
ECE 2400 Computer Systems Programming, Spring 2025
PA4: Handwriting Recognition Systems – Linear vs. Binary Search

School of Electrical and Computer Engineering
Cornell University

revision: 2025-04-14-02-31

Clarifications or fixes to this writeup after the initial publication will appear in this color.

1. Introduction

The fourth programming assignment has you apply all of the concepts you have learned this semester
in the context of a simple machine learning system. Leverage what you have learned on algorithms
(e.g., iteration vs. recursion), data structures (e.g., vectors), complexity analysis, C++ basics (e.g.,
namespaces, references, exceptions, and dynamic allocation), and object-oriented programming (e.g.,
classes, member functions, constructors, operator overloading, the rule of three, data encapsulation,
interface vs. implementation). Apply this understanding to implement, test, and evaluate a hand-
writing recognition system that can classify handwritten numbers into ten classes, the digits from
zero through nine, with high accuracy.

Research in machine learning has demonstrated remarkable success in a range of applications, in-
cluding object detection and decision making for autonomous vehicles, natural language processing,
board game playing, and, of course, generative AI. Machine learning encompasses the design of soft-
ware that detects and learns features from inputs before generalizing what they learn and applying it
in new contexts. There are broadly three classic learning paradigms: (1) supervised learning where the
learner is provided with a set of inputs together with the desired outputs; (2) unsupervised learning
where the learner is only given training examples as input patterns with no associated output; and
(3) reinforcement learning where the learner is only given evaluative output (e.g., reward for a certain
action) to learn a mapping from states to actions to maximize the long-term reward.

You will implement a supervised learning model that classifies handwritten digits. This model has
two main phases: training and classification. In the training phase, the model is provided with a large
set of images, each with a label (e.g., ‘1’, ‘7’, ‘9’) that indicates the corresponding digit. In the classifi-
cation phase, the model is provided with new inputs that it has never seen before and predicts their
label based on what it has learned in the training phase. You will use the classic MNIST database
of handwritten digits. The database is composed of 70,000 examples of images each with 28× 28
grayscale pixels. Each pixel has a value between 0 and 255 where 0 represents white, 255 represents
black, and intermediate values represent intermediate levels of gray. The dataset is divided into a
training dataset of 60,000 images and a classification dataset of 10,000 images for evaluation. Figure 1
shows a few images from the MNIST dataset. The digits were handwritten by several hundred dif-
ferent writers ranging from average high school students to Census Bureau employees. This means
that the legibility of the handwritten digits varies significantly. The goal of the assignment is to de-
sign a system that can classify images of these handwritten digits with high accuracy into one of
ten classes: the numbers zero through nine. You will start off by first implementing three classes:
VectorInt, Image, and VectorImage. Then you will leverage these classes to construct two simple
classification algorithms; one is based on linear search and the other is based on binary search.

After your handwriting recognition systems are functional and tested, you will evaluate the accuracy
and performance trade-offs between implementations. We will provide you with a list of optimiza-

1

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

Figure 1: Four Example MNIST Images – Images include 28× 28 grayscale pixels and a label. Each
pixel has a value between 0 and 255 where 0 represents white, 255 represents black, and intermediate
values represent intermediate levels of gray.

tions that you can try out to further improve the performance. You will write a report that includes
your complexity analysis, a discussion of your optimizations, and a quantitative evaluation of the
performance across all implementations. The final code and report are due at the end of the assign-
ment. We also require meeting an incremental milestone. Requirements specific to this PA for the
incremental milestone and the final report are described at the end of this handout.

To get started, log in to an ecelinux server, then use git clone to clone your pairs’s individual
remote repository from GitHub:

% cd ${HOME}/ece2400
% git clone git@github.com:cornell-ece2400/pair-xx
% cd ${HOME}/ece2400/pair-xx/pa4-sys
% tree

Where pair-xx should be replaced with your pair repository name. Never fork your remote repos-
itory! If you need to work in isolation then use a branch within your remote repository. If you
cloned your repo before the release code was pushed, use git pull to grab the release code (or any
recent updates) before working on your programming assignment.

% cd ${HOME}/ece2400/pair-xx
% git pull
% tree pa4-sys

For this assignment, you will work in the pa4-sys subproject, which includes the following files:

|-- CMakeLists.txt
|-- eval
| |-- CMakeLists.txt
| |-- hrs-binary-search-eval.cc
| |-- hrs-linear-search-eval.cc
|-- include
| |-- digits.dat
| |-- ece2400-stdlib.h
| |-- HRSBinarySearch.h
| |-- HRSLinearSearch.h

cmake configuration script to generate Makefile
programs for evaluating your implementations

cmake configuration script
evaluation Program for HRSBinarySearch
evaluation Program for HRSLinearSearch

header and data files
data file with selected test images
header file for course standard library
header file for the HRS HRSBinarySearch
header file for the HRS HRSLinearSearch

