ECE 2400 Computer Systems Programming
Spring 2025

Topic 17: Graphs

School of Electrical and Computer Engineering
Cornell University

revision: 2025-04-28-13-15
Graph Concepts
Graph Storage
Directed Graphs

Finding a Path Between Two Vertices
41. Depth-FirstSearch
42. Breadth-FirstSearch

Other Common Search Algorithms
Constructing a Minimum Spanning Tree

Interplay between Algorithms and Data Structures

11
13
15

17

17

18

ZyBooks logo indicates readings and coding labs in the course zyBook which will not be discussed
in detail in lecture. Students are responsible for all material covered in lecture and in the course zyBook.

Copyright © 2025 Anne Bracy. All rights reserved. This handout was prepared by Prof. Anne Bracy
at Cornell University for ECE 2400 / ENGRD 2140 Computer Systems Programming (derived from
previous handouts prepared and copyrighted by Prof. Christopher Batten). Download and use of this
handout is permitted for individual educational non-commercial purposes only. Redistribution either
in part or in whole via both commercial or non-commercial means requires written permission.

Topic 17: Graphs 2

1. Graph Concepts

1. Graph Concepts

Topic 17: Graphs

2. Graph Storage

2. Graph Storage

“Adjacency Matrix Adjacency List
(with inner vector)
sIe dest weight
012 3 4
0 0[et=[15T273]3 6]
1[5 weight 1[et—[3 13[4 10
dest 2|6 stc 2|43/ 1]4 7
A EIEEE 3| et
4l fwo]7]2 4

Topic 17: Graphs

3. Directed Graphs

3. Directed Graphs

¢ Focus on object-oriented adjacency-list-based directed graphs
storing int weights
— Could apply same approach to undirected graphs
— Could use object-oriented programming and dynamic polymorphism
— Could use generic programming and static polymorphism
— Later: can use concurrent programming to analyze graph in parallel

class GraphInt

{
public:
int add_vertex();
void add_edge(int src_id, int dest_id, int w);
Vector<int> get_neighbors(int id);
int get_weight(int src_id, int dest_id);
private:

Vector< Vector< Pair<int,int> > > m_graph;

};

Adjacency List
(with inner vector)

dest weight

1 5]2 3|3 6]
3 13[4 10
47

Src

CTT1T

Lelelelelel

Topic 17:

Q
B
QO
2]
=3
12)

3. Directed Graphs

1 int GraphInt::add_vertex()

2 {

3 m_graph.push_back(Vector<Pair<int,int>>());
4 return m_graph.size() - 1;

s}

7 void GraphInt::add_edge(int src_id, int dest_id, int w)
s 1

9 m_graph.at(src_id) .push_back(

10 Pair<int,int>(dest_id, w));

n }

13 Vector<int> GraphInt::get_neighbors(int id)
u {

15 Vector<int> neighbors;

16 for (auto e : m_graph.at(id))
17 neighbors.push_back(e.first);
18 return neighbors;

19 }

20
2 int GraphInt::get_weight(int src_id, int dest_id)
2 {

3 for (auto e : m_graph.at(src_id))
2 if (e.first == dest_id)

25 return e.second;

2 assert(false);

» }

Topic 17: Graphs 6

3. Directed Graphs

Draw the conceptual graph and the adjacency list storage resulting from
this code sequence:

1 Graphlnt g;

2

3 int v0 = g.add_vertex();
4+ int vl = g.add_vertex();
5 int v2 = g.add_vertex();
¢ int v3 = g.add_vertex();
7 int v4 = g.add_vertex();
s int vb = g.add_vertex();
9 int v6 = g.add_vertex();
10

n g.add_edge(vO, vi, 1);
12 g.add_edge(vO, v2, 1);
13 g.add_edge(vO, v3, 1);
1 g.add_edge(v1, v6, 1);
15 g.add_edge(v2, v4, 1);
16 g.add_edge(v3, v5, 1);
17 g.add_edge(v4, v6, 1);
18 g.add_edge(v5, v4, 1);

Topic 17: Graphs 7

3. Directed Graphs

Time and space complexity analysis for different storage

e Leta graph G be a pair (V,E)

— Visaset of vertices, | V| is the number of vertices
- Eisasetof edges, |E| is the number of edges
— we often informally just use V and E to represent |V| and |E|

Adjacency Adjacency List: Inner data structure is ...

