
ECE 2400 Computer Systems Programming, Fall 2021
PA3: Sorting Algorithms

School of Electrical and Computer Engineering
Cornell University

revision: 2021-10-24-20-38

1. Introduction

The third programming assignment will give you experience working across four important sorting
algorithms in computer systems programming: selection sort, merge sort, quick sort, and bucket sort.
While this programming assignment is more algorithm centric, you will still need to leverage your
knowledge of data structures. You will be adding a new sorting function to the vector data structure
you developed in the previous programming assignment. Algorithms together with data structures
provide the basis of all software programs. In particular, learning to analyze and compare different
algorithms that solve the same class of problems is a fundamental skill and will be tremendously
useful as you continue to work with software programs.

Sorting algorithms are a particularly useful class of algorithms, and although we focus on integer
sorting in this assignment, the same algorithms can be used to sort other types of elements as well.
Sorting the elements in a data structure can often simplify and reduce the complexity of future opera-
tions (e.g., being able to run binary search on a sorted vector), and therefore, sorting algorithms have
been intensely studied to maximize their performance and work efficiency. In this assignment, you
will first implement three functions corresponding to three sorting algorithms: selection sort, merge
sort, and quick sort. For each sorting algorithm you will need to implement a helper function first, and
then you will use this helper function in the implementation of the sorting algorithm. You will then
add a new sorting function to the vector data structure from the previous programming assignment.
Finally, you will implement bucket sort by using a set of vectors. This final example will illustrate the
interplay between algorithms and data structures; an algorithm (bucket sort) will use a data struc-
ture (vector) which uses another algorithm (one of the other sorting algorithms) on a simple data
structure (array). You will evaluate the impact of scaling the problem size (i.e., the number of inte-
gers to sort) as well as the impact of different patterns of inputs (e.g., random, sorted forward, sorted
reverse) on the execution time and space usage of the various algorithms. As in the previous assign-
ments, we will leverage the CMake framework for building programs, the CTest framework for unit
testing, GitHub Actions for continuous integration testing, and lcov for code coverage analysis.

After your algorithms are functional and tested, you will write a four-page report that includes your
complexity analysis and a quantitative evaluation of the performance across all implementations.
You should consult the programming assignment logistics document for more information about
the expectations for all programming assignments and how they will be assessed. While the final
code and report are all due at the end of the assignment, we also require meeting an incremental
milestone in this PA. Requirements specific to this PA for the incremental milestone and the final
report are described at the end of this handout.

This handout assumes that you have read and understand the course tutorials and that you have
attended the discussion sections. To get started, log in to an ecelinux server, source the setup script,
and clone your individual remote repository from GitHub:

1

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

% source setup-ece2400.sh
% mkdir -p ${HOME}/ece2400
% cd ${HOME}/ece2400
% git clone git@github.com:cornell-ece2400/netid
% cd ${HOME}/ece2400/netid/pa3-algo
% tree

Where netid should be replaced with your NetID. You should never fork your individual remote
repository! If you need to work in isolation then use a branch within your individual remote
repository. If you have already cloned your individual remote repository, then use git pull to
ensure you have any recent updates before working on your programming assignment.

% cd ${HOME}/ece2400/netid
% git pull
% tree pa3-algo

For this assignment, you will work in the pa3-algo subproject, which includes the following files:

• CMakeLists.txt – CMake configuration script to generate Makefile

• src/ece2400-stdlib.h – Header file for course standard library
• src/ece2400-stdlib.c – Source code for course standard library

• src/selection-sort-int.h – Header file for selection sort
• src/selection-sort-int.c – Source code for selection sort
• src/selection-sort-int-adhoc.c – Ad-hoc test program for selection sort

• src/merge-sort-int.h – Header file for merge sort
• src/merge-sort-int.c – Source code for merge sort
• src/merge-sort-int-adhoc.c – Ad-hoc test program for merge sort

• src/quick-sort-int.h – Header file for quick sort
• src/quick-sort-int.c – Source code for quick sort
• src/quick-sort-int-adhoc.c – Ad-hoc test program for quick sort

• src/vector-int.h – Header file for vector-int
• src/vector-int.c – Source code for vector-int
• src/vector-int-adhoc.c – Ad-hoc test program for vector-int

• src/bucket-sort-int.h – Header file for bucket sort
• src/bucket-sort-int.c – Source code for bucket sort
• src/bucket-sort-int-adhoc.c – Ad-hoc test program for bucket sort

