
ECE 2400 Computer Systems Programming, Spring 2025
PA2: List and Vector Data Structures

School of Electrical and Computer Engineering
Cornell University

revision: 2025-02-23-14-35

Clarifications or fixes to this writeup after the initial publication will appear in this color.

1. Introduction

This programming assignment will give you experience working with two important data structures
in computer systems programming: a doubly linked list and a resizable vector. You will leverage
your knowledge of basic algorithms. You will learn to analyze and compare different data structures
with similar interfaces. Skills like these will set you apart from programmers who write “code that
works” and bring you into a league of sophisticated programmers who craft elegant, efficient code.

Lists and vectors are two data structures that are used extensively in computer systems programming.
Although you will handle only integer data in this assignment, the lessons learned apply to other
types of elements. By the end of this assignment, you will understand the implementation details
that show the contrasting strengths and weaknesses of lists versus vectors. You will evaluate the
impact of scaling the number of elements on the execution time and memory usage.

After your data structures are functional and tested for memory leaks, you will write a four-page
report that includes the complexity analysis and a quantitative evaluation of performance across all
implementations. While the final code and report are all due at the end of the assignment, we also
require meeting an incremental milestone in this PA. Requirements specific to this PA’s milestone
and final submission are described at the end of this handout.

To get started, log into an ecelinux server and then use git pull to ensure you have any recent
updates (i.e., the pa2-dstruct release code) before working on your programming assignment.

% cd ${HOME}/ece2400/netid
% git pull
% tree pa2-dstruct

For this assignment, you will work in the pa2-dstruct subproject, which includes the following files:

|-- CMakeLists.txt
|-- eval
| |-- CMakeLists.txt
| |-- list-int-contains-eval.c
| |-- list-int-push-back-eval.c
| |-- vector-int-contains-eval.c
| |-- vector-int-push-back-v1-eval.c
| |-- vector-int-push-back-v2-eval.c

cmake configuration script to generate Makefile
programs for evaluating your implementations

cmake configuration script
evaluates list_int_contains
evaluates list_int_push_back
evaluates vector_int_contains
evaluates vector_int_push_back_v1
evaluates vector_int_push_back_v2

1



ECE 2400 Computer Systems Programming, Spring 2025 PA2: List and Vector Data Structures

|-- include
| |-- ece2400-stdlib.h
| |-- list-int.dat
| |-- list-int.h
| |-- vector-int.dat
| |-- vector-int.h
|-- README.md
|-- scripts
| |-- build.sh
| |-- coverage.sh
| |-- eval.sh
| |-- format.sh
| |-- memcheck.sh
| |-- test.sh
| |-- valgrind.sh
|-- src
| |-- CMakeLists.txt
| |-- ece2400-stdlib.c
| |-- list-int-adhoc.c
| |-- list-int.c
| |-- vector-int-adhoc.c
| |-- vector-int.c
|-- test

|-- CMakeLists.txt
|-- list-int-directed-test.c
|-- list-int-random-test.c
|-- vector-int-directed-test.c
|-- vector-int-random-test.c

header and data files
header file for course standard library
input dataset for list_int_t evaluation
header file for list_int_t
input dataset for vector_int_t evaluation
header file for vector_int_t

HOW TO GET STARTED!
scripts to accomplish all sorts of tasks

compiles your code
assesses the coverage of your tests
builds, tests, then evaluates
formats code according to class conventions
looks for memory leaks!
compiles and then tests for correctness
user-friendly way to run Valgrind

source code – where the magic happens
cmake configuration script
source code for course standard library
ad-hoc test program for list_int_t
source code for list_int_t
ad-hoc test program for vector_int_t
source code for vector_int_t

correctness tests
cmake configuration script
directed test cases for list_int_t
random test cases for list_int_t
directed test cases for vector_int_t
random test cases for vector_int_t

This assignment is divided into seven steps. Complete each step before moving on to the next step.

• Step 1. Implement and test list_int_construct and list_int_destruct
• Step 2. Implement and test list_int_push_back, list_int_size, and list_int_at
• Step 3. Implement and test list_int_contains
• Step 4. Implement and test vector_int_construct and vector_int_destruct
• Step 5. Implement and test vector_int_push_back, vector_int_size, and vector_int_at
• Step 6. Implement and test vector_int_contains
• Step 7. Evaluate all implementations

Take an incremental design approach! Implement and test each function before trying to move on
to the next function. This means more than just adhoc testing. You must perform thorough directed
testing of each function before implementing the next function. If you implement all of the functions
and then start testing, you will experience a Sarlacc Pit-level of pain and suffering.

