
ECE 2400 Computer Systems Programming, Fall 2021

Programming Assignment Logistics

http://www.csl.cornell.edu/courses/ece2400
School of Electrical and Computer Engineering

Cornell University

revision: 2021-10-07-12-37

This document describes what students are expected to submit for the programming assignments,
and how their submissions will be evaluated at a high level. A handout is provided for each pro-
gramming assignment that describes the motivation for the assignment and provides background
on the required implementations, testing strategy, and evaluation. The handout also describes in
more detailed the specific requirements for each PA report. Each programming assignment requires
you to submit three parts: the PA milestone (i.e., one or more initial implementations along with the
corresponding tests); the PA code (i.e., all implementations along with all tests); and the PA report
(i.e., a 4–6 page document with several sections possibly including an introduction, testing strategy
discussion, alternative implementation discussion, complexity analysis, quantitative evaluation, op-
timization discussion, and conclusion). Although each of these parts is graded separately, it is also
useful to consider their relative importance to your final grade. The PA code is worth 20% of your
final grade; the PA reports are worth 10% of your final grade; and the PA milestones are worth 5% of
your final grade. In total, the PAs are worth 35% of your final grade.

Any programmer can write code. Good programmers can write code for multiple implementations,
use a testing strategy to verify these implementations are correct, and evaluate the performance and
space usage of these implementations. Great programmers can do all of these things, but can also ex-
plain their how their implementations work at a high level, justify the specific design choices used
in their implementations, use an evidence-based approach to make a compelling argument that their
code is correct, and both qualitatively and quantitatively compare and contrast different implemen-
tations. Doing well on the PA milestones and code means you are making progress towards being
a good programmer. Doing well on the PA milestones, code, and reports means you are making
progress towards being a great programmer. By the end of the semester, we hope every student will
have evolved from simply being a programmer to being a great programmer.

1. PA Code Release

Initial code for each PA will be released through GitHub, and students will be using GitHub for all
development related to the PA. Every student will have his or her own private repository for the first
three PAs. Each group of two students will have their own group repository for the last two PAs. All
of these repositories will be part of the cornell-ece2400 GitHub organization, and all development
must be done in these specific repositories. You should never fork your remote repository! If you
need to work in isolation then use a branch within your remote repository. The course instructors
will merge new code into the each of these remote repositories, and then students simply need to
pull these updates.

2. PA Code Quality

Code quality is one of the criteria used to assess the PAs. Students are required to follow the course
coding conventions:

1

ECE 2400 Computer Systems Programming, Fall 2021 Programming Assignment Logistics

• https://cornell-ece2400.github.io/ece2400-docs/ece2400-coding-conventions

Many software companies and open-source software projects use code autoformaters to automate
the process of formatting their code according to a set of rules. One such tool is called clang-format,
and we provide students a .clang-format file that adheres to the course coding conventions. To
help automate this process we have provided an autoformat make target that you can use like this:

% cd ${HOME}/ece2400/repo/pa-name
% mkdir -p build
% cd build
% cmake ..
% make autoformat
% git diff
... check all changes ...
% git commit -a -m "autoformat"

where repo is either your NetID for the first three PAs or your group repo for the last two PAs, and
pa-name is the name of the PA (e.g., pa1-math for the first assignment). Note that the autoformat
target will only work if you have already committed all of your work. This way you can easily use
git diff to view the changes made by the autoformatting and commit those changes when you
are happy with them. Since we provide students an automated way to format their code correctly,
students have no excuse for not following the course coding conventions!

Note that students must remove unnecessary comments that are provided by instructors in the
code distributed to students. Students must not commit executable binaries or any other unnec-
essary files. The autoformat target will not take care of these issues for you.

3. PA Code Submission

The PA milestone and the final code will be submitted via GitHub. If you are trying to submit your
code at the last minute, then it is possible these last minute changes may not make it into your
finalized submission. You should make sure your final code is pushed to GitHub well before the
deadline.

You should browse the source on GitHub to confirm that the code in the remote repository is indeed
the correct version. Make sure all new source files are added, committed, and pushed to GitHub.
You should not commit the build directory or any generated content (e.g., object files, executable
binaries, unit test outputs). Including generated content in your submission will impact the grade
for the PA milestone and code quality. Here is how we will be testing your milestone:

% mkdir -p ${HOME}/ece2400/submissions
% cd ${HOME}/ece2400/submissions
% rm -rf repo
% git clone git@github.com:cornell-ece2400/repo

% cd ${HOME}/ece2400/submissions/repo/pa-name
% mkdir -p build
% cd build
% cmake ..
% make check-milestone

2

ECE 2400 Computer Systems Programming, Fall 2021 Programming Assignment Logistics

where repo is either your NetID for the first three PAs or your group repo for the last two PAs, and
pa-name is the name of the PA (e.g., pa1-math for the first assignment). Some PAs may also require
students to pass memcheck-milestone.