2

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

| |-- IHandwritingRecSys.h
| |-- Image.h
| |-- Image.inl
| |-- mnist-utils.h
| |-- sort-image.h
| |-- sort-int.h
| |-- VectorImage.h
| |-- VectorImage.inl
| |-- VectorInt.h
| |-- VectorInt.inl
|-- README.md
|-- scripts
| |-- build.sh
| |-- coverage.sh
| |-- eval.sh
| |-- format.sh
| |-- memcheck.sh
| |-- test.sh
| |-- valgrind.sh
|-- src
| |-- CMakeLists.txt
| |-- ece2400-stdlib.cc
| |-- HRSBinarySearch.cc
| |-- HRSLinearSearch.cc
| |-- image-adhoc.cc
| |-- Image.cc
| |-- mnist-utils.cc
| |-- sort-image-adhoc.cc
| |-- sort-image.cc
| |-- sort-int.cc
| |-- sort-int-adhoc.cc
| |-- vector-image-adhoc.cc
| |-- VectorImage.cc
| |-- vector-int-adhoc.cc
| |-- VectorInt.cc
|-- test

|-- CMakeLists.txt
|-- hrs-binary-search-directed-test.cc
|-- hrs-linear-search-directed-test.cc
|-- image-directed-test.cc
|-- image-random-test.cc
|-- sort-image-directed-test.cc
|-- sort-image-random-test.cc
|-- sort-int-directed-test.cc
|-- sort-int-random-test.cc
|-- vector-image-directed-test.cc
|-- vector-image-random-test.cc
|-- vector-int-directed-test.cc
|-- vector-int-random-test.cc

header file for the HRS interface class
header file for Image
inline source code for Image
header file for MNIST-related utilities
header file for sort_image
header file for sort_int
inline source code for VectorImage
header file for VectorInt
inline source code for VectorInt
header file for vector_int_t

HOW TO GET STARTED!
scripts to accomplish all sorts of tasks

compiles your code
assesses the coverage of your tests
builds, tests, then evaluates
formats code according to class conventions
looks for memory leaks!
compiles and then tests for correctness
user-friendly way to run Valgrind

source code – where the magic happens
cmake configuration script
source code for course standard library
source code for the HRS HRSBinarySearch
source code for HRSLinearSearch
ad-hoc test program for Image
source code for Image
source code for MNIST-related utilities
ad-hoc test program for sort_image
source code for sort_image
source code for sort_int
ad-hoc test program for sort_int
ad-hoc test program for VectorImage
source code for VectorImage
ad-hoc test program for VectorInt
source code for VectorInt

correctness tests
cmake configuration script
directed test cases for HRSBinarySearch
directed test cases for HRSLinearSearch
directed test cases for Image
random test cases for Image
directed test cases for sort_image
random test cases for sort_image
directed test cases for sort_int
random test cases for sort_int
directed test cases for VectorImage
random test cases for VectorImage
directed test cases for VectorInt
random test cases for VectorInt

3

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

The assignment is divided into seven steps. Implement and test the following functions and classes:
• Step 1. sort_int function
• Step 2. VectorInt class using sort_int
• Step 3. Image class using VectorInt
• Step 4. sort_image function
• Step 5. VectorImage class using Image and sort_image
• Step 6. HRSLinearSearch class
• Step 7. HRSBinarySearch class

Remember to take an incremental design approach! Implement and test each step before moving
on to the next step. This means more than adhoc testing. Perform thorough directed and random
testing of each step before beginning the next step.

2. Implementation Specifications

The high-level goal for this programming assignment is to implement a handwriting recognition
system with two classification algorithms. You will start off by implementing three data structures:
VectorInt, Image, and VectorImage and two algorithms: sort_int and sort_image. VectorInt is
a resizable vector data structure that stores integers and is very similar to what you have imple-
mented in the second and third programming assignment except now you will be using the object-
oriented programming paradigm in C++. Image uses a VectorInt to store pixels, and VectorImage
is a vector that stores Images. The sort_int algorithm sorts an array of integers while sort_image
algorithm will sort an array of images based on their intensity. You will then leverage these data
structures and algorithms to construct the two handwriting recognition systems: HRSLinearSearch
and HRSBinarySearch.

Note that your implementations cannot use anything from the Standard C library except for the
printf function defined in cstdio, the MIN/MAX macros defined in climits, the NULL macro de-
fined in cstddef, and the assert macro defined in cassert. Your implementations cannot use any-
thing from the Standard C++ library except for C++ I/O streams from iostream.

2.1. sort_int Algorithm

The sort_int function has the following interface:

• void sort_int(int* a, int size);

This function takes as input an integer array a with length size and sorts numbers in the array
in an ascending order. You can copy over any of the sorting algorithms from the previous PA to
use in your implementation. You can assume that size correctly reflects the size of the input array.
Your algorithm must work correctly if size is zero, which means the input array pointer a may be a
NULL pointer. The interface for sort_int is provided for you in include/sort_int.h. Write your
implementation in src/sort_int.c.