2



ECE 2400 Computer Systems Programming, Spring 2025 PA2: List and Vector Data Structures

2. Interface and Implementation Specifications

You will implement list and vector data structures to store integer values. You will need to carefully
consider each specific implementation approach, and how your design choices might impact storage
requirements and performance.

Your implementations cannot use anything from the Standard C library except for (1) the printf
function defined in stdio.h, (2) the MIN/MAX macros defined in limits.h, (3) the NULL macro
defined in stddef.h, and (4) the assert macro defined in assert.h. Do not use malloc and free
functions directly. Instead, use ece2400_malloc and ece2400_free.

2.1. Doubly Linked List

You will implement multiple functions to manipulate a doubly linked list data structure of type
list_int_t. A list is comprised of nodes. Each node is of type list_int_node_t and contains an
integer value, a pointer to the next node, and another pointer to the previous node (see Figure 1).
The pointers must be NULL if they do not point to any other node.

typedef struct _list_int_node_t {
int value;
struct _list_int_node_t* next_p;
struct _list_int_node_t* prev_p;

}
list_int_node_t;

11value

next_p

list_int_node_t

prev_p

Figure 1: Definition and Example of a list_int_node_t struct. The example has a value of 11.
The next and previous pointers both point to NULL (i.e., do not point to any other node).

A list_int_t data structure organizes data by chaining nodes together to create a sequence of values
(see Figure 2). In this assignment, our list data structure is designed to hold only a sequence of ints.
However, we could potentially use this data structure to hold values of any other type, if we changed
the type of the value field in the definition of list_int_node_t. We could revise the data structure
to store a sequence of doubles or even a sequence of other lists (i.e., a list of lists)!

typedef struct {
list_int_node_t* head_p;
list_int_node_t* tail_p;
int size;

}
list_int_t;

11 12 13

head_p

tail_p

list_int_t

size 3

Node 0 Node 1 Node 2

(Head Node) (Tail Node)

next_p

value

prev_p

next_p

value

prev_p

next_p

value

prev_p

Figure 2: Definition and Example of a list_int_t struct. The example has a size of three elements,
a head pointer which is pointing to Node 0, and a tail pointer which is pointing to Node 2.

Now that we know how to organize a sequence of integers as a list, we need to use the list. For
example, we might want to add an element to the list or search the list for a value. Although we
could potentially re-write this code every time we want to use the list, it is better programming
practice to refactor common code into the following functions to capture each action we might like
to perform: construct, destruct, push back, size, at, contains, and print. You are responsible for
implementing each of the following functions:

3



ECE 2400 Computer Systems Programming, Spring 2025 PA2: List and Vector Data Structures

void list_int_construct ( list_int_t* this );
void list_int_destruct ( list_int_t* this );
void list_int_push_back ( list_int_t* this , int value );
int list_int_size ( list_int_t* this );
int list_int_at ( list_int_t* this , int idx );
int list_int_contains ( list_int_t* this , int value );
void list_int_print ( list_int_t* this );

The specification for these functions is as follows:

• void list_int_construct( list_int_t* this );
Construct an empty list and initialize all fields in the given list_int_t. The head and tail point-
ers should be initialized to NULL to indicate that they do not point to any node. It is undefined to
call this function more than once on the same list.

• void list_int_destruct( list_int_t* this );
Destruct the list by freeing any dynamically allocated memory used by the list and also by any of
the nodes in the list. It is undefined to call this function more than once on the same list.

• void list_int_push_back( list_int_t* this, int value );
Push a new element with the given value (value) onto the tail end of the list. Dynamically allocate
one node each time list_int_push_back is called. After a new node is created, set its value,
correctly update its next pointer and previous pointer, and also the tail node’s next pointer to add
the new node to the end of the list. Correctly update the head_p and tail_p fields in list_int_t.
You can assume your implementation will never run out of memory (i.e., ece2400_malloc will
never return NULL). It is undefined to call this function before construct or after destruct.

