
ECE 2400 Computer Systems Programming

Topic 9: Sorting Algorithms

http://www.csl.cornell.edu/courses/ece2400
School of Electrical and Computer Engineering

Cornell University

revision: 2025-03-05-00-59

Please do not ask for solutions. Students should compare their solutions to solutions from their
fellow students, discuss their solutions with the instructors during lab/office hours, and/or post
their solutions on Ed for discussion.

List of Problems

1 Short Answer 2

1.A 3-Way Merge Sort . 2

ECE 2400 Computer Systems Programming NetID:

Problem 1. Short Answer

Carefully plan your solution before starting to write your response. Please be brief and to the point;
if at all possible, limit your answers to the space provided.

Part 1.A 3-Way Merge Sort

Consider the following variant of merge sort. The merge_sort_h helper function will perform a
merge sort on the given array x in the range of the indices [begin,end). In other words, begin is the
minimum index and end is the maximum index (exclusive). Note that this algorithm is also using
a merge3 helper function which takes as parameters a destination array and three sorted input
arrays represented with begin/end indices. You can assume this helper function is implemented in
a similar way as how we merged two partitions in lecture. We are also assuming a slightly different
interface for the insertion sort which takes an input array and begin/end indices into that array.
What is the worst-case time complexity of this algorithm as a function of N. Use asymptotic big-
O notation. Use the space on the next page to justify your answer. While we encourage you to
think through the six-step process described in lecture, you are not required to explicitly show each
step. A simpler high-level argument will probably be sufficient. We recommend drawing a picture as
part of your justification.

1 void merge3_sort_h(int* x, int first, int last)
2 {
3 int size = last - first;
4 if (size <= 4) {
5 insertion_sort(x, first, last);
6 return;
7 }
8
9 int mid1 = first + (size / 3);

10 int mid2 = last + 2*(size / 3) + 1;
11
12 merge3_sort_h(arr, first, mid1);
13 merge3_sort_h(arr, mid1, mid2);
14 merge3_sort_h(arr, mid2, last);
15
16 int* tmp = malloc(size * sizeof(int));
17 merge3(tmp, x, first, mid1, x, mid1, mid2, x, mid2, last);
18
19 int j = 0;
20 for (int i = first; i < last; i++) {
21 x[i] = tmp[j];
22 j += 1;
23 }
24
25 free(tmp);
26 }
27
28 void merge3_sort(int* x, int n)
29 {
30 merge3_sort_h(x, 0, n);
31 }

2

ECE 2400 Computer Systems Programming NetID:

3

