous integration testing,
and lcov for code coverage analysis.

1

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

Figure 1: Four Example MNIST Images – Images include 28× 28 grayscale pixels and a label. Each
pixel has a value between 0 and 255 where 0 represents white, 255 represents black, and intermediate
values represent intermediate levels of gray.

After your handwriting recognition systems are functional and tested, you will evaluate the accuracy
and performance trade-offs between implementations. We will provide you with a list of optimiza-
tions that you can try out to further improve the performance. You will write a six-page report that
includes your complexity analysis, a discussion of your optimizations, and a quantitative evaluation
of the performance across all implementations. You should consult the programming assignment
logistics document for more information about the expectations for all programming assignments
and how they will be assessed. While the final code and report are all due at the end of the assign-
ment, we also require meeting an incremental milestone in this PA. Requirements specific to this
PA for the incremental milestone and the final report are described at the end of this handout.

This handout assumes that you have read and understand the course tutorials and that you have
attended the discussion sections. To get started, log in to an ecelinux server, source the setup script,
and clone your group’s individual remote repository from GitHub:

% source setup-ece2400.sh
% mkdir -p ${HOME}/ece2400
% cd ${HOME}/ece2400
% git clone git@github.com:cornell-ece2400/groupid
% cd ${HOME}/ece2400/groupid/pa4-sys
% tree

Where groupid should be replaced with your group repository name. You should never fork your
individual remote repository! If you need to work in isolation then use a branch within your in-
dividual remote repository. If you have already cloned your individual remote repository, then use
git pull to ensure you have any recent updates before working on your programming assignment.

% cd ${HOME}/ece2400/groupid
% git pull
% tree pa4-sys

For this assignment, you will work in the pa4-sys subproject, which includes the following files:

• CMakeLists.txt – CMake config script to generate Makefile

• src/ece2400-stdlib.h – Header file for course standard library
• src/ece2400-stdlib.cc – Source code for course standard library

• src/sort-int.h – Header file for sort_int
• src/sort-int.cc – Source code for sort_int
• src/sort-int-adhoc.cc – Ad-hoc test program for sort_int

• src/VectorInt.h – Header file for VectorInt
• src/VectorInt.cc – Source code for VectorInt
• src/VectorInt.inl – Inline source code for VectorInt

2

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

• src/vector-int-adhoc.cc – Ad-hoc test program for VectorInt

• src/Image.h – Header file for Image
• src/Image.cc – Source code for Image
• src/Image.inl – Inline source code for Image
• src/image-adhoc.cc – Ad-hoc test program for Image

• src/sort-image.h – Header file for sort_image
• src/sort-image.cc – Source code for sort_image
• src/sort-image-adhoc.cc – Ad-hoc test program for sort_image

• src/VectorImage.h – Header file for VectorImage
• src/VectorImage.cc – Source code for VectorImage
• src/VectorImage.inl – Inline source code for VectorImage
• src/vector-image-adhoc.cc – Ad-hoc test program for VectorImage

• src/IHandwritingRecSys.h – Header file for the HRS interface class

• src/HRSLinearSearch.h – Header file for HRSLinearSearch
• src/HRSLinearSearch.cc – Source code for HRSLinearSearch

• src/HRSBinarySearch.h – Header file for the HRS HRSBinarySearch
• src/HRSBinarySearch.cc – Source code for the HRS HRSBinarySearch

• src/digits.dat – Data file with selected test images

• src/mnist-utils.h – Header file for MNIST-related utilities
• src/mnist-utils.cc – Source code for MNIST-related utilities

• test/sort-int-directed-test.cc – Directed test cases for sort_int
• test/sort-int-random-test.cc – Random test cases for sort_int
• test/vector-int-directed-test.cc – Directed test cases for VectorInt
• test/vector-int-random-test.cc – Random test cases for VectorInt
• test/image-directed-test.cc – Directed test cases for Image
• test/image-random-test.cc – Random test cases for Image
• test/sort-image-directed-test.cc – Directed test cases for sort_image
• test/sort-image-random-test.cc – Random test cases for sort_image
• test/vector-image-directed-test.cc – Directed test cases for VectorImage
• test/vector-image-random-test.cc – Random test cases for VectorImage

• test/hrs-linear-search-directed-test.cc – Directed test cases for HRSLinearSearch
• test/hrs-binary-search-directed-test.cc – Directed test cases for HRSBinarySearch

• eval/hrs-linear-search-eval.cc – Evaluation Program for HRSLinearSearch
• eval/hrs-binary-search-eval.cc – Evaluation Program for HRSBinarySearch

The programming assignment is divided into the following steps. Complete each step before moving
on to the next step.

• Step 1. Implement and test sort_int function
• Step 2. Implement and test VectorInt class using sort_int
• Step 3. Implement and test Image class using VectorInt
• Step 4. Implement and test sort_image function
• Step 5. Implement and test VectorImage class using Image and sort_image
• Step 6. Implement and test HRSLinearSearch class
• Step 7. Implement and test HRSBinarySearch class

3

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

We cannot stress enough how important it is to take an incremental design approach! You really
must implement and test each step before trying to implement the next step. This means more than
just adhoc testing. You must do thorough directed and random testing of each step before implement-
ing the next step.