2.2. VectorInt Data Structure

After sort_int is implemented and tested, implement a resizable vector data structure that stores
data that has type int. Implement each of the following functions:

VectorInt::VectorInt();
VectorInt::VectorInt(int* array, int size);
VectorInt::~VectorInt();

4

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

VectorInt::VectorInt(const VectorInt& vec);
VectorInt::VectorInt& operator=(const VectorInt& vec);

int VectorInt::size() const;
void VectorInt::push_back(int value);
int VectorInt::at(int idx) const;
bool VectorInt::contains(int value) const;
void VectorInt::sort();
int VectorInt::find_closest_linear(int value) const;
int VectorInt::find_closest_binary(int value, int k) const;
void VectorInt::print() const;
int VectorInt::operator[](int idx) const;

The specification for these functions is as follows:

• VectorInt::VectorInt()
The default constructor constructs an empty VectorInt, initializing all member fields in VectorInt.

• VectorInt::VectorInt(int* arr, int size)
A non-default constructor that construct a VectorInt from an array of ints with the given size.
This constructor should perform a deep copy, i.e., copy the values inside the array rather than
copying the pointer. Modifying or deleting the input array after construction should have no
effect on the constructed VectorInt object. You can assume that the input size is never greater
than the actual size of the array arr. Construct an empty VectorInt if size is 0.

• VectorInt::˜VectorInt()
Destructor for VectorInt. It frees the memory allocated on the heap by VectorInt. Note that
you should use the delete and delete[] operator instead of free as in C.

• VectorInt::VectorInt(const VectorInt& vec)
Perform a deep copy of the values stored in vec. Subsequent actions on vec should not affect the
constructed VectorInt. Carefully handle the case when copying from an empty vector!

• VectorInt& VectorInt::operator=(const VectorInt& vec)
This overloads the assignment operator. Copy the values stored in vec. Note that if the current
VectorInt is not empty, you need to free the memory allocated for it first. Carefully handle the case
of self assignment, especially when assigning from an empty vector!

• int VectorInt::size() const
Return the current number of elements in the vector. If the VectorInt is empty, return 0.

• void VectorInt::push_back(int value)
Push a new element with the given value value onto the end of the VectorInt. If there is not
enough allocated space, dynamically allocate more memory to store both existing elements and
the new element. Note that you should use the new operator instead of malloc as in C.

• int VectorInt::at(int idx) const
Return the value at the given index idx of the VectorInt. If the given index is out-of-bound,
throw ece2400::OutOfRange with a useful error message.

• bool VectorInt::contains(int value) const
Search the VectorInt for the given value and returns true if the value is found and false other-
wise. If the VectorInt is empty, then this function should just return false.

5

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

• void VectorInt::sort()
Sort the internal array in ascending order. You should just call sort_int in include/sort-int.h.

• int VectorInt::find_closest_linear(int value) const
Perform a linear search of the vector for the value that is closest to the given value (value) and
return the closest value. The distance between two integers x and y is defined as |x − y|. The
difference between two integers can be larger than the maximum sized integer. For example,
INT_MAX - INT_MIN is larger than INT_MAX. For this PA, we will consider it undefined behavior to
store integers whose difference is larger tha INT_MAX. If there are multiple values that are equally
(and minimally) close to value, return the one that has the smallest index in the internal array. If
the VectorInt is empty, throw ece2400::OutOfRange with a proper error message.

• int VectorInt::find_closest_binary(int value, int k) const
Perform a binary search of the vector to find an index that has a value close to the given value
(value), and then perform a linear search of K elements centered around the index determined
by the binary search. Specifically, search K/2 images backwards and K/2 images forwards from
the final image found during the binary search. Carefully handle the case where there are less
than K/2 images either before or after the final image found during the binary search. Return
the closest value from the linear search. The distance between two integers x and y is defined
as |x − y|. The difference between two integers can be larger than the maximum sized integer.
For example, INT_MAX - INT_MIN is larger than INT_MAX. For this PA, we consider it undefined
behavior to store integers whose difference is larger than INT_MAX. If there are multiple values
that are equally (and minimally) close to value within the linear search, return the smallest one.
If the VectorInt is empty, throw ece2400::OutOfRange with proper error message. Check that
the VectorInt is sorted before doing the binary search, and throw ece2400::InvalidArgument
with a proper error message if it is not sorted.

• void VectorInt::print() const
Print the contents of the VectorInt. This function is used for your own debugging purpose. You
can implement this function in any way you like. You do not need to test this function.

• int VectorInt::operator[](int idx) const
This overloads the subscript operator. It should just return the value at the given index idx of
the vector without any boundary check. Note that this is different from at, since at throws an
exception when index is out-of-bound.

The functions vary in complexity and some may require just a few lines of code to implement. To give
you an idea of how to use this class, here is a simple function that constructs a VectorInt, pushes
back three values, gets the middle value, and then destructs the VectorInt:

#include "VectorInt.h"

int main(void)
{

VectorInt vec; // Declare a VectorInt on the stack
vec.push_back(11); // Push back 11
vec.push_back(12); // Push back 12
vec.push_back(13); // Push back 13
int a = vec.at(1); // int a now has 12

}

6

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

The interface for VectorInt is provided for you in include/VectorInt.h. Write the implementation
of your member variables inside include/VectorInt.h and the implementation of each function
inside of src/VectorInt.cc.