• int list_int_size( list_int_t* this );
Return the current number of elements in the list. If the list is empty, this function should return
0. It is undefined to call this function before construct or after destruct.

• int list_int_at( list_int_t* this, int idx );
Return the value at the given index (idx) of the list. Traverse the list until you reach the given
index and return the value stored in that index. Since each node has pointers to its prev and next
nodes, the list can be traversed in both directions (i.e., either toward the tail node using the next
pointers or toward the head node using the prev pointers). Think about how to minimize the
number of nodes you need to traverse. If the given index (idx) is out-of-bounds, the implemen-
tation should return 0. It is undefined to call this function before construct or after destruct.

• int list_int_contains( list_int_t* this, int value );
Search the list for the given value (value) and return 1 if the value is found and 0 if it is not. If
the list is empty, then the function should return 0. It is undefined to call this function before
construct or after destruct.

• void list_int_print( list_int_t* this );
Print the contents of the list. This function is used for debugging purposes. You can implement
this function in any way you like. You do not need to test this function. It is undefined to call this
function before construct or after destruct.

The functions vary in complexity, and some may require just a few lines of code to implement. Notice
that each function takes as its first argument a pointer this to a list_int_t. This tells the function
which list_int_t to operate on. In general, you will first declare a list_int_t and then use your

4



ECE 2400 Computer Systems Programming, Spring 2025 PA2: List and Vector Data Structures

functions by passing in a pointer to your list. The behavior of all the functions above is undefined if
the this pointer is NULL or points to an invalid list_int_t struct.

To give you an idea of how this works, here is a simple program that constructs a list, pushes back
three values, gets the middle value, and then destructs the list:

int main( void )
{

list_int_t lst; // Declare a list_int_t on the stack
list_int_construct ( &lst ); // Construct an empty list
list_int_push_back ( &lst , 11 ); // Push back 11
list_int_push_back ( &lst , 12 ); // Push back 12
list_int_push_back ( &lst , 13 ); // Push back 13
int a = list_int_at( &lst , 1 ); // int a now has 12
list_int_destruct ( &lst ); // Destruct lst
return 0;

}

The interface for the linked list is provided in include/list-int.h. Write the struct definitions in
include/list-int.h and the implementation of each function inside of src/list-int.c.

2.2. Resizable Vector

You will implement multiple functions for manipulating a vector data structure which is of type
vector_int_t. The vector data structure organizes data sequentially as a continuous chunk of mem-
ory (see Figure 3). The example vector in Figure 3 holds five integers in a contiguous chunk of
memory (i.e., maxsize is 5) but is occupying only the first three spaces (i.e., size is 3). If more than
five integers need to be held, we must find a new and larger contiguous chunk of memory!

typedef struct {
int* data;
int maxsize;
int size;

}
vector_int_t;

a[0]

vector_int_t

a[1]

a[2]

size

data

maxsize

a

3

5
contiguous

chunk of
memory

a[3]

a[4]

11

12

13

?

? uninitialized
values

Figure 3: Definition and Example of a vector_int_t struct. The example has a size of three ele-
ments, a maxsize of five elements, and a pointer to an internal array that holds the data.

Once again, we can capture each action we want to perform into individual functions: construct,
destruct, push back, size, at, contains, and print. These provide the same functionality for vector as
our list provides. You are responsible for implementing each of the following functions:

void vector_int_construct ( vector_int_t* this );
void vector_int_destruct ( vector_int_t* this );
void vector_int_push_back_v1 ( vector_int_t* this , int value );
void vector_int_push_back_v2 ( vector_int_t* this , int value );
int vector_int_size ( vector_int_t* this );
int vector_int_at ( vector_int_t* this , int idx );
int vector_int_contains ( vector_int_t* this , int value );
void vector_int_print ( vector_int_t* this );

5



ECE 2400 Computer Systems Programming, Spring 2025 PA2: List and Vector Data Structures

The specification for these functions is as follows:

• void vector_int_construct( vector_int_t* this );
Construct an empty vector by initializing all fields in vector_int_t. size should be initialized
to 0. maxsize should be initialized appropriately given the rest of the implementation. It is
undefined to call this function more than once on the same vector.

• void vector_int_destruct( vector_int_t* this );
Destruct the vector by freeing any dynamically allocated memory used by the vector. It is unde-
fined to call this function more than once on the same vector.