2. Implementation Specifications

The high-level goal for this programming assignment is to implement a handwriting recognition
system with two classification algorithms. You will start off by implementing three data structures:
VectorInt, Image, and VectorImage and two algorithms: sort_int and sort_image. VectorInt is
a resizable vector data structure that stores integers and is very similar to what you have imple-
mented in the second and third programming assignment except now you will be using the object-
oriented programming paradigm in C++. Image uses a VectorInt to store pixels, and VectorImage
is a vector that stores Images. The sort_int algorithm sorts an array of integers while sort_image
algorithm will sort an array of images based on their intensity. You will then leverage these data
structures and algorithms to construct the two handwriting recognition systems: HRSLinearSearch
and HRSBinarySearch.

Note that your implementations cannot use anything from the Standard C library except for the
printf function defined in cstdio, the MIN/MAX macros defined in climits, the NULL macro de-
fined in cstddef, and the assert macro defined in cassert. Your implementations cannot use any-
thing from the Standard C++ library except for C++ I/O streams from iostream.

2.1. sort_int Algorithm

The sort_int function has the following interface:

• void sort_int(int* a, int size);

This function takes as input an integer array a with length size and sorts numbers in the array
in an ascending order. You can copy over any of the sorting algorithms from the previous PA to
use in your implementation. You can assume that size correctly reflects the size of the input array.
Your algorithm must work correctly if size is zero, which means the input array pointer a may be
a NULL pointer. The interface for sort_int is provided for you in src/sort_int.h. Write your
implementation in src/sort_int.c.

2.2. VectorInt Data Structure

After sort_int is implemented and tested, you will then implement a resizable vector data struc-
ture that stores data that has type int. You are responsible for implementing each of the following
functions:

VectorInt::VectorInt();
VectorInt::VectorInt(int* array, int size);

VectorInt::~VectorInt();
VectorInt::VectorInt(const VectorInt& vec);
VectorInt::VectorInt& operator=(const VectorInt& vec);

int VectorInt::size() const;
void VectorInt::push_back(int value);

4

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

int VectorInt::at(int idx) const;
bool VectorInt::contains(int value) const;
void VectorInt::sort();
int VectorInt::find_closest_linear(int value) const;
int VectorInt::find_closest_binary(int value, int k) const;
void VectorInt::print() const;
int VectorInt::operator[](int idx) const;

The specification for these functions is as follows:

• VectorInt::VectorInt()
The default constructor for VectorInt. It constructs an empty VectorInt by initializing all mem-
ber fields in VectorInt.

• VectorInt::VectorInt(int* arr, int size)
A non-default constructor that construct a VectorInt from an array of ints with the given size.
This constructor should perform a deep copy, i.e., copy the values inside the array rather than
copying the pointer. Modifying or deleting the input array after construction should have no
effect on the constructed VectorInt object. You can assume that the input size is never greater
than the actual size of the array arr. Construct an empty VectorInt if size is 0.

• VectorInt::˜VectorInt()
Destructor for VectorInt. It frees the memory allocated on the heap by VectorInt. Note that
you should use the delete and delete[] operator instead of free as in C.

• VectorInt::VectorInt(const VectorInt& vec)
Copy constructor that performs deep copy. It should copy the values stored in vec. Subsequent
actions on vec should have no effect on the constructed VectorInt. You must carefully handle the
case when copying from an empty vector!

• VectorInt& VectorInt::operator=(const VectorInt& vec)
This overloads the assignment operator. Copy the values stored in vec. Note that if the current
VectorInt is not empty, you need to free the memory allocated for it first. It is very important that
you carefully handle the case of self assignment! You must carefully handle the case when assigning from
an empty vector!

• int VectorInt::size() const
Return the current number of elements in the vector. If the VectorInt is empty, this function
should return 0.

• void VectorInt::push_back(int value)
Push a new element with the given value value onto the end of the VectorInt. If there is not
enough allocated space, dynamically allocate more memory to store both existing elements and
the new element. Note that you should use the new operator instead of malloc as in C.

• int VectorInt::at(int idx) const
Return the value at the given index idx of the VectorInt. If the given index is out-of-bound,
throw ece2400::OutOfRange with a useful error message.

• bool VectorInt::contains(int value) const
Search the VectorInt for the given value and returns true if the value is found and false other-
wise. If the VectorInt is empty, then this function should just return false.

5

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

• void VectorInt::sort()
Sort the internal array in ascending order. You should just call sort_int in src/sort-int.h.

• int VectorInt::find_closest_linear(int value) const
Perform a linear search of the vector for the value that is closest to the given value (value) and
return the closest value. The distance between two integers x and y is defined as |x − y|. The
difference between two integers can be larger than the maximum sized integer. For example,
INT_MAX - INT_MIN is larger than INT_MAX. For this PA, we will consider it undefined behavior to
store integers whose difference is larger tha INT_MAX. If there are multiple values that are equally
(and minimally) close to value, return the one that has the smallest index in the internal array. If
the VectorInt is empty, throw ece2400::OutOfRange with a proper error message.

• int VectorInt::find_closest_binary(int value, int k) const
Perform a binary search of the vector to find an index that has a value close to the given value
(value), and then perform a linear search of K elements centered around the index determined by
the binary search. To be more specific, you will search K/2 images backwards and K/2 images
forwards from the final image found during the binary search. You will need to carefully handle
the case where there are less than K/2 images either before or after the final image found during
the binary search. Return the closest value from the linear search. The distance between two
integers x and y is defined as |x − y|. The difference between two integers can be larger than
the maximum sized integer. For example, INT_MAX - INT_MIN is larger than INT_MAX. For this PA,
we will consider it undefined behavior to store integers whose difference is larger tha INT_MAX. If
there are multiple values that are equally (and minimally) close to value within the linear search,
return the smallest one. If the VectorInt is empty, throw ece2400::OutOfRange with proper
error message. You must check that the VectorInt is sorted before doing the binary search, and
throw ece2400::InvalidArgument with a proper error message if it is not sorted.