2.3. Image Data Structure

After VectorInt is implemented and tested, use it to implement the Image class for storing small
grayscale images. An Image uses VectorInt to store an array of integers. Each integer represents
a pixel in grayscale and has an value within the range of [0, 255]. Lower numbers represent lighter
shades (with 0 representing white), while higher numbers represent darker shades (with 255 repre-
senting black). Each Image object has a label associated with it. Image also has an intensity, which
we define here as the sum of all pixels. Implement each of the following functions except for print
and display, which we have already implemented for you:

Image::Image();
Image::Image(const VectorInt& vec, int ncols, int nrows);

int Image::get_ncols() const;
int Image::get_nrows() const;
int Image::at(int x, int y) const;
void Image::set_label(char l);
char Image::get_label() const;
int Image::get_intensity() const;
int Image::distance(const Image& other);
void Image::print() const;
void Image::display() const;

bool Image::operator==(const Image& rhs) const;
bool Image::operator!=(const Image& rhs) const;

Here is a brief specification for each member function of Image class.

• Image::Image()
Default constructor. This function constructs an empty Image by initializing all data members.

• Image::Image(const VectorInt& vec, int ncols, int nrows)
Non-default constructor that constructs an Image from a VectorInt given the number of columns
(ncols) and number of rows (nrows). Our Image class is only for storing small images, so if
either ncols or nrows is larger than 128, throw ece2400::InvalidArgument with a useful error
message. If the size of the vector does not match the number of columns and number of rows,
throw ece2400::InvalidArgument with a useful error message.

• int Image::get_ncols() const
Return the number of columns of the current Image. Return 0 if the current Image is empty.

• int Image::get_nrows() const
Return the number of rows of the current Image. Return 0 if the current Image is empty.

• int Image::at(int x, int y) const
Return the value of the pixel at x-th column and y-th row. For example, if an Image is constructed
from {0,1,2,3} with ncols and nrows both equal to 2, then at(0,0) returns 0, at(1,0) returns

7

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

1, at(0,1) returns 2, at(1,1) returns 3. If x or y is out-of-bound, throw ece2400::OutOfRange
with proper error message.

• void Image::set_label(char label)
Set the current label of the Image to the given character label.

• char Image::get_label() const
Return the current label of the Image. If no set_label has been called, return ’?’.

• int Image::get_intensity() const
Return the intensity of the current Image. Note that intensity here is simply defined as the sum
of all pixels. Since an Image cannot be larger than 128×128 and each pixel cannot be larger than
255, it should be possible to write this function without worrying about overflow.

• int Image::distance(const Image& other)
Return the square of the Euclidean distance between this image and image other, which is just
the sum of the difference between each pixel squared. For example, if image a has four pix-
els {1,9,9,5} and b has four pixels {0,4,2,3} then distance(a,b) should return (1 − 0)2 +
(9 − 4)2 + (9 − 2)2 + (5 − 3)2 = 55. If the dimensions of the two images do not match, throw
ece2400::InvalidArgument with a useful error message. Since an Image cannot be larger than
128×128 and each pixel cannot be larger than 255, it should be possible to write this function
without worrying about overflow.

• void Image::print() const
Print the label and intensity of the Image. We provide you this function for your debugging.

• void Image::display() const
Print the contents of the Image. We provide you with this function that makes a pretty grayscale
picture based on the contents of the Image.

• bool Image::operator==(const Image& rhs) const
Overload the equal-to operator so that it compares the value of each pixel. Return true only if the
each pixel in the right-hand-side image is the same as that in the current image. If the dimensions
of the two images do not match, simply return false. Otherwise return true.

• bool Image::operator!=(const Image& rhs) const
Overload the equal-to operator so that it compares the value of each pixel. Return false only
if the each pixel in the right-hand-side image is the same as that in the current image. If the
dimensions of the two images do not match, return true. Return false if both images are empty.

The functions vary in complexity, and some may require just a few lines of code to implement. The in-
terface for Image is provided for you in include/Image.h. Write the implementation of your member
variables inside include/Image.h and the implementation of each function inside of src/Image.cc.

2.4. sort_image Algorithm

After Image is implemented and tested, implement the sort_image function which has the following
interface:

• void sort_image(Image* a, int size);

This function takes as input an array a of Images with length size and sorts the Images in the array
in an ascending order based on their intensity. You can copy over any of the sorting algorithms from
the previous PA to use in your implementation, although you will need to modify the algorithm

8

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

to call Image::get_intensity as oppropriate. The interface for sort_image is provided for you in
include/sort_image.h. Write your implementation in src/sort_image.c.

2.5. VectorImage Data Structure

After Image and sort_image are implemented and tested, implement a VectorImage class that stores
a vector of Images. VectorImage has the same member functions as VectorInt, except that it should
operate on Images rather than ints. Note that VectorImage::find_closest_linear should use
Image::distance to calculate the Euclidean distance between two images. VectorImage::sort
should just call sort_image, and thus it sorts the images by their intensity.