• test/selection-sort-int-directed-test.c– Directed test cases for selection sort
• test/selection-sort-int-random-test.c – Random test cases for selection sort
• test/selection-sort-int-helper-test.c – Whitebox test cases for selection sort

• test/merge-sort-int-directed-test.c – Directed test cases for merge sort
• test/merge-sort-int-random-test.c – Random test cases for merge sort
• test/merge-sort-int-helper-test.c – Whitebox test cases for merge sort

• test/quick-sort-int-directed-test.c – Directed test cases for quick sort
• test/quick-sort-int-random-test.c – Random test cases for quick sort
• test/quick-sort-int-helper-test.c – Whitebox test cases for quick sort

• test/vector-int-directed-test.c – Directed test cases for vector_int_t
• test/vector-int-random-test.c – Random test cases for vector_int_t

2

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

• test/bucket-sort-int-directed-test.c – Directed test cases for bucket sort
• test/bucket-sort-int-random-test.c – Random test cases for bucket sort

• eval/sort.dat – Input dataset for the evaluation
• eval/selection-sort-int-eval.c – Evaluation program for selection sort
• eval/merge-sort-int-eval.c – Evaluation program for merge sort
• eval/quick-sort-int-eval.c – Evaluation program for quick sort
• eval/bucket-sort-int-eval.c – Evaluation program for bucket sort
• eval/std-sort-eval.c – Evaluation program for standard C library sort

The programming assignment is divided into the following steps. Complete each step before moving
on to the next step.

• Step 1. Implement and test find_min helper function
• Step 2. Implement and test selection_sort_int using find_min
• Step 3. Implement and test merge helper function
• Step 4. Implement and test merge_sort_int using merge
• Step 5. Implement and test partition helper function
• Step 6. Implement and test quick_sort_int using partition
• Step 7. Implement and test vector_int_sort using one of the sort functions
• Step 8. Implement and test bucket_sort_int using vector_int_sort

We cannot stress enough how important it is to take an incremental design approach! You really
must implement and test each helper function before trying to implement the sorting function. This
means more than just adhoc testing. You must do thorough directed testing of your helper function
(in the -helper-test.c test program) before implementing the sorting function.

2. Implementation Specifications

The high-level goal for this programming assignment is to implement four different sorting algo-
rithms and to also add a new sorting function to the vector data structure you developed in the
previous programming assignment. Implementing and testing a helper function before implement-
ing and testing the sorting function is an example of effective procedural programming. Procedural
programming involves carefully organizing your program into “procedures” (i.e., functions) to help
mitigate design complexity. The helper function helps us focus on a smaller part of the implementa-
tion, before working on the complete implementation of the sorting algorithm.

Note that your implementations cannot use anything from the Standard C library except for the
printf function defined in stdio.h, the MIN/MAX macros defined in limits.h, the NULL macro
defined in stddef.h, and the assert macro defined in assert.h. You should not use malloc and
free functions directly, but should instead be using ece2400_malloc and ece2400_free.

2.1. find_min Helper Function

The find_min helper function has the following interface:

• int find_min(int* a, int begin, int end);

This function should find the minimum value in given array a from the index begin to the index
end-1. Note that the range is inclusive of begin and exclusive of end. So if we have an array of eight
elements and we want to find the minimum of the entire array we would set begin to 0 and end to
8. The function should return the index of where the minimum value is stored in the given array.
This is a helper function, so you are responsible for determining if and how you want to handle

3

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

corner cases based on how you plan to use this helper function in selection_sort_int. Write your
implementation in src/selection-sort-int.c.

2.2. selection_sort_int Using find_min

The selection_sort_int function has the following interface:

• void selection_sort_int(int* a, int size);

This function takes as input an integer array a with length size and sorts numbers in the array
in an ascending order. Your implementation must make use of the find_min helper function from
the previous step. You can use either an out-of-place or an in-place implementation. Write your
implementation in src/selection-sort-int.c. You can assume that size correctly reflects the size
of the input array. Your algorithm must work correctly if size is zero, which means the input array
pointer a may be a NULL pointer.

2.3. merge Helper Function

The merge helper function has the following interface:

• void merge(int* dst, int* src0, int begin0, int end0,
int* src1, int begin1, int end1)

This function should merge the given src0 and src1 range of values and write the result into the
given dst array. The function can assume that the src0 and src1 range of values are already sorted
and should ensure that the resulting dst array is also sorted. The src ranges to be merged are from
the index begin to the index end-1. Note that the range is inclusive of begin and exclusive of end.
This function should assume that the dst array size is at least equal to the sum of the two src ranges
(i.e., (end0 − begin0) + (end1 − begin1)). This is a helper function, so you are responsible for
determining if and how you want to handle corner cases based on how you plan to use this helper
function in merge_sort_int. Write your implementation in src/merge-sort-int.c.

