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1. Graph Concepts

1. Graph Concepts
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2. Graph Storage

2. Graph Storage
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3. Directed Graphs

3. Directed Graphs

¢ Focus on object-oriented adjacency-list-based directed graphs
storing int weights
— Could apply same approach to undirected graphs
— Could use object-oriented programming and dynamic polymorphism
— Could use generic programming and static polymorphism
— Later: can use concurrent programming to analyze graph in parallel

class GraphInt

{
public:
int add_vertex();
void add_edge( int src_id, int dest_id, int w );
Vector<int> get_neighbors( int id );
int get_weight( int src_id, int dest_id );
private:

Vector< Vector< Pair<int,int> > > m_graph;

};
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3. Directed Graphs

1 int GraphInt::add_vertex()

2 {

3 m_graph.push_back( Vector<Pair<int,int>>() );
4 return m_graph.size() - 1;

s}

7 void GraphInt::add_edge( int src_id, int dest_id, int w )
s 1

9 m_graph.at(src_id) .push_back(

10 Pair<int,int>( dest_id, w ) );

n }

13 Vector<int> GraphInt::get_neighbors( int id )
u {

15 Vector<int> neighbors;

16 for ( auto e : m_graph.at(id) )
17 neighbors.push_back( e.first );
18 return neighbors;

19 }

20
2 int GraphInt::get_weight( int src_id, int dest_id )
2 {

3 for ( auto e : m_graph.at(src_id) )
2 if ( e.first == dest_id )

25 return e.second;

2 assert(false);

» }
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3. Directed Graphs

Draw the conceptual graph and the adjacency list storage resulting from
this code sequence:

1 Graphlnt g;

2

3 int v0 = g.add_vertex();
4+ int vl = g.add_vertex();
5 int v2 = g.add_vertex();
¢ int v3 = g.add_vertex();
7 int v4 = g.add_vertex();
s int vb = g.add_vertex();
9 int v6 = g.add_vertex();
10

n g.add_edge( vO, vi, 1 );
12 g.add_edge( vO, v2, 1 );
13 g.add_edge( vO, v3, 1 );
1 g.add_edge( v1, v6, 1 );
15 g.add_edge( v2, v4, 1 );
16 g.add_edge( v3, v5, 1 );
17 g.add_edge( v4, v6, 1 );
18 g.add_edge( v5, v4, 1 );
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3. Directed Graphs

Time and space complexity analysis for different storage

e Leta graph G be a pair (V,E)

— Visaset of vertices, | V| is the number of vertices
- Eisasetof edges, |E| is the number of edges
— we often informally just use V and E to represent |V| and |E|

Adjacency Adjacency List: Inner data structure is ...

Matrix Vector BST HashTable

Space Usage
add_vertex
add_edge
get_neighbors
get_weight

Adjacency Matrix Adjacency List

(with inner vector)
sre dest  weight
012 3 4
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3. Directed Graphs

15

16

17

18

Can we use an alternative inner data structure to improve the
performance of getting the weight for a given edge?

— InnerDataStruct<k,V>is a map implemented with BST or hash table

int GraphInt::add_vertex() {
m_graph.push_back( InnerDataStruct<int,int>() );
return m_graph.size() - 1;

}

void GraphInt::add_edge( int src_id, int dest_id, int w ) {
m_graph.at(src_id) .add( dest_id, w ) );
}

Vector<int> GraphInt::get_neighbors( int id ) {
Vector<int> neighbors;
for ( auto n : m_graph.at(id) )
neighbors.push_back( n.first );
return neighbors;

}

int GraphInt::get_weight( int src_id, int dest_id ) {
return m_graph.at(src_id) .lookup(dest_id);

19 }
Adjacency List Adjacency List
(with inner BinarySearchTree) (with inner HashTree)

0 T > 0 ? >
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src ¢ src s

¢ <dest,weight> * <dest,weight>
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4. Finding a Path Between Two Vertices

4. Finding a Path Between Two Vertices

¢ Given
- graph G = (V,E)
— source vertex Vg
— destination vertex V;

¢ Find a path from Vs to V;

@ 0
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4. Finding a Path Between Two Vertices
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¢ We will explore three different algorithms:
— Depth-First Search: finds a path if it exists
— Breadth-First Search: finds a path if it exists

1 class GraphInt

> {

3 public:

4 ..