VectorImage::find_closest_binary is similar to VectorInt::find_closest_binary with an im-
portant difference. We will sort the images based on intensity and then do the binary search based on
intensity. This enables us to quickly find images with similar intensity. However, intensity, defined
as the sum of all pixels, is not a very good feature to differentiate different digits. For example, it
is very likely that a ’6’ and a ’9’ have very similar intensity. Therefore, after finding the index, we
will do the linear search of K images using the Euclidean distance. To be more specific, search K/2
images backwards and K/2 images forwards from the final image found during the binary search.
You will need to carefully handle the case where there are less than K/2 images either before or after
the final image found during the binary search. Again, this final linear search should be based on
the Euclidean distance not the intensity. You should return the image that has the smallest Euclidean
distance within the K images. Figure 2 illustrates the overall approach: use binary search to quickly
zoom in on images with similar intensity and then do a linear search to find the closest image for
classification. The hope is that binary search will be faster since it only does a linear search over K
images, but that the accuracy is still reasonable since this linear search is over K images with similar
intensity (and thus probably the right digit).

2.6. HRSLinearSearch Handwriting Recognition System

The first handwriting recognition system you will implement is HRSLinearSearch, which uses a
brute force linear search algorithm. Implement each of the following functions:

HRSLinearSearch::HRSLinearSearch();
void HRSLinearSearch::train(const VectorImage& vec);
Image HRSLinearSearch::classify(const Image& Image);

Here is a brief specification for each member function of HRSLinearSearch:

• HRSLinearSearch::HRSLinearSearch()
Default constructor for HRSLinearSearch. Initialize your member variables if necessary.

• void HRSLinearSearch::train(const VectorImage& vec)
Train the HRS. For HRSLinearSearch, simply store a copy of the vector that contains the training
images (vec). If you have implemented the assignment operator correctly, this should just be a
one-line function.

• Image HRSLinearSearch::classify(const Image& img)
Classify the given image. This function should search through the entire training set and return
the image that has the smallest euclidean distance from the given image. You should just call
VectorImage::find_closest_linear.

9

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

Binary Search
(Intensity)

Linear Search w/ K = 8
(Euclidean Distance)

Test Image

Vector of 32 Training Images
(sorted by intensity)

Figure 2: VectorImage::find_closest_binary Example – Example for 32 images and K = 8. As-
sumes vector images has already been sorted based on intensity. Binary search is based on intensity
and quickly finds images with similar intensity as the test image. Linear search of 8 images is based
on Euclidan distance and finds the closest match.

2.7. HRSBinarySearch Handwriting Recognition System

The second handwriting recognition system you will implement is HRSBinarySearch, which uses a
mix of binary and linear search. The overall approach is to first sort the training images by their
intensity. Then during classification we can use binary search to quickly find training images with
similar intensity, and then do a linear search of K images using Euclidean distance. Implement each
of the following functions:

HRSBinarySearch::HRSBinarySearch(int k);
void HRSBinarySearch::train(const VectorImage& vec);
Image HRSBinarySearch::classify(const Image& Image);

Here is a brief specification for each member function of HRSBinarySearch:

• HRSBinarySearch::HRSBinarySearch(int k)
Default constructor for HRSBinarySearch. Initialize your member variables if necessary.

• void HRSBinarySearch::train(const VectorImage& vec)
Train the HRS. For HRSBinarySearch, you need to store a copy of the vector that contains the
training images (vec), and then sort the training images based on intensity. You should just call
VectorImage::sort.

• Image HRSBinarySearch::classify(const Image& img)
Classify the given image. This function should use a binary and linear search. You should just
call VectorImage::find_closest_binary.

3. Testing Strategy

Develop an effective testing strategy to ensure all implementations are correct. Writing tests is one
of the most important and challenging aspects of software programming. Software engineers often
spend far more time implementing tests than they do implementing the actual program.

Note that while there are limitations on what you can use from the Standard C/C++ library in your
implementations there are no limitations on what you can use from the Standard C/C++ library in
your testing strategy. You should feel free to use the Standard C/C++ library in your golden reference
models and/or for random testing.

10

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

3.1. Ad-hoc Testing

We provide one ad-hoc test program per implementation in the src directory: sort-int-adhoc.cc,
vector-int-adhoc.cc, image-adhoc.cc, sort-image-adhoc.cc, and vector-image-adhoc.cc. Stu-
dents can use these ad-hoc test programs by compiling and running them directly in the src/ direc-
tory without using any build-automation tool (e.g., CMake and Make). However, we encourage you
to transition to the automated test suite as early as possible in your development process.

You can build and run the given ad-hoc test program sort-int-adhoc like this:

% cd ${HOME}/ece2400/netid/pa4-sys
% scripts/build.sh
% cd build/src
% ./sort-int-adhoc

3.2. Systematic Unit Testing

Although ad-hoc test programs help you quickly see results of your implementations, they are often
too simple to cover most scenarios. We need a systematic and automatic unit testing strategy to
hopefully test all possible scenarios efficiently.