Here is how we will be testing your final code submission:

% mkdir -p ${HOME}/ece2400/submissions
% cd ${HOME}/ece2400/submissions
% rm -rf repo
% git clone git@github.com:cornell-ece2400/repo

% cd ${HOME}/ece2400/submissions/repo/pa-name
% mkdir -p build
% cd build
% cmake ..
% make check
% make eval
... run the eval programs ...

Some PAs may also require students to pass memcheck. If, for any reasons, the above steps do not
work, then the score for code functionality will be reduced. For example, students occasionally forget
to commit new source files they have created in which case these new files will not be in the remote
repository on GitHub.

We will be using GitHub Actions to grade the code functionality for the PAs. So in addition to
verifying that a clean clone works on the ecelinux machines, you should also verify that all of the
tests you expect to pass are passing on GitHub Actions by visiting the GitHub Actions page for your
repository:

• https://github.com/cornell-ece2400/repo/actions

where repo is either your NetID for the first three programming assignments or your group repo for
the last two PAs. If your code is failing tests on GitHub Actions, then the score for code functionality
will be reduced. Keep in mind that in the final few hours before the deadline, the GitHub Actions
work queue can easily fill up. You should always make sure your tests are passing on the ecelinux
machines and not rely solely on GitHub Actions to verify which tests are passing and failing.

4. PA Test-Case Crowd Sourcing

While a comprehensive test suite provides strong evidence that your implementation has the correct
functionality, it is particularly challenging to write high-quality test cases for all of your implementa-
tions. Students can use test-case crowd-sourcing after the milestone to reduce the workload of con-
structing a comprehensive test suite. Test-case crowd-sourcing will use a Canvas discussion page;
students cannot see any of the currently posted test cases until they post one of their own. Focus on
uploading one or two very strong directed or random test cases. Do not upload more than two test
cases. Avoid uploading simple directed test cases since students will have already developed such
test cases for the milestone. Posting the basic test case provided by the course instructors, posting an
obviously too simple test case, and/or posting something which is obviously meant to “game” the
system is not allowed. Let’s all work together to crowd-source a great test suite that every student
can take advantage of!

You can use test cases posted in the Canvas discussion page in your test programs as long as you
acknowledge the author, so be sure to include the comment in your source code which describes

3

ECE 2400 Computer Systems Programming, Fall 2021 Programming Assignment Logistics

the test case and includes the author’s name. You will need to renumber the test cases and call them
correctly from main(). Make sure you understand the test case and that you feel it is testing correct
behavior before including it in your test suite!

5. PA Code Revision

After the deadline for submitting the final code, the course instructors will branch your submission
and create a pull request on GitHub. The instructors will then commit the instructor tests and evalu-
ation program into this pull request which will trigger a GitHub Actions build. This will enable the
instructors and the students to immediately see how their submission does on both the student tests
and the instructor tests. If the student’s PA fails some of the instructor tests, then the students are
free to fix bugs and commit these changes as part of the pull request. The students are encouraged to
add comments to the pull request indicating what they had to change to pass the instructor tests, and
why the student tests did not catch this bug. This code revision will not mitigate a reduction in the
code functionality score due to failing instructor tests, but it will enable the course staff to judge how
severe a penalty to access. If it turns out that after the students fix a very small mistake in their code,
their programming assignment now passes all of the tests then this will result in a small penalty. If
it turns out that the students have to fix a major mistake, then this will result in a larger penalty, but
at least the students will have figured out what is wrong. Such code revisions will need to be made
within a few days of the deadline.

6. PA Report Submission

In addition to the actual code, we also require students to submit a PA report. The report offers an
opportunity for students to convey the high-level implementation approach, motivation for specific
design decisions, complexity analysis of different implementations, and qualitative evaluation of
performance and space usage trade-offs. We would argue that the ability to convey this information
via a technical report is just as important, or potentially even more important, than simply writing
code.

The PA report should be written assuming the reader is familiar with the lecture material and has
read the PA handout. You might need to paraphrase some of the content in the handout in your own
words to demonstrate understanding. Details about the actual code should be in the code comments.
The report should focus on the high-level implementation and evaluation aspects of the assignment.
All reports should include a title and the name(s) and NetID(s) of the student(s) which worked on the
assignment at the top of the first page. Do not put this information on a separate title page. The report
should be written using a serif font (e.g., Times, Palatino), be single spaced, use margins in the range
of 0.5–1 in, use a 10 pt font size, with a page limit of 4–6 pages depending on the PA. All figures must
be legible. Avoid scanning hand-written figures and do not use a digital camera to capture a hand-
written figure. Do not just use a screen capture of code. Definitely do not include screen captures that
have white text on a black background. This is not an appropriate way to include code in a technical
document. Cut and paste the code into your report and format it appropriately. Clearly mark each
section with a numbered section header. Your report should not look like an outline. It should look
like a report with paragraphs and prose. Avoid subsections unless there is a very compelling reason
to include them.

