
ECE 2400 Computer Systems Programming
Fall 2021

Topic 19: Graphs

School of Electrical and Computer Engineering
Cornell University

revision: 2021-08-29-22-40

1 Graph Concepts 3

2 Graph Storage 4

3 Directed Graphs 5

4 Finding a Path Between Two Vertices 11

4.1. Depth-First Search . 13

4.2. Breadth-First Search . 15

4.3. Dijkstra’s Shortest Path Algorithm 17

5 Constructing a Minimum Spanning Tree 18

5.1. Prim’s Algorithm . 18

5.2. Kruskal’s Algorithm . 18

6 Interplay between Algorithms and Data Structures 19

Handout for Sections 4.3 and 5 will be released later in the semester!

1

The zyBooks logo is used to indicate additional material included in the course
zyBook which will not be discussed in detail in lecture. Students are responsible for all
material covered in lecture and in the course zyBook.

Copyright © 2021 Christopher Batten. All rights reserved. This handout was prepared
by Prof. Christopher Batten at Cornell University for ECE 2400 / ENGRD 2140 Computer
Systems Programming. Download and use of this handout is permitted for individual
educational non-commercial purposes only. Redistribution either in part or in whole via
both commercial or non-commercial means requires written permission.

Topic 19: Graphs 2

1. Graph Concepts

1. Graph Concepts

Topic 19: Graphs 3

2. Graph Storage

2. Graph Storage

0

1 2

3

4

65

3
13

1

110 2

Topic 19: Graphs 4

3. Directed Graphs

3. Directed Graphs

• Focus on object-oriented adjacency-list-based directed graphs
storing int weights
– Could apply same approach to undirected graphs
– Could use object-oriented programming and dynamic polymorphism
– Could use generic programming and static polymorphism
– Could use functional programming to analyze graph
– Could use concurrent programming to analyze graph in parallel

1 class GraphInt
2 {
3 public:
4

5 int add_vertex();
6 void add_edge(int src_id, int dest_id, int w);
7 Vector<int> get_neighbors(int id);
8 int get_weight(int src_id, int dest_id);
9

10 private:
11 Vector< Vector< Pair<int,int> > > m_graph;
12 };

Topic 19: Graphs 5

3. Directed Graphs

1 int GraphInt::add_vertex()
2 {
3 m_graph.push_back(Vector<Pair<int,int>>());
4 return m_graph.size() - 1;
5 }
6

7 void GraphInt::add_edge(int src_id, int dest_id, int w)
8 {
9 m_graph.at(src_id).push_back(

10 Pair<int,int>(dest_id, w));
11 }
12

13 Vector<int> GraphInt::get_neighbors(int id)
14 {
15 Vector<int> neighbors;
16 for (auto e : m_graph.at(id))
17 neighbors.push_back(e.first);
18 return neighbors;
19 }
20

21 int GraphInt::get_weight(int src_id, int dest_id)
22 {
23 for (auto e : m_graph.at(src_id))
24 if (e.first == dest_id)
25 return e.second;
26 assert(false);
27 }

Topic 19: Graphs 6

3. Directed Graphs

Draw the conceptual graph and the adjacency list storage resulting from
this code sequence:

1 GraphInt g;
2

3 int v0 = g.add_vertex();
4 int v1 = g.add_vertex();
5 int v2 = g.add_vertex();
6 int v3 = g.add_vertex();
7 int v4 = g.add_vertex();
8 int v5 = g.add_vertex();
9 int v6 = g.add_vertex();

10

11 g.add_edge(v0, v1, 1);
12 g.add_edge(v0, v2, 1);
13 g.add_edge(v0, v3, 1);
14 g.add_edge(v1, v6, 1);
15 g.add_edge(v2, v4, 1);
16 g.add_edge(v3, v5, 1);
17 g.add_edge(v4, v6, 1);
18 g.add_edge(v5, v4, 1);