• void VectorInt::print() const
Print the contents of the VectorInt. This function is used for your own debugging purpose. You
can implement this function in any way you like. You do not need to test this function.

• int VectorInt::operator[](int idx) const
This overloads the subscript operator. It should just return the value at the given index idx of
the vector without any boundary check. Note that this is different from at, since at throws an
exception when index is out-of-bound.

The functions vary in complexity and some may require just a few lines of code to implement. To give
you an idea of how to use this class, here is a simple function that constructs a VectorInt, pushes
back three values, gets the middle value, and then destructs the VectorInt:

#include "VectorInt.h"

int main(void)
{
VectorInt vec; // Declare a VectorInt on the stack
vec.push_back(11); // Push back 11
vec.push_back(12); // Push back 12
vec.push_back(13); // Push back 13
int a = vec.at(1); // int a now has 12

}

6

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

The interface for VectorInt is provided for you in src/VectorInt.h. Write the implementation of
your member variables inside src/VectorInt.h and the implementation of each function inside of
src/VectorInt.cc.

2.3. Image Data Structure

After VectorInt is implemented and tested, you will then use it to implement the Image class for
storing small grayscale images. An Image uses VectorInt to store an array of integers. Each integer
represents a pixel in grayscale and has an value within the range of [0, 255]. Lower numbers represent
lighter shades (with 0 representing white), while higher numbers represent darker shades (with 255
representing black). Each Image object has a label associated with it. Image also has an intensity,
which we define here as the sum of all pixels. You are responsible for implementing each of the
following functions except for print and display, which we have already implemented for you:

Image::Image();
Image::Image(const VectorInt& vec, int ncols, int nrows);

int Image::get_ncols() const;
int Image::get_nrows() const;
int Image::at(int x, int y) const;
void Image::set_label(char l);
char Image::get_label() const;
int Image::get_intensity() const;
int Image::distance(const Image& other);
void Image::print() const;
void Image::display() const;

bool Image::operator==(const Image& rhs) const;
bool Image::operator!=(const Image& rhs) const;

Here is a brief specification for each member function of Image class.

• Image::Image()
Default constructor for Image. This function constructs an empty Image by initializing all data
members.

• Image::Image(const VectorInt& vec, int ncols, int nrows)
Non-default constructor that constructs an Image from a VectorInt given the number of columns
(ncols) and number of rows (nrows). Our Image class is only for storing small images, so ncols
and nrowsmust not be larger than 128. If either dimension is larger than 128, throw ece2400::InvalidArgument
with a useful error message. If the size of the vector does not match the number of columns and
number of rows, throw ece2400::InvalidArgument with a useful error message.

• int Image::get_ncols() const
Return the number of columns of the current Image. Return 0 if the current Image is empty.

• int Image::get_nrows() const
Return the number of rows of the current Image. Return 0 if the current Image is empty.

• int Image::at(int x, int y) const
Return the value of the pixel at x-th column and y-th row. For example, if an Image is constructed
from {0,1,2,3} with ncols and nrows both equal to 2, then at(0,0) returns 0, at(1,0) returns

7

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

1, at(0,1) returns 2, at(1,1) returns 3. If x or y is out-of-bound, throw ece2400::OutOfRange
with proper error message.

• void Image::set_label(char label)
Set the current label of the Image to the given character label.

• char Image::get_label() const
Return the current label of the Image. If no set_label has been called, return ’?’.

• int Image::get_intensity() const
Return the intensity of the current Image. Note that intensity here is simply defined as the sum
of all pixels. Since an Image cannot be larger than 128×128 and each pixel cannot be larger than
255, it should be possible to write this function without worrying about overflow.

• int Image::distance(const Image& other)
Return the square of the Euclidean distance between this image and image other, which is just
the sum of the difference between each pixel squared. For example, if image a has four pix-
els {1,9,9,5} and b has four pixels {0,4,2,3} then distance(a,b) should return (1 − 0)2 +
(9− 4)2 + (9− 2)2 + (5− 3)2 = 55. If the dimensions of the two images do not match, throw
ece2400::InvalidArgument with a useful error message. Since an Image cannot be larger than
128×128 and each pixel cannot be larger than 255, it should be possible to write this function
without worrying about overflow.

• void Image::print() const
Print the label and intensity of the Image. We provide you with this function for use in your
debugging.

• void Image::display() const
Print the contents of the Image. We provide you with this function that makes a pretty grayscale
picture based on the contents of the Image.

• bool Image::operator==(const Image& rhs) const
Overload the equal-to operator so that it compares the value of each pixel. Return true only if the
each pixel in the right-hand-side image is the same as that in the current image. If the dimensions
of the two images do not match, simply return false. Otherwise return true.

• bool Image::operator!=(const Image& rhs) const
Overload the equal-to operator so that it compares the value of each pixel. Return false only
if the each pixel in the right-hand-side image is the same as that in the current image. If the
dimensions of the two images do not match, simply return true. Return false if both images are
empty.

The functions vary in complexity, and some may require just a few lines of code to implement. The
interface for Image is provided for you in src/Image.h. Write the implementation of your member
variables inside src/Image.h and the implementation of each function inside of src/Image.cc.

