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1. Graph Concepts

1. Graph Concepts
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2. Graph Storage

2. Graph Storage
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3. Directed Graphs

3. Directed Graphs

• Focus on object-oriented adjacency-list-based directed graphs
storing int weights
– Could apply same approach to undirected graphs
– Could use object-oriented programming and dynamic polymorphism
– Could use generic programming and static polymorphism
– Could use functional programming to analyze graph
– Could use concurrent programming to analyze graph in parallel

1 class GraphInt
2 {
3 public:
4

5 int add_vertex();
6 void add_edge( int src_id, int dest_id, int w );
7 Vector<int> get_neighbors( int id );
8 int get_weight( int src_id, int dest_id );
9

10 private:
11 Vector< Vector< Pair<int,int> > > m_graph;
12 };
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3. Directed Graphs

1 int GraphInt::add_vertex()
2 {
3 m_graph.push_back( Vector<Pair<int,int>>() );
4 return m_graph.size() - 1;
5 }
6

7 void GraphInt::add_edge( int src_id, int dest_id, int w )
8 {
9 m_graph.at(src_id).push_back(

10 Pair<int,int>( dest_id, w ) );
11 }
12

13 Vector<int> GraphInt::get_neighbors( int id )
14 {
15 Vector<int> neighbors;
16 for ( auto e : m_graph.at(id) )
17 neighbors.push_back( e.first );
18 return neighbors;
19 }
20

21 int GraphInt::get_weight( int src_id, int dest_id )
22 {
23 for ( auto e : m_graph.at(src_id) )
24 if ( e.first == dest_id )
25 return e.second;
26 assert(false);
27 }
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3. Directed Graphs

Draw the conceptual graph and the adjacency list storage resulting from
this code sequence:

1 GraphInt g;
2

3 int v0 = g.add_vertex();
4 int v1 = g.add_vertex();
5 int v2 = g.add_vertex();
6 int v3 = g.add_vertex();
7 int v4 = g.add_vertex();
8 int v5 = g.add_vertex();
9 int v6 = g.add_vertex();

10

11 g.add_edge( v0, v1, 1 );
12 g.add_edge( v0, v2, 1 );
13 g.add_edge( v0, v3, 1 );
14 g.add_edge( v1, v6, 1 );
15 g.add_edge( v2, v4, 1 );
16 g.add_edge( v3, v5, 1 );
17 g.add_edge( v4, v6, 1 );
18 g.add_edge( v5, v4, 1 );
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3. Directed Graphs
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3. Directed Graphs

Time and space complexity analysis for different storage

• Let a graph G be a pair (V, E)
– V is a set of vertices, |V| is the number of vertices
– E is a set of edges, |E| is the number of edges
– we often informally just use V and E to represent |V| and |E|

Adjacency Adjacency List: Inner data structure is ...
Matrix Vector BST HashTable

Space Usage
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3. Directed Graphs

• Can we use an alternative inner data structure to improve the
performance of getting the weight for a given edge?

– InnerDataStruct<K,V> is a map implemented with BST or hash table

1 int GraphInt::add_vertex() {
2 m_graph.push_back( InnerDataStruct<int,int>() );
3 return m_graph.size() - 1;
4 }
5

6 void GraphInt::add_edge( int src_id, int dest_id, int w ) {
7 m_graph.at(src_id).add( dest_id, w ) );
8 }
9

10 Vector<int> GraphInt::get_neighbors( int id ) {
11 Vector<int> neighbors;
12 for ( auto n : m_graph.at(id) )
13 neighbors.push_back( n.first );
14 return neighbors;
15 }
16

17 int GraphInt::get_weight( int src_id, int dest_id ) {
18 return m_graph.at(src_id).lookup(dest_id);
19 }
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4. Finding a Path Between Two Vertices

4. Finding a Path Between Two Vertices

• Given

– graph G = (V, E)
– source vertex Vs

– destination vertex Vd

• Find a path from Vs to Vd
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4. Finding a Path Between Two Vertices

• We will explore three different algorithms:
– Depth-First Search: finds a path if it exists
– Breadth-First Search: finds a path if it exists
– Dijkstra’s Algorithm: finds shortest path if it exists

1 class GraphInt
2 {
3 public:
4 ...
5 Vector<int> dfs ( int src_id, int dest_id );
6 Vector<int> bfs ( int src_id, int dest_id );
7 Vector<int> dijkstra( int src_id, int dest_id );
8 };
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4. Finding a Path Between Two Vertices 4.1. Depth-First Search

4.1. Depth-First Search
1 def GraphInt::dfs( src_id, dest_id ):
2 set visited to be a set # vertices already visited
3 set worklist to be a stack # pending paths to search
4