2.4. merge_sort_int Using merge

The merge_sort_int function has the following interface:

• void merge_sort_int(int* a, int size);

This function takes as input an integer array a with length size and sorts numbers in the array
in an ascending order. Your implementation must make use of the merge helper function from
the previous step. You should use an out-of-place implementation. Write your implementation in
src/merge-sort-int.c.

Think critically about the base and recursive cases to ensure correct functionality and avoid infinite
recursion. We encourage students to enumerate the base and recursive cases and draw out your
thoughts visually on a piece of paper before you begin writing any code. A basic implementation
will only use the recursive merge sort algorithm. A more advanced “hybrid” implementation would
start with the recursive merge sort algorithm, but then switch to a different sorting algorithm (e.g.,
selection sort) when the size of the partition is relatively small. Students might want to quantita-
tively experiment to determine when it makes sense to switch sorting algorithms. Note that a basic
implementation is perfectly fine and can receive full credit. Your algorithm must work correctly if
size is zero, which means the input array pointer a may be a NULL pointer.

4

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

2.5. partition Helper Function

The partition helper function has the following interface:

• int partition(int* a, int begin, int end)

This function should partition the given array from the index begin to the index end-1. Note that
the range is inclusive of begin and exclusive of end. So if we have an array of eight elements and
we want to partition the entire array we would set begin to 0 and end to 8. The partition should be
based on a pivot which is chosen from the elements in the given range. All elements less than the pivot
should be in the left partition and all elements greater than the pivot should be in the right partition.
The pivot should be moved in between these two partitions, and the index of where this pivot is
located should be returned from the function. You can use either an out-of-place or an in-place
implementation. This is a helper function, so you are responsible for determining if and how you
want to handle corner cases based on how you plan to use this helper function in quick_sort_int.
Write your implementation in src/quick-sort-int.c.

Think critically about how to choose an effective pivot which will result in a good average case par-
tition where the pivot ends up in the middle of the given range. A basic implementation might want
to simply use the last element in the range as the pivot. A more advanced implementation might
use the median element, an approximately median element, or a pseudo-random (but repeatable)
element. Students might want to quantitatively experiment to determine an effective pivot. Note
that a basic algorithm is perfectly fine and can receive full credit.

2.6. quick_sort_int Using partition

The quick_sort_int function has the following interface:

• void quick_sort_int(int* a, int size);

This function takes as input an integer array a with length size and sorts numbers in the array in
an ascending order. Your implementation must make use of the partition helper function from
the previous step. You should use an in-place implementation. Write your implementation in
src/quick-sort-int.c.

Think critically about the base and recursive cases to ensure correct functionality and avoid infinite
recursion. We encourage students to enumerate the base and recursive cases and draw out your
thoughts visually on a piece of paper before you begin writing any code. As in merge sort, a more
advanced “hybrid” implementation would start with the recursive quick sort algorithm, but then
switch to a different sorting algorithm (e.g., selection sort) when the size of the partition is relatively
small. Students might want to quantitatively experiment to determine when it makes sense to switch
sorting algorithms. Note that a basic algorithm is perfectly fine and can receive full credit. Your
algorithm must work correctly if size is zero, which means the input array pointer a may be a
NULL pointer.

2.7. vector_int_sort Using One of the Sort Functions

You will need to implement a resizable vector with the following interface.

• void vector_int_construct(vector_int_t* this);
• void vector_int_destruct(vector_int_t* this);
• void vector_int_push_back(vector_int_t* this, int value);
• int vector_int_size(vector_int_t* this);

5

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

• int vector_int_at(vector_int_t* this, int idx);
• int vector_int_contains(vector_int_t* this, int value);
• void vector_int_sort(vector_int_t* this);
• void vector_int_print(vector_int_t* this);

Start by copying your implementation of the vector data structure from the previous programming
assignment into src/vector-int.c. Note that in this programming assignment we only have a
single vector_int_push_back function. We recommend choosing the faster implementation. So to
be explicit, you should choose either v1 or v2 and rename that function to be vector_int_push_back
and the remove the other implementation.