8

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

2.4. sort_image Algorithm

After Image is implemented and tested, you will implement the sort_image function which has the
following interface:

• void sort_image(Image* a, int size);

This function takes as input an array a of Images with length size and sorts the Images in the array
in an ascending order based on their intensity. You can copy over any of the sorting algorithms from
the previous PA to use in your implementation, although you will need to modify the algorithm
to call Image::get_intensity as oppropriate. The interface for sort_image is provided for you in
src/sort_image.h. Write your implementation in src/sort_image.c.

2.5. VectorImage Data Structure

After Image and sort_image are implemented and tested, you will implement a VectorImage class
that stores a vector of Images. VectorImage has the same member functions as VectorInt, except that
it should operate on Images rather than ints. Note that VectorImage::find_closest_linear should
use Image::distance to calculate the Euclidean distance between two images. VectorImage::sort
should just call sort_image, and thus it sorts the images by their intensity.

VectorImage::find_closest_binary is similar to VectorInt::find_closest_binary with an im-
portant difference. We will sort the images based on intensity and then do the binary search based on
intensity. This enables us to quickly find images with similar intensity. However, intensity, defined as
the sum of all pixels, is not a very good feature to differentiate different digits. For example, it is very
likely that a ’6’ and a ’9’ have very similar intensity. Therefore, after finding the index, we will do
the linear search of K images using the Euclidean distance. To be more specific, you will search K/2
images backwards and K/2 images forwards from the final image found during the binary search.
You will need to carefully handle the case where there are less than K/2 images either before or after
the final image found during the binary search. Again, this final linear search should be based on
the Euclidean distance not the intensity. You should return the image that has the smallest Euclidean
distance within the K images. Figure 2 illustrates the overall approach: use binary search to quickly
zoom in on images with similar intensity and then do a linear search to find the closest image for
classification. The hope is that binary search will be faster since it only does a linear search over K
images, but that the accuracy is still reasonable since this linear search is over K images with similar
intensity (and thus probably the right digit).

2.6. HRSLinearSearch Handwriting Recognition System

The first handwriting recognition system you will implement is HRSLinearSearch, which uses a
brute force linear search algorithm. You are responsible for implementing each of the following
functions:

HRSLinearSearch::HRSLinearSearch();
void HRSLinearSearch::train(const VectorImage& vec);
Image HRSLinearSearch::classify(const Image& Image);

Here is a brief specification for each member function of HRSLinearSearch:

• HRSLinearSearch::HRSLinearSearch()
Default constructor for HRSLinearSearch. Initialize your member variables if necessary.

9

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

Binary Search
(Intensity)

Linear Search w/ K = 8
(Euclidean Distance)

Test Image

Vector of 32 Training Images
(sorted by intensity)

Figure 2: VectorImage::find_closest_binary Example – Example for 32 images and K = 8. As-
sumes vector images has already been sorted based on intensity. Binary search is based on intensity
and quickly finds images with similar intensity as the test image. Linear search of 8 images is based
on Euclidan distance and finds the closest match.

• void HRSLinearSearch::train(const VectorImage& vec)
Train the HRS. For HRSLinearSearch, simply store a copy of the vector that contains the training
images (vec). If you have implemented the assignment operator correctly, this should just be a
one-line function.

• Image HRSLinearSearch::classify(const Image& img)
Classify the given image. This function should search through the entire training set and return
the image that has the smallest euclidean distance from the given image. You should just call
VectorImage::find_closest_linear.

2.7. HRSBinarySearch Handwriting Recognition System

The second handwriting recognition system you will implement is HRSBinarySearch, which uses a
mix of binary and linear search. The overall approach is to first sort the training images by their
intensity. Then during classification we can use binary search to quickly find training images with
similar intensity, and then do a linear search of K images using Euclidean distance. You are respon-
sible for implementing each of the following functions:

HRSBinarySearch::HRSBinarySearch(int k);
void HRSBinarySearch::train(const VectorImage& vec);
Image HRSBinarySearch::classify(const Image& Image);

Here is a brief specification for each member function of HRSBinarySearch:

• HRSBinarySearch::HRSBinarySearch(int k)
Default constructor for HRSBinarySearch. Initialize your member variables if necessary.

• void HRSBinarySearch::train(const VectorImage& vec)
Train the HRS. For HRSBinarySearch, you need to store a copy of the vector that contains the
training images (vec), and then sort the training images based on intensity. You should just call
VectorImage::sort.

• Image HRSBinarySearch::classify(const Image& img)
Classify the given image. This function should use a binary and linear search. You should just
call VectorImage::find_closest_binary.

10

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

3. Testing Strategy

You are responsible for developing an effective testing strategy to ensure all implementations are
correct. Writing tests is one of the most important and challenging aspects of software programming.
Software engineers often spend far more time implementing tests than they do implementing the
actual program.

Note that while there are limitations on what you can use from the Standard C/C++ library in your
implementations there are no limitations on what you can use from the Standard C/C++ library in
your testing strategy. You should feel free to use the Standard C/C++ library in your golden reference
models and/or for random testing.

3.1. Ad-hoc Testing

To help students start testing, we provide one ad-hoc test program per implementation in src/sort-int-adhoc.cc,
src/vector-int-adhoc.cc, src/image-adhoc.cc, src/sort-image-adhoc.cc, and src/vector-image-adhoc.cc.
Students are encouraged to start compiling and running these ad-hoc test programs directly in the
src/ directory without using any build-automation tool (e.g., CMake and Make).