• int vector_int_size( vector_int_t* this );
Return the current number of elements in the vector. If the vector is empty, this function should
return 0. It is undefined to call this function before construct or after destruct.

• void vector_int_push_back_v1( vector_int_t* this, int value );
Push a new element with the given value at the end of the vector. If there is not enough allocated
contiguous space, dynamically allocate more memory to store both existing elements and the
new element. Allocate just enough memory (e.g., (size + 1) elements) to store both existing and
new elements. Copy the data from the old space into the new space with a loop, and finally
free the memory in the old space. You can assume your implementation will never run out of
memory (i.e., ece2400_malloc will never return NULL). It is undefined to call this function before
construct or after destruct.

• void vector_int_push_back_v2( vector_int_t* this, int value );
Similar to vector_int_push_back_v1, this function also pushes a new element with the given
value at the end of the vector. If there is not enough allocated contiguous space, this function
doubles its current memory space to accommodate the new element. Copy the data from the old
space into the new space and free the old memory space. maxsize will be the total amount of
memory allocated for the vector, while size will just be the amount that is currently used. You
can assume your implementation will never run out of memory (i.e., ece2400_malloc will never
return NULL). It is undefined to call this function before construct or after destruct.

• int vector_int_at( vector_int_t* this, int idx );
Return the value at the given index (idx) of the vector. If the given index (idx) is out-of-bounds,
return 0. It is undefined to call this function before construct or after destruct.

• int vector_int_contains( vector_int_t* this, int value );
Search the vector for the given value (value) and return 1 if the value is found and 0 if it is
not. If the vector is empty, then the function should always return 0. Minimize the number of
comparisons if possible. It is undefined to call this function before construct or after destruct.

• void vector_int_print( vector_int_t* this );
Print the content in the vector. This function is used for debugging purposes. Implement this
function in any way you like. You do not need to test this function. It is undefined to call this
function before construct or after destruct.

The functions vary in complexity. Some may require just a few lines of code to implement. Each
function takes as its first argument a pointer this to an vector_int_t. In general, you will first
declare a vector_int_t and then use your functions by passing in a pointer to your vector. This tells
the function which vector_int_t to operate on. The behavior of all the functions above is undefined
if the this pointer is NULL or points to an invalid vector_int_t struct.

6



ECE 2400 Computer Systems Programming, Spring 2025 PA2: List and Vector Data Structures

This program constructs a vector, pushes 3 values, gets the middle value, then destructs the vector:

int main( void )
{

vector_int_t vec; // Declare a vector_int_t on stack
vector_int_construct ( &vec ); // Construct an empty vector
vector_int_push_back_v1( &vec , 11 ); // Push back 11
vector_int_push_back_v1( &vec , 12 ); // Push back 12
vector_int_push_back_v1( &vec , 13 ); // Push back 13
int a = vector_int_at ( &vec , 1 ); // int a now has 12
vector_int_destruct ( &vec ); // Destruct vec
return 0;

}

The interface for the resizable vector is provided for you in src/vector-int.h. Write the implemen-
tation of vector_int_t in src/vector-int.h and the implementation of each function in src/vector-int.c.

2.3. ECE 2400 Malloc and Free

Instead of using malloc and free, you should use the wrapper functions ece2400_malloc and
ece2400_free, declared in include/ece2400-stdlib.h and implemented in src/ece2400-stdlib.c.
They internally call malloc and free and track how much heap memory your program has allocated.

• void* ece2400_malloc( size_t mem_size );
Dynamically allocates a memory space of size mem_size on the heap. The function returns a
pointer to the newly allocated space. If the allocation fails, a NULL is returned. Just like malloc,
this function has a parameter of type size_t. Because we use the -Wconversion flag to tell the
compiler to warn of us of any potentially unsafe implicit type conversions, we need to explicitly
cast any variables of type int to size_t when calling this function. See example below.

• void ece2400_free( void* ptr );
Deallocates the memory space pointed by ptr in the heap. If ptr is NULL, no action occurs.
This function must be used in pair with ece2400_malloc, i.e., ptr must be a pointer returned
by ece2400_malloc. Using this function on a pointer returned by normal malloc is undefined
and may result in a segmentation fault.