For each implementation, we provide a directed test program that should include several test cases
to target different categories and a random test program that should test that your implementation
works for random inputs. Unlike in the first three programming assignments, a great deal of tests
have already been provided for you! Leverage the available tests to verify the functionality of your
handwriting recognition systems. But remember that your goal with respect to testing strategy is to
convince yourself and the staff that your code is functional. If in order to convince yourself that your
code is functional further tests may be needed (maybe just by copying and adjusting existing tests).

Do not implement all of these functions before running your first test! Instead, implement and test
each of the following substeps.

• Step 1. Implement and test sort_int

• Step 2. Implement and test VectorInt

– Step 2a. Implement and test the default constructor, destructor, push_back, size, at
– Step 2b. Implement and test the non-default constructor
– Step 2c. Implement and test contains
– Step 2d. Implement and test sort
– Step 2e. Implement and test find_closest_linear
– Step 2f. Implement and test find_closest_binary
– Step 2g. Implement and test operator[]
– Step 2h. Implement and test the copy constructor
– Step 2i. Implement and test the assignment operator

• Step 3. Implement and test Image

– Step 3a. Implement and test the default/non-default constructor, get_ncols, get_ncols, at
– Step 3b. Implement and test set_label, get_label
– Step 3c. Implement and test get_intensity
– Step 3d. Implement and test operator==, operator!=
– Step 3e. Implement and test distance

• Step 4. Implement and test sort_image

11

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

• Step 5. Implement and test VectorImage

– Step 5a. Implement and test the default constructor, destructor, push_back, size, at
– Step 5b. Implement and test the non-default constructor
– Step 5c. Implement and test contains
– Step 5d. Implement and test sort
– Step 5e. Implement and test find_closest_linear
– Step 5f. Implement and test find_closest_binary
– Step 5g. Implement and test operator[]
– Step 5h. Implement and test the copy constructor
– Step 5i. Implement and test the assignment operator

• Step 6. Implement and test HRSLinearSearch

• Step 7. Implement and test HRSBinarySearch

Each substep should correspond to one or more directed test cases.

As in the previous programming assignment, we provide you a testing framework you should use
for your directed and random testing. See the provided test programs in the test subdirectory
for how to use this framework. The ECE 2400 standard library in ece2400-stdlib.h contains the
following macros you should use to check the correctness of your implementations:

• ECE2400_CHECK_FAIL() – check program does not reach this point
• ECE2400_CHECK_TRUE(expr_) – check expr_ is always true
• ECE2400_CHECK_FALSE(expr_) – check expr_ is always false
• ECE2400_CHECK_INT_EQ(expr0_, expr1_) – check expr0_ equals expr1_

You can build and run all unit tests for all implementations like this:

% cd ${HOME}/ece2400/pair-xx/pa4-sys
% scripts/test.sh

Build Successful
Running tests...
<blah blah blah>
Tests failed

(Your tests will all fail initially.)

If you are failing a test program, then you can “zoom in” and run all of the unit tests for a single test
program (e.g., directed tests for sort_int) like this:

% cd ${HOME}/ece2400/pair-xx/pa4-sys/build/test
% ./sort-int-directed-test

You can then “zoom in” to a specific test case by passing in the index of that test case like this:

% cd ${HOME}/ece2400/pair-xx/pa4-sys/build/test
% ./sort-int-directed-test 1

test_case_1_simple
<blah blah blah>

12

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

3.3. Memory Leaks

Students are responsible for making sure that their program contains no memory leaks or other issues
with dynamic allocation. We have included a make target called memcheck which runs all of the test
programs with Valgrind. Valgrind will force the test to fail if it detects any kind of memory leak or
other issues with dynamic allocation.

Check memory leaks and other dynamic memory allocation issues like this:

% cd ${HOME}/ece2400/pair-xx/pa4-sys
% scripts/memcheck.sh

You can just check one test program (e.g. vector-int-directed-test) like this:

% cd ${HOME}/ece2400/pair-xx/pa4-sys
% scripts/valgrind.sh build/test/sort-int-directed-test

valgrind.sh calls Valgrind with correct command line options so you don’t need to remember them.

3.4. Code Coverage

After your implementations pass all unit tests, you can evaluate how effective your test suite is by
measuring its code coverage. The code coverage will tell you how much of your source code your
test suite executed during your unit testing. The higher the code coverage is, the less likely some
bugs have not been detected. You can run the code coverage like this:

% cd ${HOME}/ece2400/pair-xx/pa4-sys
% scripts/coverage.sh

The script will clean up any previous coverage data, create a fresh build-coverage directory, com-
pile the project with code coverage flags, run the tests, and generate coverage reports. The coverage
reports for your sorting implementations can be found at build-coverage/*.cc.gcov. Unexecuted
lines are marked #####. Lines marked with * contain some unexecuted basic blocks.

Code coverage is just one more piece of evidence you can use to make a compelling case for the
correct functionality of your implementations. It is not required that students achieve 100% code
coverage. It is far more important that students use code coverage as a way to guide their test-driven
design than to obsess over specific code coverage numbers.

4. Evaluation

In PAs 1-3, students gained first-hand experience with test-driven design by implementing a com-
pelling testing strategy. PAs 4-5 shift to focus more on incremental profiling and optimization.