You can build and run the given ad-hoc test programs like this:

% cd ${HOME}/ece2400/netid/pa4-sys/src
% g++ -Wall -o sort-int-adhoc ece2400-stdlib.cc sort-int.cc sort-int-adhoc.cc
% ./sort-int-adhoc

% cd ${HOME}/ece2400/netid/pa4-sys/src
% g++ -Wall -o vector-int-adhoc ece2400-stdlib.cc \

sort-int.cc VectorInt.cc vector-int-adhoc.cc
% ./vector-int-adhoc

% cd ${HOME}/ece2400/netid/pa4-sys/src
% g++ -Wall -o image-adhoc ece2400-stdlib.cc VectorInt.cc Image.cc image-adhoc.cc
% ./image-adhoc

% cd ${HOME}/ece2400/netid/pa4-sys/src
% g++ -Wall -o sort-image-adhoc ece2400-stdlib.cc Image.cc \

sort-image.cc sort-image-adhoc.cc
% ./sort-image-adhoc

% cd ${HOME}/ece2400/netid/pa4-sys/src
% g++ -Wall -o image-adhoc ece2400-stdlib.cc sort-int.cc VectorInt.cc
% Image.cc sort-image.cc VectorImage.cc vector-image-adhoc.cc
% ./vector-image-adhoc

The -Wall flag will ensure that g++ reports all warnings.

3.2. Systematic Unit Testing

While ad-hoc test programs help you quickly see results of your implementations, often too simple
to cover most scenarios. We need a systematic and automatic unit testing strategy to hopefully test
all possible scenarios efficiently.

11

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

In this course, we are using CMake/CTest as a build and test automation tool. For each implemen-
tation, we provide a directed test program that should include several test cases to target different
categories and a random test program that should test that your implementation works for random
inputs. Unlike in the first three programming assignments, a great deal of tests have already been
provided for you! You can freely leverage the available tests to verify the functionality of your hand-
writing recognition systems. Remember however that your goal with respect to testing strategy is to
convince yourself and the staff that your code is functional. If in order to convince yourself that your
code is functional further tests may be needed (maybe just by copying and adjusting existing tests).

We strongly encourage students to take an incremental design approach. Do not implement all of
these functions before running your first test! Instead, we recommend students implement and test
each of the following substeps.

• Step 1. Implement and test sort_int

• Step 2. Implement and test VectorInt

– Step 2a. Implement and test the default constructor, destructor, push_back, size, at
– Step 2b. Implement and test the non-default constructor
– Step 2c. Implement and test contains
– Step 2d. Implement and test sort
– Step 2e. Implement and test find_closest_linear
– Step 2f. Implement and test find_closest_binary
– Step 2g. Implement and test operator[]
– Step 2h. Implement and test the copy constructor
– Step 2i. Implement and test the assignment operator

• Step 3. Implement and test Image

– Step 3a. Implement and test the default/non-default constructor, get_ncols, get_ncols, at
– Step 3b. Implement and test set_label, get_label
– Step 3c. Implement and test get_intensity
– Step 3d. Implement and test operator==, operator!=
– Step 3e. Implement and test distance

• Step 4. Implement and test sort_image

• Step 5. Implement and test VectorImage

– Step 5a. Implement and test the default constructor, destructor, push_back, size, at
– Step 5b. Implement and test the non-default constructor
– Step 5c. Implement and test contains
– Step 5d. Implement and test sort
– Step 5e. Implement and test find_closest_linear
– Step 5f. Implement and test find_closest_binary
– Step 5g. Implement and test operator[]
– Step 5h. Implement and test the copy constructor
– Step 5i. Implement and test the assignment operator

• Step 6. Implement and test HRSLinearSearch

• Step 7. Implement and test HRSBinarySearch

Each substep should correspond to one or more directed test cases.

As in the previous programming assignment, we provide you a testing framework you should use
for your directed and random testing. See the provided test programs in the test subdirectory

12

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

for how to use this framework. The ECE 2400 standard library in ece2400-stdlib.h contains the
following macros you should use to check the correctness of your implementations:

• ECE2400_CHECK_FAIL() – check program does not reach this point
• ECE2400_CHECK_TRUE(expr_) – check expr_ is always true
• ECE2400_CHECK_FALSE(expr_) – check expr_ is always false
• ECE2400_CHECK_INT_EQ(expr0_, expr1_) – check expr0_ equals expr1_

Before running the tests you need to create a separate build directory and use cmake to create the
Makefile like this:

% cd ${HOME}/ece2400/groupid/pa4-sys
% mkdir -p build
% cd build
% cmake ..

Now you can build and run all unit tests for all implementations like this:

% cd ${HOME}/ece2400/groupid/pa4-sys/build
% make check

If you are failing a test program, then you can “zoom in” and run all of the unit tests for a single test
program (e.g., directed tests for sort_int) like this:

% cd ${HOME}/ece2400/groupid/pa4-sys/build
% make sort-int-directed-test
% ./sort-int-directed-test

You can then “zoom in” to a specific test case by passing in the index of that test case like this:

% cd ${HOME}/ece2400/groupid/pa4-sys/build
% make sort-int-directed-test
% ./sort-int-directed-test 1
% ./sort-int-directed-test 2

3.3. Memory Leaks

Students are also responsible for making sure that their program contains no memory leaks or other
issues with dynamic allocation. We have included a make target called memcheck which runs all of
the test programs with Valgrind. Valgrind will force the test to fail if it detects any kind of memory
leak or other issues with dynamic allocation.