Each PA handout will describe more details about expectations specific to that PA’s report including
the specific page limit. Each report will include the specific sections as shown below.

4

ECE 2400 Computer Systems Programming, Fall 2021 Programming Assignment Logistics

Section PA1 PA2 PA3 PA4 PA5

Introduction 3 3 3 3 3

Testing Strategy 3

Optimizations 3

Alternative Implementation 3

Complexity Analysis 3 3 3 3

Quantitative Evaluation 3 3 3 3 3

Conclusion 3 3 3 3 3

General expectations for each section are discussed below, but remember that each PA handout will
describe more details about expectations specific to that PA.

• Introduction (1 paragraph maximum) – All reports must start with an introduction. Students
must summarize the purpose of the PA. Why are we doing this assignment? How does it con-
nect to the lecture material? There are often many purposes. Think critically about how the
assignments fits into the other PAs. Students can paraphrase from the handout as necessary.
Students must include a sentence or two that describes at a very high-level their implementa-
tions. The introduction should be brief but still provide a good summary of the PA.

• Testing Strategy – For PA1, students must describe the overall testing strategy (e.g., directed
testing, random testing, code coverage). Discuss the difference between white-box and black-
box testing. Simply saying the students used unit testing is not sufficient; be specific and
explain why you used a specific testing strategy (e.g., why use directed testing? why use
random testing?). Students must explain at a high-level the kind of directed tests cases they
implemented and why they used these test cases. Consider including a table with a test case
summary, or some kind of quantitative summary of the number of test cases that are passing.
Consider including results from code coverage analysis. Note that students are not required
to achieve 100% code coverage. Students are trying to provide a compelling, evidence-based
argument that their implementations are functionally correct. Code coverage is just one piece
of evidence which should be integrated with the types of evidence (e.g., number of tests, types
of tests) in this section. We recommend students start this section with a short paragraph that
provides an overview of your strategy for testing (so how all of the testing fits together). Then
you might have a short paragraph for each kind of testing (one for directed testing and one
for random testing). Each paragraph starts with the "why" (why that kind of testing) and then
goes on to the "what" (what did you actually test using that kind of testing). Then you can end
with a paragraph that pulls it all together with some code coverage data and tries to make a
compelling case for why you believe your design is functionally correct. Do not include the
actual test code itself; your report should be at a higher level. Do not include the output from
running the tests (we can see that on GitHub Actions). Remember to provide a balanced
discussion between how you tested your design and why you chose that testing strategy
and test cases.

• Optimizations – For PA4, students must discuss all of the optimizations they experimented
with. We suggest dedicating a paragraph to each optimization. Start by motivating what
overhead the optimization is focusing on, then discuss how the optimization can mitigate
this overhead, and finally discuss the details of how the optimization was implemented in
your implementations. Students should discuss optimizations even if the optimization did
not actually improve performance. Do not quantitatively evaluate your optimizations in this
section. Students must provide a balanced discussion of not just each optimization, but
why you chose to apply that optimization.

5

ECE 2400 Computer Systems Programming, Fall 2021 Programming Assignment Logistics

• Alternative Implementation – For PA5, students must discuss their alternative design in de-
tail. Think critically about what are the key items to mention in order for the reader to un-
derstand how the alternative implementation works. Motivate why you decided to pursue
this specific alternative implementation. Examples are usually great to include here to illus-
trate how the alternative implementation works. Students are highly encouraged to include
pseudo-code where appropriate. Do not include C code; your report should be at a higher
level. Students must provide a balanced discussion of not just the implementation itself,
but why you chose to take this approach.

• Complexity Analysis – For PA2–PA5, students must include a compelling time and/or space
complexity analysis of all implementations. Students might need to include a table that suc-
cinctly captures the big-O time and/or space complexity of all implementations. While stu-
dents do not need to explicitly use the six-step method, they must provide a compelling argu-
ment justifying their big-O time and/or space complexity results.

• Quantitative Evaluation – Students should revisit their complexity analysis from the previ-
ous section using quantitative data in this section. Students must report their performance
results using a table and/or plot as appropriate. Do not simply include the text output from
running the evaluation programs. Format the data so it is appropriate for a report. You must
explain how you collected this data (number of subtrials? number of trials? what was the
variance?). You must include some kind of analysis of the results: Why is one implementation
better or worse than another? For PA4 and PA5 students will likely need to quantitatively
evaluate various optimizations. Remember to provide a balanced discussion between what
the results are and what those results mean.