Matrix Vector BST HashTable

Space Usage
add_vertex
add_edge
get_neighbors
get_weight

Adjacency Matrix Adjacency List

(with inner vector)
sre dest weight
012 3 4

0 | | 0|1 52 3[3 6|

1(5 weight 1|13 134 10
dest 2|6 stc 2| (3 1[4 7

313(13|1 3| 1

4 10{ 7|2 4| o

Topic 17: Graphs

3. Directed Graphs

15

16

17

18

Can we use an alternative inner data structure to improve the
performance of getting the weight for a given edge?

— InnerDataStruct<k,V>is a map implemented with BST or hash table

int GraphInt::add_vertex() {
m_graph.push_back(InnerDataStruct<int,int>());
return m_graph.size() - 1;

}

void GraphInt::add_edge(int src_id, int dest_id, int w) {
m_graph.at(src_id) .add(dest_id, w));
}

Vector<int> GraphInt::get_neighbors(int id) {
Vector<int> neighbors;
for (auto n : m_graph.at(id))
neighbors.push_back(n.first);
return neighbors;

}

int GraphInt::get_weight(int src_id, int dest_id) {
return m_graph.at(src_id) .lookup(dest_id);

19 }
Adjacency List Adjacency List
(with inner BinarySearchTree) (with inner HashTree)

0 T > 0 ? >

2 —.——;Q\ 2 [—

src ¢ src s

¢ <dest,weight> * <dest,weight>

Topic 17: Graphs 9

4. Finding a Path Between Two Vertices

4. Finding a Path Between Two Vertices

¢ Given
- graph G = (V,E)
— source vertex Vg
— destination vertex V;

¢ Find a path from Vs to V;

@ 0

Topic 17: Graphs

10

4. Finding a Path Between Two Vertices

B e—————

eideHoune @

et ypson e i
Cornell Chapter < Billand I
Melinda
GatesHall 8

2400 0 0000000 0

£ 12min

)| cémies

” Avabe Tapor il @ m =
JTT Q

a

‘Comell University |

Coliehe of Engineering
Holister Hall School of

Pi Kappa Alpha choo o' Q. ‘

9

|
g \
/ ! \
| Q =
/ The Sttie Hofel at Comsfock Holl
— Comel Unvarsiy i N
L 7
&1 min 8 Barton Hall Q)
[| —— °
Q@ otin Hat BRES .
L

Campus R

i | Hoy Field
108 > : | © Schoelkopt Field Q)
' T Q@ Upson Hal
$
7 Chargepoint
chiphi Charging Station
e
/
iy cascadiaics 05 : i
o
A
P o
wartand Willams Lot e tacat .
the Perform
Tempoar Tennis Courts
Sangam indian cusine Q)
=) Cascadilla Creek
i 9
e : ok
feviart Lt corop z

. — =
[ey oéoyyyeww University | = AzsleeGarden
\'& /, a \ MeGrawTower i ! B rovarrd LR School a
/ N—— \ / | T Q 8
— P \ £ Ives Hall \
) \ Sage chapel @ 1\ \‘ Qooyral : \ Qs Ha \ ooy vl
s Bethe Heuse @ - z | | ILR Conference Center
Vi — \ Corson Mudd
/ ‘ \ — N 5 | | KingShaw Hall
=4 L ~ ¢ o — —
R The Comell Siore P~ Biology Q ‘JQ
[S~ -y | N Biology u‘a
Y, S > q
campus Ry I /j
Noyes Fitness Center ¢ |

Teagle Hall Fitness C:

Fairview Manor

¢ We will explore three different algorithms:
— Depth-First Search: finds a path if it exists
— Breadth-First Search: finds a path if it exists

1 class GraphInt

> {

3 public:

4 ..

