1 Graph Concepts 3

2 Graph Storage 4

3 Directed Graphs 5

4 Finding a Path Between Two Vertices 11
 4.1. Depth-First Search ... 13
 4.2. Breadth-First Search .. 15
 4.3. Dijkstra’s Shortest Path Algorithm 17

5 Constructing a Minimum Spanning Tree 18
 5.1. Prim’s Algorithm ... 18
 5.2. Kruskal’s Algorithm ... 18

6 Interplay between Algorithms and Data Structures 19

Handout for Sections 4.3 and 5 will be released later in the semester!
zyBooks The zyBooks logo is used to indicate additional material included in the course zyBook which will not be discussed in detail in lecture. Students are responsible for all material covered in lecture and in the course zyBook.

Copyright © 2021 Christopher Batten. All rights reserved. This handout was prepared by Prof. Christopher Batten at Cornell University for ECE 2400 / ENGRD 2140 Computer Systems Programming. Download and use of this handout is permitted for individual educational non-commercial purposes only. Redistribution either in part or in whole via both commercial or non-commercial means requires written permission.
1. Graph Concepts
2. Graph Storage
3. Directed Graphs

- Focus on object-oriented adjacency-list-based directed graphs storing int weights
 - Could apply same approach to undirected graphs
 - Could use object-oriented programming and dynamic polymorphism
 - Could use generic programming and static polymorphism
 - Could use functional programming to analyze graph
 - Could use concurrent programming to analyze graph in parallel

```cpp
class GraphInt
{
  public:
    int add_vertex();
    void add_edge( int src_id, int dest_id, int w );
    Vector<int> get_neighbors( int id );
    int get_weight( int src_id, int dest_id );

  private:
    Vector< Vector< Pair<int,int> > > m_graph;
};
```
Directed Graphs

```cpp
int GraphInt::add_vertex()
{
    m_graph.push_back( Vector<Pair<int,int>>() );
    return m_graph.size() - 1;
}

void GraphInt::add_edge( int src_id, int dest_id, int w )
{
    m_graph.at(src_id).push_back(
        Pair<int,int>( dest_id, w ) );
}

Vector<int> GraphInt::get_neighbors( int id )
{
    Vector<int> neighbors;
    for ( auto e : m_graph.at(id) )
        neighbors.push_back( e.first );
    return neighbors;
}

int GraphInt::get_weight( int src_id, int dest_id )
{
    for ( auto e : m_graph.at(src_id) )
        if ( e.first == dest_id )
            return e.second;
    assert(false);
}
```
Draw the conceptual graph and the adjacency list storage resulting from this code sequence:

```java
int v0 = g.add_vertex();
int v1 = g.add_vertex();
int v2 = g.add_vertex();
int v3 = g.add_vertex();
int v4 = g.add_vertex();
int v5 = g.add_vertex();
int v6 = g.add_vertex();

g.add_edge( v0, v1, 1 );
g.add_edge( v0, v2, 1 );
g.add_edge( v0, v3, 1 );
g.add_edge( v1, v6, 1 );
g.add_edge( v2, v4, 1 );
g.add_edge( v3, v5, 1 );
g.add_edge( v4, v6, 1 );
g.add_edge( v5, v4, 1 );
```
3. Directed Graphs

Time and space complexity analysis for different storage

- Let a graph G be a pair (V, E)
 - V is a set of vertices, $|V|$ is the number of vertices
 - E is a set of edges, $|E|$ is the number of edges
 - we often informally just use V and E to represent $|V|$ and $|E|$

<table>
<thead>
<tr>
<th>Adjacency Matrix</th>
<th>Adjacency List: Inner data structure is ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>Vector</td>
</tr>
</tbody>
</table>

Space Usage

add_vertex

add_edge

get_neighbors

get_weight
3. Directed Graphs

- Can we use an alternative inner data structure to improve the performance of getting the weight for a given edge?
 - InnerDataStruct<K,V> is a map implemented with BST or hash table

```cpp
int GraphInt::add_vertex() {
    m_graph.push_back( InnerDataStruct<int,int>() );
    return m_graph.size() - 1;
}

void GraphInt::add_edge( int src_id, int dest_id, int w ) {
    m_graph.at(src_id).add( dest_id, w );
}

Vector<int> GraphInt::get_neighbors( int id ) {
    Vector<int> neighbors;
    for ( auto n : m_graph.at(id) )
        neighbors.push_back( n.first );
    return neighbors;
}

int GraphInt::get_weight( int src_id, int dest_id ) {
    return m_graph.at(src_id).lookup(dest_id);
}
```

Adjacency List
(with inner BinarySearchTree)