4.1. Evaluating the Unoptimized HRS

Once you have verified the functionality of your handwriting recognition systems, you can evaluate
their performance and accuracy with breakdowns for both the training phase and the classification
phase. You can run the evaluation program like this:

% cd ${HOME}/ece2400/pair-xx/pa4-sys
% ./scripts/eval.sh

13

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

Take a peek inside eval.sh to see what it does! Notice that it calls for a “release” build (as opposed to
a “debug” build which is slower) and then calls two evaluation programs: hrs-linear-search-eval
and hrs-binary-search-eval. You can specify the size of the number of training images N, the
number of classification images M, and the size of the final linear search when using binary search K
on the command line for each evaluation program:

% cd ${HOME}/ece2400/pair-xx/pa4-sys/build/eval
% ./hrs-linear-search-eval N M
% ./hrs-binary-search-eval N M K

See the complete usage text by forcing an error message:

% ./hrs-linear-search-eval -help
or

% ./hrs-binary-search-eval -help

Finally, note that using a smaller number of training images and/or classification images is only
for profiling and interactive performance optimization. All accuracy results must use the full 60K
training dataset and 10K classification dataset.

Since the implementation is still unoptimized at this point, the classification can be quite slow. For
example, it might take over 20 minutes for the unoptimized version of HRSLinearSearch. Record the
unoptimized training time, classification time, and total execution time for the report.

After recording the unoptimized performance, you will need to do some performance profiling to
figure out where the bottleneck is and what to optimize. You will use perf to create a flame graph
for each implementation. You should only use perf if the execution time is about five minutes or less. If
you use perf when the execution time is longer it will create a huge trace file which will fill up your home
directory! You can create the flame graph for the HRSLinearSearch with the following command:

% cd ${HOME}/ece2400/pair-xx/pa4-sys/build/eval
% perf record --call-graph dwarf ./hrs-linear-search-eval 60000 100
% perf script report stackcollapse | flamegraph.pl > graph-linear-unopt.svg

Notice that we only use 100 classification (test) images because using the full dataset to create the
flame graph will create a huge trace file. 100 images is representative enough for iterative perfor-
mance optimization. You can create the flame graph for the HRSBinarySearch with the following
command:

% cd ${HOME}/ece2400/pair-xx/pa4-sys/build/eval
% perf record --call-graph dwarf ./hrs-binary-search-eval
% perf script report stackcollapse | flamegraph.pl > graph-binary-unopt.svg

Notice that for HRSBinarySearch you should probably use the full classification dataset because oth-
erwise the ratio between the training time and classification time can be misleading. You can down-
load the flame graph using VS Code.

Save these two flame graphs for your report. You should use your flame graph to determine what is
the bottleneck in your implementation and what optimizations you may want to choose. We highly
recommend you do a git commit before you move on to the next step, so that if you want to
reproduce the unoptimized results in the future, you can simply checkout to this commit without
having to change your code back.

14

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

4.2. Evaluating the Optimized HRS

We provide you with a list of optimizations that may improve performance. Optimizations may
only change the implementation of classes, never the interface. As an exception, an optimization may
require adding a new public member function, if such a member function is thoroughly justified,
does not break data encapsulation, and appropriate test cases are added. For example, you might
want to add a public member function that performs a linear find closest over a subrange. You are
absolutely not required to implement all of these optimizations. Some optimizations may make a
significant difference, while other operations may make no difference at all. Think critically and
choose what optimizations to implement! Start by examining the flame graph from the previous
step. What functions are taking a significant amount of time? Then try one of three things: (1) Can
you avoid calling the function outright? (2) Can you optimize the code inside the function? (3) If the
code inside the function is simple you can potentially use inlining.

• Choosing the Right Algorithm
Always start your optimizations by making sure you are using the right algorithm with an appro-
priate complexity class. For example, carefully choose an algorithm for VectorInt::push_back,
VectorImage::push_back, VectorInt::sort, and VectorImage::sort. If you use quick sort,
then carefully consider how you choose the pivot, since this can have a significant impact on
performance in practice.

• Choosing the Right Function
Sometimes an easy way to optimize your code is to simply choose to call a faster function which
has the same behavior as a slower function. For example, while you might start by using VectorInt::at()
(which does bounds checking) inside your Euclidean distance calculation, you might want to
considering replacing these calls to VectorInt::at() with the [] operator (which does not do
bounds checking) once you are sure your implementation is correct.

• Accessing Member Fields Directly
Member functions can either use a different member function to access member fields, or they can
access member fields directly. Using a different member function can sometimes improve read-
ability by refactoring code, but directly accessing member fields can sometimes be more efficient.
For example, using push_back in the copy constructor or assignment operator for VectorInt and
VectorImage can be less efficient compared to dynamically allocating all of the necessary mem-
ory at once. Similarly, using Image::at() to access pixels within the Image member functions can
be less efficient compared to directly accessing the private vector of pixels. Note that it is never
acceptable to make member fields public to improve performance since this would break data
encapsulation (and change the interface).