5 worklist.push( [src_id] )
6 while worklist is not empty:
7 path = worklist.pop()
8 set v to be final vertex in path
9

10 if v == dest_id:
11 return path
12

13 if v not in visited:
14 visited.add( v )
15 for n in get_neighbors( v ):
16 worklist.push( path + n )
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4. Finding a Path Between Two Vertices 4.1. Depth-First Search

1 Vector<int> GraphInt::dfs( int src_id, int dest_id )
2 {
3 Set<int> visited; // vertices already visited
4 Stack<Vector<int>> worklist; // pending paths to search
5

6 // Initialize worklist w/ path containing just source vertex
7 Vector<int> p; p.push_back(src_id); worklist.push( p );
8

9 // Keep working until worklist is empty
10 while ( worklist.size() != 0 ) {
11

12 // Pop path from _top_ of stack
13 auto path = worklist.pop();
14

15 // Check if final vertex in current path is destination
16 int v = path.at( path.size()-1 );
17 if ( v == dest_id ) return path;
18

19 // Check if final vertex has already been visited
20 if ( !visited.contains( v ) ) {
21

22 // Mark final vertex as visited
23 visited.add( v );
24

25 // Iterate through neighbors
26 auto neighbors = get_neighbors( v );
27 for ( int n : neighbors ) {
28

29 // Create temporary new path with neighbor at end
30 auto temp = path;
31 temp.push_back(n);
32

33 // Push this new path onto _top_ of stack
34 worklist.push( temp );
35 }
36 }
37 }
38 }
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4. Finding a Path Between Two Vertices 4.2. Breadth-First Search

4.2. Breadth-First Search
1 def GraphInt::bfs( src_id, dest_id ):
2 set visited to be a set # vertices already visited
3 set worklist to be a queue # pending paths to search
4

5 worklist.enq( [src_id] )
6 while worklist is not empty:
7 path = worklist.deq()
8 set v to be final vertex in path
9

10 if v == dest_id:
11 return path
12

13 if v not in visited:
14 visited.add( v )
15 for n in get_neighbors( v ):
16 worklist.enq( path + n )
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4. Finding a Path Between Two Vertices 4.2. Breadth-First Search

1 Vector<int> GraphInt::bfs( int src_id, int dest_id )
2 {
3 Set<int> visited; // vertices already visited
4 Queue<Vector<int>> worklist; // pending paths to search
5

6 // Initialize worklist w/ path containing just source vertex
7 Vector<int> p; p.push_back(src_id); worklist.enq( p );
8

9 // Keep working until worklist is empty
10 while ( worklist.size() != 0 ) {
11

12 // Dequeue path from _head_ of queue
13 auto path = worklist.deq();
14

15 // Check if final vertex in current path is destination
16 int v = path.at( path.size()-1 );
17 if ( v == dest_id ) return path;
18

19 // Check if final vertex has already been visited
20 if ( !visited.contains( v ) ) {
21

22 // Mark vertex as visited
23 visited.add( v );
24

25 // Iterate through neighbors
26 auto neighbors = get_neighbors( v );
27 for ( int n : neighbors ) {
28

29 // Create temporary new path with neighbor at end
30 auto temp = path;
31 temp.push_back(n);
32

33 // Enqueue this path on _tail_ of queue
34 worklist.enq( temp );
35 }
36 }
37 }
38 }
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4. Finding a Path Between Two Vertices 4.3. Dijkstra’s Shortest Path Algorithm

4.3. Dijkstra’s Shortest Path Algorithm
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5. Constructing a Minimum Spanning Tree 5.2. Prim’s Algorithm

5. Constructing a Minimum Spanning Tree

5.1. Prim’s Algorithm

5.2. Kruskal’s Algorithm
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5. Constructing a Minimum Spanning Tree 5.2. Kruskal’s Algorithm

Algorithms

mul: iter, single step

sqrt: iter, recur

search: linear, binary

sort: insertion, selection,
merge, quick, hybrid, bucket

set intersection, set union

find path: DFS, BFS, Dijkstra

Data Structures

chain of nodes

array of elements

list, vector

stack, queue, set, map

tree, table, graph

• Simple algorithms do not use a non-trivial data structure
• Simple data structures do not provide non-trivial operations
• Many algorithms operate on a simple data structure
• Many data structures provide operations which are implemented

using an algorithm that operates on a simple data structure

• Sometimes our programs are more algorithm centric, sometimes
they are more data-structure centric, but they almost always use
both algorithms and data structures

Algorithm + Data Structure = Program
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