For reference, here is a simple function that allocates an array of N integers on the heap.
int main( void )
{

int N = 32;
int* data = ece2400_malloc( (size_t) N * sizeof(int) );
// ... do something with data ...
ece2400_free( data );
return 0;

}

Notice the need to use an explicitly cast the variable N to size_t. Technically this means if N were
negative, ece2400_malloc will allocate a huge amount of memory on the heap! So you should ensure
that N is not negative.

7



ECE 2400 Computer Systems Programming, Spring 2025 PA2: List and Vector Data Structures

3. Testing Strategy

Develop an effective testing strategy to ensure all implementations are correct. Writing tests is one
of the most important and challenging aspects of software programming. Software engineers often
spend more time implementing tests than they do implementing the actual program.

Although there are limitations on what you can use from the Standard C library in your implementa-
tions there are no limitations on what you can use from the Standard C library in your testing. Feel
free to use the Standard C library in your golden reference models and/or for random testing.

3.1. Ad-hoc (aka Smoke) Testing

To help students test as they code, we provide one ad-hoc test program per implementation in
src/list-int-adhoc.c and src/vector-int-adhoc.c. Students are encouraged to start running
these ad-hoc test programs directly like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct
% scripts/build.sh
% cd build/src
% ./list-int-adhoc

3.2. Systematic Unit Testing

Although ad-hoc test programs help you quickly see results of your implementations, they will not
robustly cover most scenarios. We need a systematic unit testing strategy to hopefully test all possible
scenarios efficiently.

For each implementation, we provide a directed test program that should include several test cases
to target different categories, and a random test program that should test that your implementation
works for random inputs. We provide only a very few directed tests and no random tests. You
must add many more directed and random tests to thoroughly test your implementations!

Design your directed tests to stress various common cases but also to capture cases that you as a
programmer suspect may be challenging for your functions to handle. Random testing will be par-
ticularly useful in this programming assignment to grow your lists and vectors to arbitrary lengths,
get values from random indices, and find random values that may or may not be present in your
data structure. Ensure that your random tests are repeatable by calling the srand function once at
the top of your test case with a constant seed (e.g., srand(0)).

As in the previous programming assignment, we provide you a testing framework you should use
for your directed and random testing. See the provided test programs in the test subdirectory
for how to use this framework. The ECE 2400 standard library in ece2400-stdlib.h contains the
following macros you should use to check the correctness of your implementations:

• ECE2400_CHECK_FAIL() – check program does not reach this point
• ECE2400_CHECK_TRUE( expr_ ) – check expr_ is always true
• ECE2400_CHECK_FALSE( expr_ ) – check expr_ is always false
• ECE2400_CHECK_INT_EQ( expr0_, expr1_ ) – check expr0_ equals expr1_

You can build and run all unit tests for all implementations like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct
% scripts/test.sh

8



ECE 2400 Computer Systems Programming, Spring 2025 PA2: List and Vector Data Structures

Build Successful
<blah blah blah>
Tests failed

(Your tests will all fail initially.)

If you are failing a test program, then you can “zoom in” and run all of the unit tests for a single test
program (e.g., directed tests for list) like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct/build/test
% ./list-int-directed-test

You can then “zoom in” to a specific test case by passing in the index of that test case like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct/build/test
% ./list-int-directed-test 2
test_case_2_simple_contains
<blah blah blah>

3.3. Test-Case Crowd Sourcing

While a comprehensive test suite provides strong evidence that your implementation has the cor-
rect functionality, it is particularly challenging to write high-quality test cases for all of your imple-
mentations. After the milestone deadline, students can use test-case crowd-sourcing to reduce the
workload of constructing a comprehensive test suite. Test-case crowd-sourcing will use a Canvas
discussion page; students cannot see any of the currently posted test cases until they post one of
their own. Focus on uploading one or two very strong directed or random test cases. Do not upload
more than two test cases. Avoid uploading simple directed test cases since students will have al-
ready developed such test cases for the milestone. Posting the basic test case provided by the course
instructors, posting an obviously too simple test case, and/or posting something which is obviously
meant to “game” the system is not allowed. Let’s be honest, the test cases many of you uploaded for PA1
were pretty sad. If the tests you upload for PA2 are similarly lackluster, we won’t continue doing this because
we don’t see the point.