Notice that we also want to add a new vector_int_sort function to your vector data structure.
This function should directly call one of your previously developed sorting functions. Do not copy
and paste the code! You should #include the appropriate header and simply call one of these three
functions:

• void selection_sort_int(int* a, int size);
• void merge_sort_int(int* a, int size);
• void quick_sort_int(int* a, int size);

You will pass in the internal array and size managed by the vector data structure. Which sort function
you use is up to you, but choose a sort function that will perform well in the general case (i.e., for
both small and large arrays with many different data values).

2.8. bucket_sort_int using vector_int_sort

The bucket_sort_int function has the following interface:

• void bucket_sort_int(int* a, int size);

This function takes as input an integer array a with length size and sorts numbers in the array in an
ascending order. The high-level idea for a bucket sort is to divide the input array into N/K buckets
(where N is size and K is a key parameter), sort each bucket using a previously developed sort func-
tion, and then concatenate the sorted buckets to produce the final fully sorted array. More specifically,
your bucket sort should work as follows: (1) calculate the number of buckets (M) using M = N/K;
(2) scan through the array to find the minimum and maximum values; (3) determine the range for
each bucket as ((max − min)/M); (4) construct M vectors; (5) scan through the array again and push
back each element into the appropriate vector based on its value; (6) call the vector_int_sort func-
tion developed in the previous step; (7) scan through each bucket writing the sorted values into the
original array. Write your bucket sort implementation in src/bucket-sort-int.c.

In general, calculating (max − min) can lead to integer overflows. For this PA, it is undefined be-
havior if the maximum difference between two integers in the array cannot be stored in an int (i.e.,
we will not test this behavior). You can simply perform the (max − min) calculation and assume it
does not overflow. Your algorithm must work correctly if size is zero, which means the input array
pointer a may be a NULL pointer.

Note that we will be using Batten’s bucket sort which is a variation on the generic bucket sort you may
find if you do some independent reading. In the generic bucket sort, K is often used to indicate the
number of buckets where the number of buckets are assumed to be close to N or even larger than N,
such that each bucket only includes a few elements. This is why the generic bucket sort often uses a
O(N2) sorting algorithm to sort each bucket. The exact relationship between N and and the number
of buckets is often somewhat vague in the generic bucket sort. In Batten’s bucket sort, we define K

6

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

to be the expected number of elements in each bucket assuming a uniform random distribution of
the input data. K is a compile time constant that is chosen such that there are fewer buckets and
more elements per bucket than in the generic bucket sort. You should set K = 100 for all of your
primary experiments (i.e., there will be on average about 100 elements in each bucket). Students can
optionally explore how varying K impacts performance, but this is not required. Note that since
Batten’s bucket sort is not quite the same as the generic bucket sort, you cannot simply reuse the
complexity analysis you find in your independent reading. You must think more critically about
this specific variation of bucket sort.

2.9. ECE 2400 Malloc and Free

As in the previous programming assignment, instead of using the malloc function directly for dy-
namic memory allocation in the vector data structure, we provide you a pair of wrapper functions
called ece2400_malloc and ece2400_free. You should also use these functions if need to allo-
cate a temporary array for an out-of-place sorting algorithm. These functions are declared inside
src/ece2400-stdlib.h. These two functions internally call malloc and free, but they also keep
track of how much heap memory your program has allocated so far.

• void* ece2400_malloc(size_t mem_size);
Dynamically allocate a memory space of size mem_size on the heap. The function returns a
pointer to the newly allocated space. If the allocation fails, a NULL is returned. Note that just
like malloc, this function has a parameter of type size_t. Because we use the -Wconversion flag
to tell the compiler to warn of us of any potentially unsafe implicit type conversions, this means
we need to explicitly cast any variables of time int to size_t when calling this function. See an
example below.

• void ece2400_free(void* ptr);
Deallocate the memory space pointed by ptr in the heap. If ptr is NULL, no action occurs. Note
that this function must be used in pair with ece2400_malloc, i.e., ptr must be a pointer returned
by ece2400_malloc. Using this function on a pointer returned by normal malloc is undefined
and may result in a segmentation fault

For reference, here is a simple function that allocates an array of N integers on the heap.

int main(void)
{

int N = 32;
int* data = ece2400_malloc((size_t) N * sizeof(int));

// ... do something with data ...

ece2400_free(data);
return 0;

}

Notice the need to use an explicitly cast the variable N to size_t. Technically this means if N is
negative you will allocate a huge amount of memory on the heap, so you should ensure that N is not
negative.

7

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

3. Testing Strategy

You are responsible for developing an effective testing strategy to ensure all implementations are
correct. Writing tests is one of the most important and challenging aspects of software programming.
Software engineers often spend far more time implementing tests than they do implementing the
actual program.