You can check memory leaks and other issues with dynamic memory allocation for all your test
programs like this:

% cd ${HOME}/ece2400/groupid/pa4-sys/build
% make memcheck

You can just check one test program (e.g. vector-int-directed-test) like this:

% cd ${HOME}/ece2400/groupid/pa4-sys/build
% make vector-int-directed-test
% valgrind --trace-children=yes --leak-check=full \

13

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

--error-exitcode=1 --undef-value-errors=no ./sort-int-directed-test

Those are quite a few command line options to Valgrind, so we have created a ‘ece2400-valgrid‘
script. This script is just a simple wrapper which calls Valgrind with the right options.

% cd ${HOME}/ece2400/groupid/pa4-sys/build
% make sort-int-directed-test
% ece2400-valgrind ./sort-int-directed-test

3.4. Code Coverage

After your implementations pass all unit tests, you can evaluate how effective your test suite is by
measuring its code coverage. The code coverage will tell you how much of your source code your
test suite executed during your unit testing. The higher the code coverage is, the less likely some
bugs have not been detected. You can run the code coverage like this:

% cd ${HOME}/ece2400/groupid/pa4-sys
% rm -rf build-coverage
% mkdir -p build-coverage
% cd build-coverage
% cmake ..
% make check
% make coverage

Note that these code coverage results will reflect all prior runs of the test and evaluation programs in
the build directory. That is why in the above example, we do a fresh build in a separate build-coverage
build directory.

If you want to drill down and explore the coverage of each line in a program you use use the elinks
web browser like this:

% cd ${HOME}/ece2400/groupid/pa4-sys/build-coverage
% elinks coverage-html/index.html

Code coverage is just one more piece of evidence you can use to make a compelling case for the
correct functionality of your implementations. It is not required that students achieve 100% code
coverage. It is far more important that students simply use code coverage as a way to guide their
test-driven design than to overly focus on the specific code coverage number.

4. Evaluation

In the first three PAs, students gained first-hand experience with test-driven design through imple-
menting a compelling testing strategy. The final two PAs shift to focus more on incremental profiling
and optimization.

4.1. Evaluating the Unoptimized HRS

Once you have verified the functionality of your handwriting recognition systems, you can evaluate
their performance and accuracy with breakdowns for both the training phase and the classification
phase. You can build and the evaluation programs like this:

% cd ${HOME}/ece2400/groupid

14

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

% mkdir -p pa4-sys/build-eval
% cd pa4-sys/build-eval
% cmake -DCMAKE_BUILD_TYPE=eval ..
% make eval

Note that we are working in a separate build-eval directory, and that we are using the -DCMAKE_BUILD_TYPE=eval
command line option to the cmake script. to create optimized executables without any extra debug-
ging information. You must do your quantitative evaluation using an eval build. Using a debug
build for evaluation produces meaningless results.

The following runs a complete evaluation with 60K training images, 10K classification images, and
K set to 1000.

% cd ${HOME}/ece2400/groupid/pa4-sys/build-eval
% make hrs-linear-search-eval
% ./hrs-linear-search-eval
% make hrs-binary-search-eval
% ./hrs-binary-search-eval

You can also specify the size of the number of training images, the number of classification images,
and the size of the final linear search when using binary search on the command line for each evalu-
ation program:

% ./hrs-linear-search-eval N M
% ./hrs-binary-search-eval N M K

Where N is the number of training images, M is the number of classification images, and K is the size
of the final linear search when using the binary search. Note that, using a smaller number of training
images and/or classification images is only for profiling and interative performance optimization.
All accuracy results must use the full 60K training dataset and 10K classification dataset.

Since the implementation is still unoptimized at this point, the classification can be quite slow. For
example, it might take over 20 minutes for the unoptimized version of HRSLinearSearch. Record the
unoptimized training time, classification time, and total execution time for the report.

After recording the unoptimized performance, you will need to do some performance profiling to
figure out where the bottleneck is and what to optimize. You will use perf to create a flame graph
for each implementation. You should only use perf if the execution time is about five minutes or less. If
you use perf when the execution time is longer it will create a huge trace file which will fill up your home
directory! You can create the flame graph for the HRSLinearSearch with the following command:

% cd ${HOME}/ece2400/groupid/pa4-sys/build-eval
% perf record --call-graph dwarf ./hrs-linear-search-eval 60000 100
% perf script report stackcollapse | flamegraph.pl > graph-linear-unopt.svg

Notice that we only use 100 classification (test) images because using the full dataset to create the
flame graph will create a huge trace file. 100 images is representative enough for iterative perfor-
mance optimization. You can create the flame graph for the HRSBinarySearch with the following
command:

% cd ${HOME}/ece2400/groupid/pa4-sys/build-eval
% perf record --call-graph dwarf ./hrs-binary-search-eval

15

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

% perf script report stackcollapse | flamegraph.pl > graph-binary-unopt.svg

Notice that for HRSBinarySearch you should probably use the full classification dataset because oth-
erwise the ratio between the training time and classification time can be misleading. You can down-
load the flame graph using VS Code.

Save these two flame graphs for your report. You should use your flame graph to determine what is
the bottleneck in your implementation and what optimizations you may want to choose. We highly
recommend you do a git commit before you move on to the next step, so that if you want to
reproduce the unoptimized results in the future, you can simply checkout to this commit without
having to change your code back.

4.2. Evaluating the Optimized HRS

We provide you with a list of optimizations that may improve performance. Note that any optimiza-
tion must not change the provided interface of any class, although may add new public member
functions if you wish. For example, you might want to add a public member function that performs a
linear find closest over a subrange, or a public member function that perform a swap. Optimizations
can only change the implementation of various classes. You are absolutely not required to imple-
ment all of these optimizations. Some optimizations may make a significant difference, while other
operations may make no difference at all. You must think critically to choose what optimizations to
implement! Start by examining the flame graph from the previous step. Identify what functions are
taking a significant amount of time. Then you can try one of three things: (1) can you avoid calling
the function at all? (2) Can you optimize the code inside the function? (3) If the code inside the
function is simple you can potentially use inlining.