5 Vector<int> dfs
6 Vector<int> bfs

7}

(int src_id, int dest_id);
(int src_id, int dest_id);

Topic 17: Graphs

11

4. Finding a Path Between Two Vertices 4.1. Depth-First Search

4.1. Depth-First Search

1 def GraphInt::dfs(src_id, dest_id):
set visited to be a set # vertices already visited
set worklist to be a stack # pending paths to search

2
3

4

5 worklist.push([src_id])

6 while worklist is not empty:

7 path = worklist.pop()

8 set v to be final vertex in path
9

10 if v == dest_id:

11 return path

12

13 if v not in visited:

14 visited.add(v)

15 for n in get_neighbors(v):

16 worklist.push(path + n)
/((D\

visited:

®

worklist:

6

% visited:

o o e e worklist:
(5 (60 @
()

Topic 17: Graphs 12

4. Finding a Path Between Two Vertices 4.1. Depth-First Search

26
27
28
29
30
31
32
33
34
35
36
37
38

Vector<int> GraphInt::dfs(int src_id, int dest_id)

{

Set<int> visited; // vertices already visited
Stack<Vector<int>> worklist; // pending paths to search

// Initialize worklist w/ path containing just source vertex
Vector<int> p; p.push_back(src_id); worklist.push(p);

// Keep working until worklist is empty
while (worklist.size() != 0) {

// Pop path from _top_ of stack
auto path = worklist.pop();

// Check if final vertex in current path is destination
int v = path.at(path.size()-1);
if (v == dest_id) return path;

// Check if final vertex has already been visited
if (!visited.contains(v)) {

// Mark final vertex as visited
visited.add(v);

// Iterate through neighbors
auto neighbors = get_neighbors(v);
for (int n : neighbors) {

// Create temporary new path with neighbor at end
auto temp = path;
temp.push_back(n) ;

// Push this new path onto _top_ of stack
worklist.push(temp);

Topic 17: Graphs 13

4. Finding a Path Between Two Vertices 4.2. Breadth-First Search

4.2. Breadth-First Search

1 def GraphInt::bfs(src_id, dest_id):
set visited to be a set # vertices already visited
set worklist to be a queue # pending paths to search

2
3
4
5 worklist.enq([src_id])

6 while worklist is not empty:

7 path = worklist.deq()

8 set v to be final vertex in path
9

10 if v == dest_id:
11 return path
12
13 if v not in visited:
14 visited.add(v)
15 for n in get_neighbors(v):
16 worklist.enq(path + n)
/((D\
visited:

®

worklist:

6

% visited:

o o e e worklist:
(5 (60 @
()

Topic 17: Graphs

14

4. Finding a Path Between Two Vertices 4.2. Breadth-First Search

26
27
28
29
30
31
32
33
34
35
36
37
38

Vector<int> GraphInt::bfs(int src_id, int dest_id)

{

Set<int> visited; // vertices already visited
Queue<Vector<int>> worklist; // pending paths to search

// Initialize worklist w/ path containing just source vertex
Vector<int> p; p.push_back(src_id); worklist.enq(p);

// Keep working until worklist is empty
while (worklist.size() != 0) {

// Dequeue path from _head_ of queue
auto path = worklist.deq();

// Check if final vertex in current path is destination
int v = path.at(path.size()-1);
if (v == dest_id) return path;

// Check if final vertex has already been visited
if (!visited.contains(v)) {

// Mark vertex as visited
visited.add(v);

// Iterate through neighbors
auto neighbors = get_neighbors(v);
for (int n : neighbors) {

// Create temporary new path with neighbor at end
auto temp = path;
temp.push_back(n) ;

// Enqueue this path on _tail_ of queue
worklist.enq(temp);

Topic 17: Graphs 15

6. Constructing a Minimum Spanning Tree

5. Other Common Search Algorithms

Dijkstra’s Shortest Path Algorithm
Greedy Search
A* Search

6. Constructing a Minimum Spanning Tree

Prim’s Algorithm
Kruskal’s Algorithm

Topic 17: Graphs

16

6. Constructing a Minimum Spanning Tree

Algorithms Data Structures
mul: iter, single step chain of nodes
sqrt: iter, recur array of elements

search: linear, binary list vector
4

sort: insertion, selection,

l’l’lerge, quiCk, hybrid, bL'leet Stack’ queue’ Set’ map
set intersection, set union
find path: DFS, BFS tree, table, graph

¢ Simple algorithms do not use a non-trivial data structure

¢ Simple data structures do not provide non-trivial operations

¢ Many algorithms operate on a simple data structure

* Many data structures provide operations which are implemented
using an algorithm that operates on a simple data structure

* Sometimes our programs are more algorithm centric, sometimes
they are more data-structure centric, but they almost always use
both algorithms and data structures

Algorithm + Data Structure = Program

Topic 17: Graphs 17