Note that while there are limitations on what you can use from the Standard C library in your imple-
mentations there are no limitations on what you can use from the Standard C library in your testing
strategy. You should feel free to use the Standard C library in your golden reference models and/or
for random testing.

3.1. Ad-hoc Testing

To help students start testing, we provide one ad-hoc test program per implementation in
src/selection-sort-int-adhoc.c, src/merge-sort-int-adhoc.c, src/quick-sort-int-adhoc.c,
and src/bucket-sort-int-adhoc.c. The ad-hoc tests for selection, merge, and quick sorts only test
the helper functions for these algorithms. Students can use these ad-hoc test programs by compil-
ing and running them directly in the src/ directory without using any build-automation tool (e.g.,
CMake and Make). However, we encourage you to transition to the automated test suite as early as
possible in your development process.

You can build and run the given ad-hoc test program for seleciton_sort_int like this:

% cd ${HOME}/ece2400/netid/pa3-algo/src
% gcc -Wall -o selection-sort-int-adhoc ece2400-stdlib.c selection-sort-int.c \

selection-sort-int-adhoc.c
% ./selection-sort-int-adhoc

The -Wall flag will ensure that gcc reports most warnings.

3.2. Systematic Unit Testing

While ad-hoc test programs help you quickly see results of your implementations, they are often
too simple to cover most scenarios. We need a systematic unit testing strategy to hopefully test all
possible scenarios efficiently.

In this course, we are using CMake/CTest as a build and test automation tool. For each implemen-
tation, we provide a directed test program that should include several test cases to target different
categories and a random test program that should test that your implementation works for random
inputs. We only provide a very few directed tests and no random tests. You must add many more
directed and random tests to thoroughly test your implementations!

Note that you should definitely test your helper functions, but these helper functions are not meant
to be used in any other context besides the corresponding sorting algorithm. So testing the helper
function is really a form of white-box testing. The staff tests will not test your helper functions. All of
our testing will be black-box testing of the sort functions.

We cannot stress enough how important it is to take an incremental design approach! You really
must implement and test each helper function before trying to implement the sorting function. This
means more than just adhoc testing. You must do thorough directed testing of your helper function
(in the *-helper-test.c test program) before implementing the sorting function.

8

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

The tests for the sort functions provided to you take into consideration the fact that the sorting al-
gorithm implementations are done in-place. Setting up a test therefore requires an unsorted array
(to be passed to your sorting implementation) in addition to a sorted array which will be used as
a reference. Please follow this approach for all of your testing. Design your directed tests to stress
different cases that you as a programmer suspect may be challenging for your implementations to
handle. For example, what happens if you call sort on a zero-sized array? Are there any special cases
where a design decision (e.g., choice of pivot) can break the functionality of your implementation?
Convince yourself that your sorting algorithm implementations are robust by carefully developing
a testing strategy. Random testing will be useful in this programming assignment to stress test your
sorting algorithm implementations with large amounts of data. Ensure that your random tests are
repeatable by calling the srand function once at the top of your test case with a constant seed (e.g.,
srand(0)). You may use the C standard library sorting function for random testing only. This function
has the following function signature:

void qsort(void* base, size_t num, size_t size,
int (*compare)(const void*, const void*));

This interface is a little complicated and different from the interface we are using for the sort functions
in this programming assignment. So we have provided a wrapper in ece2400-stdlib.h which you
can use like this:

#include "ece2400-stdlib.h"
#include <stdio.h>

int main(void)
{

int size = 4; // Initialize size
int a[4] = { 14, 11, 12, 13 }; // Initialize array contents

ece2400_sort(a, size); // Call C standard library sort
ece2400_print_array(a, size); // Output: "11, 12, 13, 14"

return 0;
}

Also make sure to copy over your tests in test/vector-int-directed-test.c and
test/vector-int-random-test.c, and to modify them to only test vector_int_push_back (and not
vector_int_push_back_v1 and vector_int_push_back_v2).

As in the previous programming assignment, we provide you a testing framework you should use
for your directed and random testing. See the provided test programs in the test subdirectory
for how to use this framework. The ECE 2400 standard library in ece2400-stdlib.h contains the
following macros you should use to check the correctness of your implementations:

• ECE2400_CHECK_FAIL() – check program does not reach this point
• ECE2400_CHECK_TRUE(expr_) – check expr_ is always true
• ECE2400_CHECK_FALSE(expr_) – check expr_ is always false
• ECE2400_CHECK_INT_EQ(expr0_, expr1_) – check expr0_ equals expr1_

Before running the tests you need to create a separate build directory and use cmake to create the
Makefile like this:

9

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

% cd ${HOME}/ece2400/netid/pa3-algo
% mkdir -p build
% cd build
% cmake ..