• Choosing the Right Algorithm
Always start your optimizations by making sure you are using the right algorithm with an appro-
priate complexity class. For example, carefully choose an algorithm for VectorInt::push_back,
VectorImage::push_back, VectorInt::sort, and VectorImage::sort. If you use quick sort,
then carefully consider how you choose the pivot, since this can have a significant impact on
performance in practice.

• Choosing the Right Function
Sometimes an easy way to optimize your code is to simply choose to call a faster function which
has the same behavior as a slower function. For example, while you might start by using VectorInt::at()
(which does bounds checking) inside your Euclidean distance calculation, you might want to
considering replacing these calls to VectorInt::at() with the [] operator (which does not do
bounds checking) once you are sure your implementation is correct.

• Accessing Member Fields Directly
Member functions can either use a different member function to access member fields, or they can
access member fields directly. Using a different member function can sometimes improve read-
ability by refactoring code, but directly accessing member fields can sometimes be more efficient.
For example, using push_back in the copy constructor or assignment operator for VectorInt and
VectorImage can be less efficient compared to dynamically allocating all of the necessary mem-
ory at once. Similarly, using Image::at() to access pixels within the Image member functions can
be less efficient compared to directly accessing the private vector of pixels. Note that it is never
acceptable to make member fields public to improve performance since this would break data
encapsulation (and change the interface).

• Function Inlining

16

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

Inlining a function can eliminate the overhead of making a function call. Inlining essentially tells
the compiler to replace a function call by copying the function body into the caller. To inline
a function simply move it from the .cc file into the .inl file and add the inline keyword at
the beginning of the function declaration. Note that inlining large functions can actually reduce
performance, so only inline relatively small functions.

• Constant References
Passing an object by value or returning a copy of an object will call the copy constructor and can
be inefficient. You can also just pass or return a constant reference to the object. Note that you
need to use the const keyword otherwise the data stored in the data structure can be mutated
unintentionally. You will need to change the .h but technically this will not change the inter-
face since a user should not be able to distinguish the difference between returning a copy and
returning a const reference.

• Memoization
In Image::get_intensity, the intensity is calculated each time get_intensity is called. You
can instead calculate the intensity the first time get_intensity is called, save (or memoize)
the intensity to an internal member field, and then simply reuse this saved value the next time
get_intensity is called. Alternatively, you can calculate the intensity ahead of time in the con-
structor and simply return it in the get_intensitymethod. Similarly, VectorInt::find_closest_binary
and VectorImage::find_closest_binary check if the internal array is sorted each time find_closest_binary
is called. You can instead check if the array is sorted the first time find_closest_binary is called,
save (or memoize) a flag stored as an internal member field indicating if the array is sorted, and
then simply check this flag the next time find_closest_binary is called. Alternatively, you can
update such a flag after calling sort. Note that if a user later uses push_back you will need to
reset this flag. Since get_intensity and find_closest_binary are const you will need to use
the mutable keyword so that a member variable can be modified in a const member function.

• Efficient Swap
In VectorImage::sort, when you swap two images, you will have to copy the image multiple
times, which can be slow. It is far more efficient to just swap the pointers inside the VectorInt.
However, the interface does not provide you with access to the internal pointer. You can define a
VectorInt::swap public member function that swaps a given vector with the current vector, and
a Image::swap public member function that swaps a given image with the current image. Then
you can use the Image::swap member function in your in your VectorImage::sort.

• More Compact Image Storage
Since the value for each pixel is within [0,255], it is enough to store a pixel with just 8 bits. You
can implement a VectorByte data structure that stores a vector of bytes (i.e., unsigned char) and
then you can use this VectorByte data structure in the implementation of Image. Note you are not
allowed to change the interface of Image so you will need to carefully convert from a VectorInt
in the constructor and convert to an int in the return value for Image::at.

With proper optimizations, you should be able to reduce the execution time for the full classification
dataset by 4–8×. For each optimization you try record the new training, classification, and total
time for the report. Save the two final flame graphs for your most optimized implementations.

5. Milestone and Report

This section includes critical information about the incremental milestone, final code submission,
and the final report specific to this PA. The programming assignment logistics document provides

17

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

general details about the requirements for the milestone and final submission. You must actually
read the document to ensure you know how we will access your milestone and final submission.

5.1. Incremental Milestone

While the final code and report are all due at the end of the assignment, we also require you to
complete an incremental milestone, push and submit your code to GitHub on the date specified by
the instructor. More specifically to meet the incremental milestone of this PA, you are expected to:

• Complete the implementation of sort_int
• Complete the implementation of VectorInt
• Pass all given directed and random tests for these implementations
• Consider adding a few of your own directed tests

Here is how we will be testing your milestone:

% mkdir -p ${HOME}/ece2400/submissions
% cd ${HOME}/ece2400/submissions
% rm -rf repo
% git clone git@github.com:cornell-ece2400/groupid

% cd ${HOME}/ece2400/groupid/pa4-sys
% mkdir -p build
% cd build
% cmake ..
% make check-milestone

5.2. Final Code Submission

Your code quality score will be based on the way you format the text in your source files, proper use
of comments, deletion of instructor comments, and uploading the correct files to GitHub (only source
files should be uploaded, no generated build files). To assist you in formatting your code correctly,
we have created a make target that will autoformat the code for you. You can use it like this:

% cd ${HOME}/ece2400/groupid/pa4-sys
% mkdir -p build
% cd build
% cmake ..
% make autoformat
% git diff
... check all changes ...
% git commit -a -m "autoformat"

Note that the autoformat target will only work if you have already committed all of your work. This
way you can easily use git diff to view the changes made by the autoformatting and commit those
changes when you are happy with them. Since we provide students an automated way to format
their code correctly, students have no excuse for not following the course coding conventions!