• Conclusion (1 paragraph maximum) – All reports end with a conclusion. Students must
include a brief qualitative and quantitative overview of the evaluation results (Which imple-
mentation performed best? By how much? On which inputs?). Students must include some
high-level conclusions they can draw from their qualitative and quantitative evaluation. Do
not over-generalize. Can you predict how the results might change for other inputs? What
can we learn from these results? Which implementation should we use in the future? If it
depends, explain why it depends.

It is also always great to include extra material to help demonstrate your understanding. You could
include an example of a state diagram like we do in lecture for a small example. You could implement
another implementation to gather additional data points to make for a richer comparative analysis
in the quantitative evaluation section. You could try more evaluation inputs to illustrate a point. Be
sure to highlight "extra" work you did in the introduction. There are many creative things you can
do to set your report apart!

Many students initially struggle with the idea of preparing the PA report. In previous courses, stu-
dents often simply describe their code at a low level in a PA report. In this course, we are challenging
students to prepare reports that better demonstrate the student’s understanding of the course con-
tent. Before starting to write the report, we encourage students to prepare a detailed outline. The
outline should include one section for each of the five sections that will eventually make up the re-
port. Under each section, there should be one bullet for each paragraph the student is planning to
include in that section. This bullet should describe the topic of the paragraph. Under each bullet
there should be several sub-bullets, one for each topic to be discussed in that paragraph. The outline
should also explicitly include references to the figures, tables, and plots the student plans to include
in the report. This is called a structured approach to technical writing. Students are strongly discour-
aged from “just starting to write”. Just like we should always plan our approach before starting to

6

ECE 2400 Computer Systems Programming, Fall 2021 Programming Assignment Logistics

write our programs, we should plan our approach before writing the report. Students are encour-
aged to review their outline with the course staff several days before the deadline.

Your report should be uploaded to Canavs. We use when the PA report is uploaded to Canvas to
track how many slip days students want to use.

7. PA Grading Scheme

The PA milestones are assessed holistically on whether or not both implementations are working and
how much effort has been put into the initial testing strategy.

The PA code is assessed using several criteria depending on the PA and weighted as follows:

PA1 PA2 PA3 PA4 PA5

Code Functionality 60% 60% 60% 60% 60%
Verification Quality 30% 30% 30%
Optimization Quality 30% 30%
Code Quality 10% 10% 10% 10% 10%

As discussed in the syllabus, each criteria/subcriteria is scored on a scale from 0 (nothing) to 4.25
(exceptional work). The functionality of the implementations is assessed based on the number of
test cases that pass in both the student and instructor test suites in combination with the severity
of any errors. The verification quality is assessed for PA1–3 based on the judgment of the instruc-
tor in terms of how well the students’ test cases actually test the design. The optimization quality
is assessed for PA4–5 based on holistic quantitative analysis of the performance and accuracy of all
implementations. The code quality is based on: how well the code follows the course coding guide-
lines; inclusion of comments that clearly document the structure, interfaces, and implementation;
following the naming conventions; decomposing complicated monolithic expressions into smaller
sub-expressions to increase readability. Overall, good code quality means little work is necessary to
figure out how the code works and how we might improve or maintain the design.

The PA report is assessed using several criteria depending on the PA and weighted as follows:

Section PA1 PA2 PA3 PA4 PA5

Introduction 10% 10% 10% 8% 8%
Testing Strategy 35%
Optimizations 25%
Alternative Implementation 25%
Complexity Analysis 35% 35% 25% 25%
Quantitative Evaluation 35% 35% 35% 25% 25%
Conclusion 10% 10% 10% 8% 8%
Writing Quality 10% 10% 10% 8% 8%

Again, each criteria/subcriteria is scored on a scale from 0 (nothing) to 4.25 (exceptional work). A
detailed rubric will be provided with the PA final report grade to explain how each section was
assessed.

7

ECE 2400 Computer Systems Programming, Fall 2021 Programming Assignment Logistics

8. GitHub and Academic Integrity Violations

Students are explicitly prohibited from sharing their code with anyone that is not within their group
or on the course staff. This includes making public forks or duplicating this repository on a different
repository hosting service. Students are also explicitly prohibited from manipulating the Git history
or changing any of the tags that are created by the course staff. The course staff maintain a copy of all
repositories, so we will easily discover if a student manipulates a repository in some inappropriate
way. Normal users will never have an issue, but advanced users have been warned.

Sharing code, manipulating the Git history, or changing staff tags will be considered a violation of
the Code of Academic Integrity. A primary hearing will be held, and if found guilty, students will
face a serious penalty on their grade for this course. More information about the Code of Academic
Integrity can be found here:

• http://theuniversityfaculty.cornell.edu/academic-integrity

8