Now you can build and run all unit tests for all implementations like this:

% cd ${HOME}/ece2400/netid/pa3-algo/build
% make check

If you are failing a test program, then you can “zoom in” and run all of the unit tests for a single test
program (e.g., directed tests for list) like this:

% cd ${HOME}/ece2400/netid/pa3-algo/build
% make selection-sort-int-directed-test
% ./selection-sort-int-directed-test

You can then “zoom in” to a specific test case by passing in the index of that test case like this:

% cd ${HOME}/ece2400/netid/pa3-algo/build
% make selection-sort-int-directed-test
% ./selection-sort-int-directed-test 1
% ./selection-sort-int-directed-test 2

3.3. Test-Case Crowd Sourcing

While a comprehensive test suite provides strong evidence that your implementation has the correct
functionality, it is particularly challenging to write high-quality test cases for all of your implemen-
tations. Students can use test-case crowd-sourcing after the milestone to reduce the workload of
constructing a comprehensive test suite. Test-case crowd-sourcing will use a Canvas discussion
page; students cannot see any of the currently posted test cases until they post one of their own.
Focus on uploading one or two very strong directed or random test cases. Do not upload more than
two test cases. Avoid uploading simple directed test cases since students will have already devel-
oped such test cases for the milestone. Posting the basic test case provided by the course instructors,
posting an obviously too simple test case, and/or posting something which is obviously meant to
“game” the system is not allowed. Let’s all work together to crowd-source a great test suite that
every student can take advantage of!

You can use test cases posted in the Canvas discussion page in your test programs as long as you
acknowledge the author, so be sure to include the comment in your source code which describes
the test case and includes the author’s name. You will need to renumber the test cases and call them
correctly from main(). Make sure you understand the test case and that you feel it is testing correct
behavior before including it in your test suite!

3.4. Memory Leaks

Students are also responsible for making sure that their program contains no memory leaks or other
issues with dynamic allocation. We have included a make target called memcheck which runs all of
the test programs with Valgrind. Valgrind will force the test to fail if it detects any kind of memory
leak or other issues with dynamic allocation.

10

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

You can check memory leaks and other issues with dynamic memory allocation for all your test
programs like this:

% cd ${HOME}/ece2400/netid/pa3-algo/build
% make memcheck

You can just check one test program (e.g. selection-sort-int-directed-test) like this:

% cd ${HOME}/ece2400/netid/pa3-algo/build
% make selection-sort-int-directed-test
% valgrind --trace-children=yes --leak-check=full --error-exitcode=1 \

--undef-value-errors=no ./selection-sort-int-directed-test

Those are quite a few command line options to Valgrind, so we have created a ece2400-valgrid
script. This script is just a simple wrapper which calls Valgrind with the right options.

% cd ${HOME}/ece2400/netid/pa3-algo/build
% make selection-sort-int-directed-test
% ece2400-valgrind ./selection-sort-int-directed-test

3.5. Code Coverage

After your implementations pass all unit tests, you can evaluate how effective your test suite is by
measuring its code coverage. The code coverage will tell you how much of your source code your
test suite executed during your unit testing. The higher the code coverage is, the less likely some
bugs have not been detected. You can run the code coverage like this:

% cd ${HOME}/ece2400/netid/pa3-algo
% rm -rf build-coverage
% mkdir -p build-coverage
% cd build-coverage
% cmake ..
% make check
% make coverage

Note that these code coverage results will reflect all prior runs of the test and evaluation programs in
the build directory. That is why in the above example, we do a fresh build in a separate build-coverage
build directory.

If you want to drill down and explore the coverage of each line in a program you use use the elinks
web browser like this:

% cd ${HOME}/ece2400/netid/pa3-algo/build-coverage
% elinks coverage-html/index.html

Code coverage is just one more piece of evidence you can use to make a compelling case for the
correct functionality of your implementations. It is not required that students achieve 100% code
coverage. It is far more important that students simply use code coverage as a way to guide their
test-driven design than to overly focus on the specific code coverage number.

11

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

4. Evaluation

Once you have tested the functionality of the sorting algorithm implementations, you can evalu-
ate their performance across a range of input datasets. We provide you with a set of evaluation
programs for each of the four sorting algorithms as well as for the C standard library’s sorting func-
tion. You should not need to modify the aevaluation programs. The ECE 2400 standard library
in ece2400-stdlib.h contains the following functions that are used in the evaluation programs to
measure the execution time and heap space usage.