Adjacency List
(with inner HashTree)
4. Finding a Path Between Two Vertices

- Given
 - graph $G = (V, E)$
 - source vertex V_s
 - destination vertex V_d

- Find a path from V_s to V_d
4. Finding a Path Between Two Vertices

- We will explore three different algorithms:
 - **Depth-First Search**: finds a path if it exists
 - **Breadth-First Search**: finds a path if it exists
 - **Dijkstra’s Algorithm**: finds *shortest* path if it exists

```cpp
class GraphInt {
    public:
        ... 
        Vector<int> dfs ( int src_id, int dest_id );
        Vector<int> bfs ( int src_id, int dest_id );
        Vector<int> dijkstra( int src_id, int dest_id );
};
```
4.1. Depth-First Search

```python
def GraphInt::dfs( src_id, dest_id ):
    set visited to be a set  # vertices already visited
    set worklist to be a stack  # pending paths to search

    worklist.push([src_id])

    while worklist is not empty:
        path = worklist.pop()
        set v to be final vertex in path

        if v == dest_id:
            return path

        if v not in visited:
            visited.add(v)
            for n in get_neighbors(v):
                worklist.push(path + n)
```

![Graph example 1]

![Graph example 2]
Vector<int> GraphInt::dfs(int src_id, int dest_id)
{
 Set<int> visited; // vertices already visited
 Stack<Vector<int>> worklist; // pending paths to search

 // Initialize worklist w/ path containing just source vertex
 Vector<int> p; p.push_back(src_id); worklist.push(p);

 // Keep working until worklist is empty
 while (worklist.size() != 0) {

 // Pop path from _top_ of stack
 auto path = worklist.pop();

 // Check if final vertex in current path is destination
 int v = path.at(path.size()-1);
 if (v == dest_id) return path;

 // Check if final vertex has already been visited
 if (!visited.contains(v)) {

 // Mark final vertex as visited
 visited.add(v);

 // Iterate through neighbors
 auto neighbors = get_neighbors(v);
 for (int n : neighbors) {

 // Create temporary new path with neighbor at end
 auto temp = path;
 temp.push_back(n);

 // Push this new path onto _top_ of stack
 worklist.push(temp);
 }
 }
 }
}
4.2. Breadth-First Search

```python
def GraphInt.bfs( src_id, dest_id ):
    set visited to be a set # vertices already visited
    set worklist to be a queue # pending paths to search

    worklist.enq( [src_id] )
    while worklist is not empty:
        path = worklist.deq()
        set v to be final vertex in path

        if v == dest_id:
            return path

        if v not in visited:
            visited.add( v )
            for n in get_neighbors( v ):
                worklist.enq( path + n )
```

![Diagram of Breadth-First Search](image-url)
4. Finding a Path Between Two Vertices

4.2. Breadth-First Search

```cpp
Vector<int> GraphInt::bfs( int src_id, int dest_id )
{
    Set<int> visited; // vertices already visited
    Queue<Vector<int>> worklist; // pending paths to search

    // Initialize worklist w/ path containing just source vertex
    Vector<int> p; p.push_back(src_id); worklist.enq( p );

    // Keep working until worklist is empty
    while ( worklist.size() != 0 ) {

        // Dequeue path from _head_ of queue
        auto path = worklist.deq();

        // Check if final vertex in current path is destination
        int v = path.at( path.size()-1 );
        if ( v == dest_id ) return path;

        // Check if final vertex has already been visited
        if ( !visited.contains( v ) ) {

            // Mark vertex as visited
            visited.add( v );

            // Iterate through neighbors
            auto neighbors = get_neighbors( v );
            for ( int n : neighbors ) {

                // Create temporary new path with neighbor at end
                auto temp = path;
                temp.push_back(n);

                // Enqueue this path on _tail_ of queue
                worklist.enq( temp );
            }
        }
    }
}
```
4.3. Dijkstra’s Shortest Path Algorithm
5. Constructing a Minimum Spanning Tree

5.1. Prim’s Algorithm

5.2. Kruskal’s Algorithm
Algorithms

<table>
<thead>
<tr>
<th>Operation</th>
<th>Simple</th>
<th>Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>mul</td>
<td>iter, single step</td>
<td>iter, recur</td>
</tr>
<tr>
<td>sqrt</td>
<td>iter, recur</td>
<td></td>
</tr>
<tr>
<td>search</td>
<td>linear, binary</td>
<td></td>
</tr>
<tr>
<td>sort</td>
<td>insertion, selection, merge, quick, hybrid, bucket</td>
<td></td>
</tr>
<tr>
<td>set intersection</td>
<td>set union</td>
<td></td>
</tr>
<tr>
<td>find path</td>
<td>DFS, BFS, Dijkstra</td>
<td></td>
</tr>
</tbody>
</table>

Data Structures

<table>
<thead>
<tr>
<th>Structure</th>
<th>Simple</th>
<th>Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>chain of nodes</td>
<td>chain of nodes</td>
<td></td>
</tr>
<tr>
<td>array of elements</td>
<td>array of elements</td>
<td></td>
</tr>
<tr>
<td>list, vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stack, queue, set, map</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tree, table, graph</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Simple algorithms do not use a non-trivial data structure
- Simple data structures do not provide non-trivial operations
- Many algorithms operate on a simple data structure
- Many data structures provide operations which are implemented using an algorithm that operates on a simple data structure
- Sometimes our programs are more **algorithm centric**, sometimes they are more **data-structure centric**, but they **almost always use both algorithms and data structures**

Algorithm + Data Structure = Program