Topic 19: Graphs 7

3. Directed Graphs

Topic 19: Graphs 8

3. Directed Graphs

Time and space complexity analysis for different storage

• Let a graph G be a pair (V, E)
– V is a set of vertices, |V| is the number of vertices
– E is a set of edges, |E| is the number of edges
– we often informally just use V and E to represent |V| and |E|

Adjacency Adjacency List: Inner data structure is ...
Matrix Vector BST HashTable

Space Usage

add_vertex

add_edge

get_neighbors

get_weight

5

6

3 13 1

710 24

3

2

1

0

0 1 2 3 4

dest

src

4

3

2

1

0

Adjacency Matrix Adjacency List
(with inner Vector)

1 5 2 3 3 6

3 13 4 10

3 1 4 7

4 2

src

dest weight

weight

Topic 19: Graphs 9

3. Directed Graphs

• Can we use an alternative inner data structure to improve the
performance of getting the weight for a given edge?

– InnerDataStruct<K,V> is a map implemented with BST or hash table

1 int GraphInt::add_vertex() {
2 m_graph.push_back(InnerDataStruct<int,int>());
3 return m_graph.size() - 1;
4 }
5

6 void GraphInt::add_edge(int src_id, int dest_id, int w) {
7 m_graph.at(src_id).add(dest_id, w));
8 }
9

10 Vector<int> GraphInt::get_neighbors(int id) {
11 Vector<int> neighbors;
12 for (auto n : m_graph.at(id))
13 neighbors.push_back(n.first);
14 return neighbors;
15 }
16

17 int GraphInt::get_weight(int src_id, int dest_id) {
18 return m_graph.at(src_id).lookup(dest_id);
19 }

4

3

2

1

0

Adjacency List
(with inner BinarySearchTree)

4

3

2

1

0

<dest,weight> <dest,weight>

Adjacency List
(with inner HashTree)

src src

Topic 19: Graphs 10

4. Finding a Path Between Two Vertices

4. Finding a Path Between Two Vertices

• Given

– graph G = (V, E)
– source vertex Vs

– destination vertex Vd

• Find a path from Vs to Vd

0 21 3

4 5 6 7

8 9 10 11

12 13 14 15

Topic 19: Graphs 11

4. Finding a Path Between Two Vertices

• We will explore three different algorithms:
– Depth-First Search: finds a path if it exists
– Breadth-First Search: finds a path if it exists
– Dijkstra’s Algorithm: finds shortest path if it exists

1 class GraphInt
2 {
3 public:
4 ...
5 Vector<int> dfs (int src_id, int dest_id);
6 Vector<int> bfs (int src_id, int dest_id);
7 Vector<int> dijkstra(int src_id, int dest_id);
8 };

Topic 19: Graphs 12

4. Finding a Path Between Two Vertices 4.1. Depth-First Search

4.1. Depth-First Search
1 def GraphInt::dfs(src_id, dest_id):
2 set visited to be a set # vertices already visited
3 set worklist to be a stack # pending paths to search
4

5 worklist.push([src_id])
6 while worklist is not empty:
7 path = worklist.pop()
8 set v to be final vertex in path
9

10 if v == dest_id:
11 return path
12

13 if v not in visited:
14 visited.add(v)
15 for n in get_neighbors(v):
16 worklist.push(path + n)

0

21 3

4 5

6

visited:

worklist:

0

21 3

5 6

8

4

7

visited:

worklist:

Topic 19: Graphs 13

4. Finding a Path Between Two Vertices 4.1. Depth-First Search

1 Vector<int> GraphInt::dfs(int src_id, int dest_id)
2 {
3 Set<int> visited; // vertices already visited
4 Stack<Vector<int>> worklist; // pending paths to search
5

6 // Initialize worklist w/ path containing just source vertex
7 Vector<int> p; p.push_back(src_id); worklist.push(p);
8