• ece2400_timer_reset() – reset global timer
• ece2400_timer_get_elapsed() – return elapsed time in seconds since last reset
• ece2400_mem_reset() – reset global memory usage counter
• ece2400_mem_get_aux_usage() – return max heap space allocated in bytes since last reset

You can build these evaluation programs like this:

% cd ${HOME}/ece2400/netid/pa3-algo
% mkdir -p build-eval
% cd build-eval
% cmake -DCMAKE_BUILD_TYPE=eval ..
% make eval

Note how we are working in a separate build-eval build directory, and that we are using the
-DCMAKE_BUILD_TYPE=eval command line option to the cmake script. This tells the build system
to create optimized executable without any extra debugging information. You must do your quanti-
tative evaluation using an eval build. Using a debug build for evaluation produces meaningless
results.

To run an evaluation for a specific implementation, you simply specify the input pattern and the size
of input array on the command line. For example, the following runs an evaluation with uniform-
random input of 100 elements using the selection sort implementation.

% cd ${HOME}/ece2400/netid/pa3-algo/build-eval
% make selection-sort-int-eval
% ./selection-sort-int-eval urandom 100

Available input patterns are:

• urandom – Input data is uniform-randomly distributed
• sorted-asc – Input data is already sorted in ascending order
• sorted-desc – Input data is already sorted in descending order

The evaluation programs measure the execution time as well as the auxiliary heap space usage. This
will enable you to compare the performance and space usage between your sorting implementations.
The evaluation programs also verify that your implementations are producing the correct results.
However, you should not use the evaluation programs for testing. If your implementations fail
during the evaluation, then your testing strategy is insufficient. You must add more unit tests to
effectively test your program before returning to evaluation.

You should quantitatively evaluate your implementations with input size from 1 to 50000. You do
not need to further increase the input size if the average execution time for a trial exceeds 1.5 seconds.
You will likely reach the 1.5 second for much smaller input sizes when evaluating sorting algorithms
with time complexity of O(N2). Record all of this performance data.

12

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

5. Milestone and Report

This section includes critical information about the incremental milestone, final code submission,
and the final report specific to this PA. The programming assignment logistics document provides
general details about the requirements for the milestone and final submission. You must actually
read the document to ensure you know how we will access your milestone and final submission.

5.1. Incremental Milestone

While the final code and report are all due at the end of the assignment, we also require you to com-
plete an incremental milestone and push your code to GitHub by the date specified by the instructor.
In this PA, to meet the incremental milestone, you are expected to:

• Complete the implementation of find_min
• Complete the implementation of selection_sort_int
• Complete the implementation of merge
• Complete the implementation of merge_sort_int
• Pass all given directed tests for these implementations
• Test these implementations by adding your own helper, directed, and random tests

Here is how we will be testing your milestone:

% mkdir -p ${HOME}/ece2400/submissions
% cd ${HOME}/ece2400/submissions
% rm -rf repo
% git clone git@github.com:cornell-ece2400/netid

% cd ${HOME}/ece2400/submissions/netid/pa3-algo
% mkdir -p build
% cd build
% cmake ..
% make check-milestone

5.2. Final Code Submission

Your code quality score will be based on the way you format the text in your source files, proper use
of comments, deletion of instructor comments, and uploading the correct files to GitHub (only source
files should be uploaded, no generated build files). To assist you in formatting your code correctly,
we have created a make target that will autoformat the code for you. You can use it like this:

% cd ${HOME}/ece2400/netid/pa3-algo
% mkdir -p build
% cd build
% cmake ..
% make autoformat
% git diff
... check all changes ...
% git commit -a -m "autoformat"

Note that the autoformat target will only work if you have already committed all of your work. This
way you can easily use git diff to view the changes made by the autoformatting and commit those

13

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

changes when you are happy with them. Since we provide students an automated way to format
their code correctly, students have no excuse for not following the course coding conventions!

Note that students must remove unnecessary comments that are provided by instructors in the
code distributed to students. Students must not commit executable binaries or any other unnec-
essary files. The autoformat target will not take care of these issues for you.

To submit your code you simply upload it to GitHub. Your code will be assessed both in terms of
functionality and code quality. Your functionality score will be determined by running your code
against a series of tests developed by the instructors to test its correctness. Here is how we will be
testing your final code submission:

% mkdir -p ${HOME}/ece2400/submissions
% cd ${HOME}/ece2400/submissions
% rm -rf repo
% git clone git@github.com:cornell-ece2400/netid

% cd ${HOME}/ece2400/submissions/netid/pa3-algo
% mkdir -p build
% cd build
% cmake ..
% make check
% make memcheck
% make eval
... run the eval programs ...

