ECE 2400 Computer Systems Programming
Topic 14: Generic Programming

http://www.csl.cornell.edu/courses/ece2400
School of Electrical and Computer Engineering
Cornell University

revision: 2021-11-18-20-54

Please do not ask for solutions. Students should compare their solutions to solutions from their
fellow students, discuss their solutions with the instructors during lab/office hours, and/or post
their solutions on Ed for discussion.

List of Problems
1 Short Answer 2
1.A Unique Smart Pointer Class 3

1.B Shared Smart Pointer Class i i 5

ECE 2400 Computer Systems Programming NetID:

Problem 1. Short Answer

Carefully plan your solution before starting to write your response. Please be brief and to the point;
if at all possible, limit your answers to the space provided.

ECE 2400 Computer Systems Programming NetID:

Part 1.A Unique Smart Pointer Class

Consider the C++ program on the following page which defines a new unique pointer class UniquePtr<T>.
A unique pointer is a kind of “smart pointer” which is a thin wrapper around a regular pointer. A
unique pointer provides a destructor that will automatically delete a dynamically allocated vari-
able. Ideally, a unique pointer would ensure that at all times exactly one unique pointer will ever
point to the dynamically allocated object (that is why it is unique!). A real unique pointer class
would provide additional member functions and overloaded operators to preserve this invariant
and to access the private regular pointer. Draw the state diagram that corresponds to the exe-
cution of this C++ program. You must clearly label all variables in your diagram (including any
implicit variables), explicitly show all constructors and destructors, and fully expand out the stack
frames for all function calls. Hint: There will be many arrows. Plan how to draw your arrows carefully
and ensure your diagram is neat and legible. Solutions with confusing arrows will be penalized.

ECE 2

400 Computer Systems Programming

NetID:

heap
template < typename T >
class UniquePtr
{
public:
UniquePtr() { m_ptr = nullptr; }
UniquePtr(T* ptr) { m_ptr = ptr; }
~“UniquePtr() { delete m_ptr; }

}

i

{

UniquePtr(const UniquePtr<T>& uptr)
{

m_ptr = uptr.m_ptr;
uptr.m_ptr = nullptr;

X

UniquePtr<T>&

operator=(const UniquePtr<T>& uptr)
{
if (this != &uptr) {
delete m_ptr;
m_ptr = uptr.m_ptr;
uptr.m_ptr = nullptr;
¥
return *this;

}

private:
T* m_ptr;

nt main(void)

int* ptr = new int;
UniquePtr<int> a(ptr);
UniquePtr<int> b(a);
return O;

stack

ECE 2400 Computer Systems Programming NetID:

Part 1.B Shared Smart Pointer Class

Consider the interface for a new shared pointer class SharedPtr<T> shown below on the left. A
shared pointer is a kind of “smart pointer” which is a thin wrapper around a regular pointer.
A shared pointer manages dynamic memory by deleting a dynamically allocated variable auto-
matically when appropriate. This specific shared pointer implements reference counting where the
variable and a reference count are stored on the heap. Every time a shared pointer is copied, we
increment the reference count since this means there is one more pointer that refers to the shared
variable. Every time we destruct a shared pointer, we decrement the reference counter since this
means there is one less pointer that refers to the shared variable. If the reference count is zero then
we are guaranteed that no other shared pointers point to this variable, and thus the shared pointer
is free to delete the variable from the heap. We have provided you the two member fields and
the implementation of the overloaded dereference (*) and arrow (->) operators which essentially
enable a smart pointer to act like a regular pointer.

template < typename T > int main(void)
class SharedPtr {
{ SharedPtr<int> a(new int);
public: SharedPtr<int> b(a);
*b = 42;
SharedPtr();
SharedPtr(T* ptr); SharedPtr<int> c(new int);
b =c;
~SharedPtr(); *b = 13;
SharedPtr(const SharedPtr<T>& sptr);
return 0;
SharedPtr<T>& }
operator=(const SharedPtr<T>& sptr);
T* operator->() { return m_ptr; 1}
T& operator*() { return *m_ptr; } am_ptr N Heap
a.m_count_p o* m
private: \\\\\A 1
T* m_ptr; b.m_ptr 'Y
int* m_count_p; b.m_count_p o\\\\\\‘ 3
}; ><Z
2
c.m_ptr o
.//////,

c.m_count_p

An example of a shared pointer in use is shown above on the right. Some visual pseudo-code is also
shown on the right that illustrates the state after line 31 and before the return 0 statement. The
shared pointer a points to a variable of type int on the heap along with a corresponding reference
count of one. The shared pointers b and ¢ both point to another variable of type int on the heap
along with a corresponding reference count of two (i.e., pointers b and c are sharing this variable
on the heap). When these three shared pointers go out of scope (i.e., when main returns), their
destructors will be called and (if implemented correctly) both variables will be deleted from the
heap with no double deletes and no memory leaks.

ECE 2400 Computer Systems Programming NetID:

The implementation for the default and non-default constructors are provided for you below. Im-
plement the destructor, copy constructor, and assignment operator for this shared pointer. Your
implementation should be correct, efficient, and effectively hide the implementation details from
the user. Hint: Manually verify that your implementation would result in the above visual pseudo-code
right before the return 0 statement.

template < typename T >

SharedPtr<T>: :SharedPtr() {
m_ptr = nullptr;
m_count_p = nullptr;

}

template < typename T >
SharedPtr<T>::SharedPtr(T* ptr) {
if (ptr == nullptr) {

m_ptr = nullptr;
m_count_p = nullptr;
X
else {
m_ptr = ptr;
m_count_p = new int;
*m_count_p = 1;
X

}

template < typename T >
SharedPtr<T>::~SharedPtr () {

ECE 2400 Computer Systems Programming NetID:

template < typename T >
SharedPtr<T>::SharedPtr(const SharedPtr<T>& sptr) {

template < typename T >
SharedPtr<T>& SharedPtr<T>::operator=(const SharedPtr<T>& sptr) {