9 // Keep working until worklist is empty
10 while (worklist.size() != 0) {
11

12 // Pop path from _top_ of stack
13 auto path = worklist.pop();
14

15 // Check if final vertex in current path is destination
16 int v = path.at(path.size()-1);
17 if (v == dest_id) return path;
18

19 // Check if final vertex has already been visited
20 if (!visited.contains(v)) {
21

22 // Mark final vertex as visited
23 visited.add(v);
24

25 // Iterate through neighbors
26 auto neighbors = get_neighbors(v);
27 for (int n : neighbors) {
28

29 // Create temporary new path with neighbor at end
30 auto temp = path;
31 temp.push_back(n);
32

33 // Push this new path onto _top_ of stack
34 worklist.push(temp);
35 }
36 }
37 }
38 }

Topic 19: Graphs 14

4. Finding a Path Between Two Vertices 4.2. Breadth-First Search

4.2. Breadth-First Search
1 def GraphInt::bfs(src_id, dest_id):
2 set visited to be a set # vertices already visited
3 set worklist to be a queue # pending paths to search
4

5 worklist.enq([src_id])
6 while worklist is not empty:
7 path = worklist.deq()
8 set v to be final vertex in path
9

10 if v == dest_id:
11 return path
12

13 if v not in visited:
14 visited.add(v)
15 for n in get_neighbors(v):
16 worklist.enq(path + n)

0

21 3

4 5

6

visited:

worklist:

0

21 3

5 6

8

4

7

visited:

worklist:

Topic 19: Graphs 15

4. Finding a Path Between Two Vertices 4.2. Breadth-First Search

1 Vector<int> GraphInt::bfs(int src_id, int dest_id)
2 {
3 Set<int> visited; // vertices already visited
4 Queue<Vector<int>> worklist; // pending paths to search
5

6 // Initialize worklist w/ path containing just source vertex
7 Vector<int> p; p.push_back(src_id); worklist.enq(p);
8

9 // Keep working until worklist is empty
10 while (worklist.size() != 0) {
11

12 // Dequeue path from _head_ of queue
13 auto path = worklist.deq();
14

15 // Check if final vertex in current path is destination
16 int v = path.at(path.size()-1);
17 if (v == dest_id) return path;
18

19 // Check if final vertex has already been visited
20 if (!visited.contains(v)) {
21

22 // Mark vertex as visited
23 visited.add(v);
24

25 // Iterate through neighbors
26 auto neighbors = get_neighbors(v);
27 for (int n : neighbors) {
28

29 // Create temporary new path with neighbor at end
30 auto temp = path;
31 temp.push_back(n);
32

33 // Enqueue this path on _tail_ of queue
34 worklist.enq(temp);
35 }
36 }
37 }
38 }

Topic 19: Graphs 16

4. Finding a Path Between Two Vertices 4.3. Dijkstra’s Shortest Path Algorithm

4.3. Dijkstra’s Shortest Path Algorithm

Topic 19: Graphs 17

5. Constructing a Minimum Spanning Tree 5.2. Prim’s Algorithm

5. Constructing a Minimum Spanning Tree

5.1. Prim’s Algorithm

5.2. Kruskal’s Algorithm

Topic 19: Graphs 18

5. Constructing a Minimum Spanning Tree 5.2. Kruskal’s Algorithm

Algorithms

mul: iter, single step

sqrt: iter, recur

search: linear, binary

sort: insertion, selection,
merge, quick, hybrid, bucket

set intersection, set union

find path: DFS, BFS, Dijkstra

Data Structures

chain of nodes

array of elements

list, vector

stack, queue, set, map

tree, table, graph

• Simple algorithms do not use a non-trivial data structure
• Simple data structures do not provide non-trivial operations
• Many algorithms operate on a simple data structure
• Many data structures provide operations which are implemented

using an algorithm that operates on a simple data structure

• Sometimes our programs are more algorithm centric, sometimes
they are more data-structure centric, but they almost always use
both algorithms and data structures

Algorithm + Data Structure = Program

Topic 19: Graphs 19