5.3. Final Report

The final report must be uploaded to Canvas. The date you upload your report will indicate how
many slip days you are using for the assignment. For this PA, we require you to include four sections:
introduction, complexity analysis, quantitative evaluation, and conclusion.

The complexity analysis section of your report must include a table that summarizes the execution
time, time complexity (in big-O notation), and space complexity (in big-O notation) of several func-
tions (see Table 1 for a template). For the execution time, you should discuss (at a high level) your
chosen units (e.g., a critical operator, critical loop iteration). TK(N) for bucket_sort_int must be
a function of both N and K. For space complexity analysis, you need to analyze the auxiliary heap
space usage of just that function (i.e., do not include the heap memory usage before calling the func-
tion). The input parameter is N where N is the number of elements stored in the input array. This
means your time and space complexity analysis should capture the trend as we call the function on
larger and larger input arrays. Worst case complexity analysis should consider worst case values
stored within the input array. Average complexity analysis should consider an input array of size N
whose values follow a uniform random distribution. Note that you don’t need to explicitly discuss
all six steps of complexity analysis and we are not looking for a rigorously formal proof, but you do
need to be clear about the assumptions you made during analysis and provide some kind of com-
pelling high-level argument. Average case analysis for quick_sort_int is particularly challenging,
so simply noting that you are using the result from lecture is fine.

The quantitative evaluation section of your report must include three plots of execution time and
auxiliary heap usage which you then discuss in the quantitative evaluation section of your report.
You should create the plots using the data recorded from your quantitative evaluation. The first
plot should have the size of the input on the x-axis and execution time for urandom pattern on

14

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

Measured Aux Heap Measured
Execution Time Execution Space Aux Heap

Time Complexity Time Complexity Space Usage
Algorithm Analysis TK(N) big-O (s) big-O (B)

selection worst

merge worst

quick average

bucket average

(Not all fields required; see description!)

Table 1: Template for Complexity Analysis and Measured Equations Table

the y-axis. Plot a line for each of the five sorting functions (selection_sort_int, merge_sort_int,
quick_sort_int, bucket_sort_int, and stdsort). The second plot should have the size of the input
on the x-axis and execution time of quick_sort_int for the three different patterns on the y-axis. Plot
a line for each of the three patterns (urandom, sorted-asc, sorted-desc). The third plot should have
the size of the input on the x-axis and the auxiliary heap space usage for urandom on the y-axis. Plot a
line for each of the four sorting functions selection_sort_int, merge_sort_int, quick_sort_int,
and bucket_sort_int. Ensure your plots are easy to read with a legend, reasonable font sizes, and
appropriate colors/markers for black-and-white printing. The quantitative evaluation section of
your report must describe how you collected this data and what conclusions can be drawn from this
data.

The quantitative evaluation section of your report must also include a table reporting a best-fit poly-
nomial equation as a function of N for each data series determined using a tool of your choice (see
Table 1 for a template). The equation should be in units of seconds for execution time and in units
of bytes for auxiliary heap space usage. You should use your complexity analysis to choose the most
appropriate degree when doing your polynomial regression. If your complexity analysis suggests
the measured data should be O(1) then you should use a 0th degree polynomial fit (i.e., just take
the average). If complexity analysis suggests the measured data should be O(N) then you should
use a 1st degree polynomial fit (i.e., just use linear regression). If complexity analysis suggests the
measured data should be O(N2) then you should use a 2nd degree polynomial fit, and so on. You
should also verify either qualitatively or quantitatively that this produces a good fit. Note that if
your complexity analysis suggests the measured data should be O(N · log(N)) then performing a
regression is optional. Also note that performing a regression when measured space usage is “par-
ticularly complicated” is optional (it will be obvious what this means after you plot your data!).
The quantitative evaluation section of your report must discuss the connection between your the-
oretical complexity analysis and your experimental data as captured by these best-fit polynomial
equations.

15

ECE 2400 Computer Systems Programming, Fall 2021 PA3: Sorting Algorithms

Acknowledgments

This programming assignment was created by Christopher Batten, Christopher Torng, Tuan Ta,
Yanghui Ou, Peitian Pan, and Nick Cebry as part of the ECE 2400 Computer Systems Programming
course at Cornell University.

16