5 Vector<int> dfs
6 Vector<int> bfs

7}

( int src_id, int dest_id );
( int src_id, int dest_id );
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4. Finding a Path Between Two Vertices 4.1. Depth-First Search

4.1. Depth-First Search

1 def GraphInt::dfs( src_id, dest_id ):
set visited to be a set # vertices already visited
set worklist to be a stack # pending paths to search

2
3

4

5 worklist.push( [src_id] )

6 while worklist is not empty:

7 path = worklist.pop()

8 set v to be final vertex in path
9

10 if v == dest_id:

11 return path

12

13 if v not in visited:

14 visited.add( v )

15 for n in get_neighbors( v ):

16 worklist.push( path + n )
/((D\

visited:

®

worklist:

6

% visited:

o o e e worklist:
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4. Finding a Path Between Two Vertices 4.1. Depth-First Search
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Vector<int> GraphInt::dfs( int src_id, int dest_id )

{

Set<int> visited; // vertices already visited
Stack<Vector<int>> worklist; // pending paths to search

// Initialize worklist w/ path containing just source vertex
Vector<int> p; p.push_back(src_id); worklist.push( p );

// Keep working until worklist is empty
while ( worklist.size() != 0 ) {

// Pop path from _top_ of stack
auto path = worklist.pop();

// Check if final vertex in current path is destination
int v = path.at( path.size()-1 );
if ( v == dest_id ) return path;

// Check if final vertex has already been visited
if ( !visited.contains( v ) ) {

// Mark final vertex as visited
visited.add( v );

// Iterate through neighbors
auto neighbors = get_neighbors( v );
for ( int n : neighbors ) {

// Create temporary new path with neighbor at end
auto temp = path;
temp.push_back(n) ;

// Push this new path onto _top_ of stack
worklist.push( temp );
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4. Finding a Path Between Two Vertices 4.2. Breadth-First Search

4.2. Breadth-First Search

1 def GraphInt::bfs( src_id, dest_id ):
set visited to be a set # vertices already visited
set worklist to be a queue # pending paths to search

2
3
4
5 worklist.enq( [src_id] )

6 while worklist is not empty:

7 path = worklist.deq()

8 set v to be final vertex in path
9

10 if v == dest_id:
11 return path
12
13 if v not in visited:
14 visited.add( v )
15 for n in get_neighbors( v ):
16 worklist.enq( path + n )
/((D\
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4. Finding a Path Between Two Vertices 4.2. Breadth-First Search
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Vector<int> GraphInt::bfs( int src_id, int dest_id )

{

Set<int> visited; // vertices already visited
Queue<Vector<int>> worklist; // pending paths to search

// Initialize worklist w/ path containing just source vertex
Vector<int> p; p.push_back(src_id); worklist.enq( p );

// Keep working until worklist is empty
while ( worklist.size() != 0 ) {

// Dequeue path from _head_ of queue
auto path = worklist.deq();

// Check if final vertex in current path is destination
int v = path.at( path.size()-1 );
if ( v == dest_id ) return path;

// Check if final vertex has already been visited
if ( !visited.contains( v ) ) {

// Mark vertex as visited
visited.add( v );

// Iterate through neighbors
auto neighbors = get_neighbors( v );
for ( int n : neighbors ) {

// Create temporary new path with neighbor at end
auto temp = path;
temp.push_back(n) ;

// Enqueue this path on _tail_ of queue
worklist.enq( temp );
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6. Constructing a Minimum Spanning Tree

5. Other Common Search Algorithms

Dijkstra’s Shortest Path Algorithm
Greedy Search
A* Search

6. Constructing a Minimum Spanning Tree

Prim’s Algorithm
Kruskal’s Algorithm
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6. Constructing a Minimum Spanning Tree

Algorithms Data Structures
mul: iter, single step chain of nodes
sqrt: iter, recur array of elements

search: linear, binary list vector
4

sort: insertion, selection,

l’l’lerge, quiCk, hybrid, bL'leet Stack’ queue’ Set’ map
set intersection, set union
find path: DFS, BFS tree, table, graph

¢ Simple algorithms do not use a non-trivial data structure

¢ Simple data structures do not provide non-trivial operations

¢ Many algorithms operate on a simple data structure

* Many data structures provide operations which are implemented
using an algorithm that operates on a simple data structure

* Sometimes our programs are more algorithm centric, sometimes
they are more data-structure centric, but they almost always use
both algorithms and data structures

Algorithm + Data Structure = Program
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