You can use test cases posted in the Canvas discussion page in your test programs as long as you
acknowledge the author, so be sure to include the comment in your source code which describes
the test case and includes the author’s name. You will need to renumber the test cases and call them
correctly from main(). Make sure you understand the test case and that you feel it is testing correct
behavior before including it in your test suite!

3.4. Memory Leaks

Students are also responsible for making sure that their program contains no memory leaks or other
issues with dynamic allocation. We have included a script called memcheck which runs all of the test
programs with Valgrind. Valgrind will force the test to fail if it detects any kind of memory leak or
other issues with dynamic allocation.

You can check memory leaks and other issues with dynamic memory allocation for all your test
programs like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct
% ./scripts/memcheck.sh

9



ECE 2400 Computer Systems Programming, Spring 2025 PA2: List and Vector Data Structures

You can just check one test program (e.g. list-int-directed-test) like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct
% ./scripts/valgrind.sh build/test/list-int-directed-test

Our valgrind.sh script calls Valgrind with the correct command line options so you don’t need to
remember all of them.

3.5. Code Coverage

After your implementations pass all unit tests, you can evaluate how effective your test suite is by
measuring its code coverage. The code coverage will tell you how much of your source code your
test suite executed during your unit testing. The higher the code coverage is, the less likely some
bugs have not been detected. However, achieving full code coverage does not guarantee that your
tests are correct or passing. To generate coverage reports, run the following from pa2-dstruct:

% ./scripts/coverage.sh

The script will clean up any previous coverage data, create a fresh build-coverage directory, compile
the project with code coverage flags, run the tests, and generate coverage reports. The coverage
reports for your list and vector implementations can be found at build-coverage/list-int.c.gcov
and build-coverage/vector-int.c.gcov. Unexecuted lines are marked #####. Lines marked with
* contain some unexecuted basic blocks.

Code coverage is just one more piece of evidence you can use to make a compelling case for the
correct functionality of your implementations. It is not required that students achieve 100% code
coverage. It is far more important that students simply use code coverage as a way to guide their
test-driven design than to overly focus on the specific code coverage number.

4. Evaluation

Once you have tested the functionality of the list and vector implementations, you can evaluate their
performance and also memory usage. We provide you with an evaluation program for the push_back
and contains functions: list_int_push_back, list_int_contains, vector_int_push_back_v1,
vector_int_push_back_v2, and vector_int_contains. You should not need to modify the evalua-
tion programs. The ECE 2400 standard library in ece2400-stdlib.h contains the following functions
that are used in the evaluation programs to measure the execution time and heap space usage.

• ece2400_timer_reset() – reset global timer
• ece2400_timer_get_elapsed() – return elapsed time in seconds since last reset
• ece2400_mem_reset() – reset global memory usage counter
• ece2400_mem_get_aux_usage() – return max heap space allocated in bytes since last reset

You can build these evaluation programs like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct
% ./scripts/eval.sh

To run an evaluation for push back, you simply specify the number of push backs that you want to
evaluate on the command line. For example, the following runs an evaluation for 100 push backs for
the list data structure.

10



ECE 2400 Computer Systems Programming, Spring 2025 PA2: List and Vector Data Structures

% cd ${HOME}/ece2400/netid/pa2-dstruct
% scripts/build.sh
% build/eval/list-int-push-back-eval 100

To run an evaluation for contains, you need to specify the number of elements that are in the list
or vector. The evaluation program will always perform 5000 calls to the contains function, with
the argument to contains uniformly randomly chosen from the values present in the data structure.
The inputs are not sorted in any order. The following runs an evaluation for 5000 contains on a
100-element list:

% scripts/build.sh
% build/eval/list-int-contains-eval 100

The evaluation programs measure the execution time as well as the auxiliary heap space usage. This
will enable you to compare the performance and space usage between list and vector. The evalu-
ation programs also verify that your implementations are producing the correct results. However,
you should not use the evaluation programs for testing. If your implementations fail during the
evaluation, then your testing strategy is insufficient. You must add more unit tests to effectively test
your program before returning to evaluation.

You should quantitatively evaluate the three push back functions and two contains functions for a
range of inputs. We suggest running the list-int-push-back-eval, vector-int-push-back-v1-eval,
and vector-int-push-back-v2-eval with input from 100 to 2000. For list-int-contains-eval
and vector-int-contains-eval, run them with input from 100 to 2000. Record all of this perfor-
mance data.