Note that students must remove unnecessary comments that are provided by instructors in the
code distributed to students. Students must not commit executable binaries or any other unnec-
essary files. The autoformat target will not take care of these issues for you.

18

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

To submit your code you simply upload it to GitHub. Your code will be assessed both in terms of
functionality and code quality. Your functionality score will be determined by running your code
against a series of tests developed by the instructors to test its correctness. Here is how we will be
testing your final code submission:

% mkdir -p ${HOME}/ece2400/submissions
% cd ${HOME}/ece2400/submissions
% rm -rf repo
% git clone git@github.com:cornell-ece2400/netid

% cd ${HOME}/ece2400/submissions/groupid/pa4-sys
% mkdir -p build
% cd build
% cmake ..
% make check
% make memcheck
% make eval
... run the eval programs ...

5.3. Final Report

The final report must be uploaded to Canvas. The date you upload your report will indicate how
many slip days you are using for the assignment. For this PA, we require you to include five sections:
introduction, complexity analysis, optimization, quantitative evaluation, conclusion, and work dis-
tribution. Your entire report must be no more than eight pages. Your report will include quite a few
tables and plots.

The complexity analysis section of your report must include a table that includes the execution time
of the training and classification phases as a function of N and K. The table should include the time
complexity (in big-O notation) for the training and classification phases with N as the input variable.
The table should include the execution time for training and classifying with N training images and
M test images as a function of N, M, and K. Finally, the table should include the time complexity
(in big-O notation) when training and classifying with N training images and M test images. In this
situation, we have two input variables, so you should first analyze the time complexity with respect
to N assuming M is a constant (i.e., we will classify a fixed number of images while the number of
training images grows large), and then analyze the time complexity with respect to M assuming N
is a constant (i.e., we have a fixed number of training images as the number of images we wish to
classify grows large). See Table 1 for a template. Justify your table entries. You should discuss (at a
high level) your chosen units. We recommend using number of images accessed in the classification
dataset. Note that you don’t need to explicitly discuss all six steps of complexity analysis and we are
not looking for a rigorously formal proof, but you do need to be clear about the assumptions you
made during analysis and provide some kind of compelling high-level argument.

The optimization section of your report should clearly discuss each optimization you evaluated. You
must include a table in your report with one column for training time, one column for classification
time, one column for total time, and one row for each optimization you tried. The first row should be
the unoptimized results. You must include two flame graphs for your unoptimized implementations
(one for linear search and one for binary search), and two flame graphs for your final optimized
implementations (one for linear search and one for binary search).

19

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

HRSLinearSearch HRSBinarySearch

training execution time TK(N)

training time complexity w.r.t. N big-O

classify one image execution time TK(N)

classify one image time complexity w.r.t. N big-O

training + classify M images execution time TK(N, M)

training + classify M images time complexity w.r.t. N big-O

training + classify M images time complexity w.r.t. M big-O

Table 1: Template for Complexity Analysis Table

The quantitative evaluation section of your report should include the following five plots along with
corresponding discussion and analysis.

• Plot of execution time of just the training phase on the y-axis vs. the size of the training dataset
(N) on the x-axis. There should be two lines: one for linear search and one for binary search.

• Plot of execution time of just the classification phase on the y-axis vs. the size of the training
dataset (N) on the x-axis. There should be two lines: one for linear search and one for binary
search. Use the full classification dataset (M = 10K) and K = 1000.

• Plot of total execution time of the training plus classification phases on the y-axis vs. the size of
the training dataset (N) on the x-axis. There should be two lines: one for linear search and one
for binary search. Use the full classification dataset (M = 10K) and K = 1000. You should use this
plot to determine the break-even point for N; i.e., how large does the training dataset need to be
for one algorithm to always perform the best assuming we are doing 10K classifications?

• Plot of total execution time of the training plus classification phases on the y-axis vs. the size of
the classification dataset (M) on the x-axis. There should be two lines: one for linear search and
one for binary search. Use the full training dataset (N = 60K) and K = 1000. You should use this
plot to determine the break-even point for M; i.e., how large does the classification dataset need
to be for one algorithm to always perform the best assuming we have 60K training images?

• Plot of total execution time of the training plus classification phases on the y-axis vs. accuracy on
the x-axis for the full training dataset (N = 60K) and full classification dataset (M = 10K). The
plot should have one point for HRSLinearSearch and five points for HRSBinarySearch each for a
different K. Make sure your label the points with the corresponding value of K. We recommend
using K = 1, 10, 100, 1000, 10000.

The work distribution section should be a one paragraph description of which student did what
work. It is perfectly fine if one students does more work; the key is to transparent and honest about
the work distribution across students.

20

ECE 2400 Computer Systems Programming, Fall 2021 PA4: Handwriting Recognition Systems

Acknowledgments

This programming assignment was created by Christopher Batten, Christopher Torng, Tuan Ta,
Yanghui Ou, Peitian Pan, and Nick Cebry as part of the ECE 2400 Computer Systems Program-
ming course at Cornell University. We also thank the curators of the MNIST database of handwritten
digits.

21