• Function Inlining
Inlining a function can eliminate the overhead of making a function call. Inlining essentially tells
the compiler to replace a function call by copying the function body into the caller. To inline
a function simply move it from the .cc file into the .inl file and add the inline keyword at
the beginning of the function declaration. Note that inlining large functions can actually reduce
performance, so only inline relatively small functions.

• Constant References
Passing an object by value or returning a copy of an object will call the copy constructor and can
be inefficient. You can also just pass or return a constant reference to the object. Note that you
need to use the const keyword otherwise the data stored in the data structure can be mutated
unintentionally. You will need to change the .h but technically this will not change the inter-

15

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

face since a user should not be able to distinguish the difference between returning a copy and
returning a const reference.

• Memoization
In Image::get_intensity, the intensity is calculated each time get_intensity is called. You
can instead calculate the intensity the first time get_intensity is called, save (or memoize)
the intensity to an internal member field, and then simply reuse this saved value the next time
get_intensity is called. Alternatively, you can calculate the intensity ahead of time in the con-
structor and simply return it in the get_intensitymethod. Similarly, VectorInt::find_closest_binary
and VectorImage::find_closest_binary check if the internal array is sorted each time find_closest_binary
is called. You can instead check if the array is sorted the first time find_closest_binary is called,
save (or memoize) a flag stored as an internal member field indicating if the array is sorted, and
then simply check this flag the next time find_closest_binary is called. Alternatively, you can
update such a flag after calling sort. Note that if a user later uses push_back you will need to
reset this flag. Since get_intensity and find_closest_binary are const you will need to use
the mutable keyword so that a member variable can be modified in a const member function.

• Efficient Swap
In VectorImage::sort, when you swap two images, you will have to copy the image multiple
times, which can be slow. It is far more efficient to just swap the pointers inside the VectorInt.
However, the interface does not provide you with access to the internal pointer. You can define a
VectorInt::swap public member function that swaps a given vector with the current vector, and
a Image::swap public member function that swaps a given image with the current image. Then
you can use the Image::swap member function in your in your VectorImage::sort.

• More Compact Image Storage
Since the value for each pixel is within [0,255], it is enough to store a pixel with just 8 bits. You
can implement a VectorByte data structure that stores a vector of bytes (i.e., unsigned char) and
then you can use this VectorByte data structure in the implementation of Image. Note you are not
allowed to change the interface of Image so you will need to carefully convert from a VectorInt
in the constructor and convert to an int in the return value for Image::at.

With proper optimizations, you should be able to reduce the execution time for the full classification
dataset by 4–8×. For each optimization you try record the new training, classification, and total
time for the report. Save the two final flame graphs for your most optimized implementations.

5. Milestone and Report

This section includes critical information about the incremental milestone, final code submission,
and the final report specific to this PA. The programming assignment logistics document provides
general details about the requirements for the milestone and final submission. You must actually
read the document to ensure you know how we will access your milestone and final submission.

5.1. Incremental Milestone

While the final code and report are all due at the end of the assignment, we also require you to
complete an incremental milestone, push and submit your code to GitHub on the date specified by
the instructor. More specifically to meet the incremental milestone of this PA, you are expected to:

• Complete the implementation of sort_int
• Complete the implementation of VectorInt
• Pass all given directed and random tests for these implementations

16

ECE 2400 Computer Systems Programming, Spring 2025 PA4: Handwriting Recognition Systems

• Consider adding a few of your own directed tests

5.2. Final Code Submission

Your code quality score will be based on the way you format the text in your source files, proper use
of comments, deletion of instructor comments, and uploading the correct files to GitHub (only source
files should be uploaded, no generated build files). To assist you in formatting your code correctly,
we have created a make target that will autoformat the code for you. You can use it like this:

% cd ${HOME}/ece2400/pair-xx/pa4-sys
% ./scripts/format.sh
% git diff
... check all changes ...
% git commit -a -m "autoformat"

Note that the autoformat target will only work if you have already committed all of your work. This
way you can easily use git diff to view the changes made by the autoformatting and commit those
changes when you are happy with them. Since we provide students an automated way to format
their code correctly, students have no excuse for not following the course coding conventions!

Note that students must remove unnecessary comments that are provided by instructors in the
code distributed to students. Students must not commit executable binaries or any other unnec-
essary files. The autoformat target will not take care of these issues for you.

To submit your code you simply upload it to GitHub. Your code will be assessed both in terms of
functionality and code quality. Your functionality score will be determined by running your code
against a series of tests developed by the instructors to test its correctness.

5.3. Final Report

The final report must be uploaded to Canvas. The date you upload your report will indicate how
many slip days you are using for the assignment. Your entire report must be no more than eight
pages. You will have to use this Overleaf template to generate your pdf:

https://tinyurl.com/2400-sp25-pa4temp

Acknowledgments

This programming assignment was created by Christopher Batten, Christopher Torng, Tuan Ta,
Yanghui Ou, Peitian Pan, and Nick Cebry as part of the ECE 2400 Computer Systems Program-
ming course at Cornell University. We also thank the curators of the MNIST database of handwritten
digits.

17