5. Incremental Milestone

We require you to complete an incremental milestone and push your code to GitHub by the date
specified by the instructor. In this PA, to meet the incremental milestone, you will need to (1) imple-
ment the list and (2) write an extensive test suite including many directed and random tests for this
implementation.

6. Final Code Submission

Your code quality score will be based on the way you format the text in your source files, proper
use of comments, deletion of instructor comments, and uploading the correct files to GitHub (only
source files should be uploaded, no generated build files). To assist you in formatting your code
correctly, we have created a script that will autoformat the code for you. You can use it like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct
% ./scripts/format.sh
% git diff
# ... check all changes ...
% git commit -a -m "autoformat"

Since we provide students an automated way to format their code correctly, students have no excuse
for not following the course coding conventions!

11



ECE 2400 Computer Systems Programming, Spring 2025 PA2: List and Vector Data Structures

Note that students must remove unnecessary comments that are provided by instructors in the
code distributed to students. Students must not commit executable binaries or any other unnec-
essary files. The format.sh script will not take care of these issues for you.

To submit your code you simply upload it to GitHub. Your code will be assessed both in terms of
functionality and code quality. Your functionality score will be determined by running your code
against a series of tests developed by the instructors to test its correctness.

6.1. Final Report

The final report must be uploaded to Canvas. The date you upload your report will indicate how
many slip days you are using for the assignment. Your entire report must be no more than four
pages. You will have to use this Overleaf template to generate your pdf:

https://tinyurl.com/2400-sp25-pa2temp

The complexity analysis section of your report must include a table that summarizes the time and
space complexity (in big-O notation) of several functions (see Table 1 in the Overleaf document). For
time complexity analysis, you need to pick a key operator. For space complexity analysis, you need
to analyze the auxiliary heap space usage of just that function (i.e., do not include the heap space usage
of the data-structure before calling the function). The input parameter is N where N is the number
of elements stored in the data structure. This means your complexity analysis should capture the
trend as we call the function on larger and larger data-structures. Best/worst case complexity analysis
for the at function should consider the best/worst case values of the given index (idx). Average
case complexity analysis for contains should assume the function is called with a value chosen from
the values present in the data structure using a uniform random distribution. Amortized complexity
analysis for push_back should assume a scenario where you want to fill an empty data structure with
N elements by calling push_back N times. Then analyze the amortized cost of each push_back call
as discussed in lecture. Justify your entries in the table in the complexity analysis section. Note
that you don’t need to explicitly discuss all six steps of complexity analysis and we are not looking
for a rigorously formal proof, but you do need to be clear about the assumptions you made during
analysis and provide some kind of compelling high-level argument.

The quantitative evaluation section of your report must include three plots of execution time and
auxiliary heap space usage (see Fig. 1(a-c) in the Overleaf document). Create the plots using the data
recorded from your quantitative evaluation. The quantitative evaluation section of your report must
describe how you collected this data and what conclusions can be drawn from this data.

The quantitative evaluation section of your report must also include a table reporting a best-fit poly-
nomial equation as a function of N for each data series determined using a tool of your choice (see
Table 2 in the Overleaf document). The equation should be in units of microseconds for execution
time and in units of bytes for heap space usage. Use your complexity analysis to choose the most
appropriate degree when doing your polynomial regression. If your complexity analysis suggests
the measured data should be O(1) then you should use a 0th degree polynomial fit (i.e., just take the
average). If complexity analysis suggests the measured data should be O(N) then you should use
a 1st degree polynomial fit (i.e., just use linear regression). If complexity analysis suggests the mea-
sured data should be O(N2) then you should use a 2nd degree polynomial fit, and so on. You should
also verify either qualitatively or quantitatively that this produces a good fit. The quantitative eval-
uation section of your report must discuss the connection between your theoretical complexity
analysis and your experimental data as captured by these best-fit polynomial equations.

12



ECE 2400 Computer Systems Programming, Spring 2025 PA2: List and Vector Data Structures

Acknowledgments

This programming assignment was created by Christopher Batten, Christopher Torng, Tuan Ta,
Yanghui Ou, Peitian Pan, and Nick Cebry and edited by Kirstin Petersen and Anne Bracy as part
of the ECE 2400 Computer Systems Programming course at Cornell University.

13


