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1. Analyzing Simple Algorithms

1. Analyzing Simple Algorithms

2222222222 01 int mul( int x, int y )
2222222222 02 {
2222222222 03 int z = 0;
2222222222 04 for ( int i=0; i<y; i=i+1 ) {
2222222222 05 z = z + x;
2222222222 06 }
2222222222 07 return z;
2222222222 08 }
2222222222 09
2222222222 10 int main()
2222222222 11 {
2222222222 12 int a = mul(2,3);
2222222222 13 int b = mul(2,4);
2222222222 14 return 0;
2222222222 15 }

• What is the execution time of this
algorithm for specific values of y?

– Let T(y) be execution time for y

• What units to use for execution time?

– Number of seconds
– Number of machine instructions
– Number of X’s in our state diagram

y T(y)
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1. Analyzing Simple Algorithms

1 int mul( int x, int y )
2 {
3 int z = 0;
4 for ( int i = 0; i < y; i = i + 1 ) {
5 z = z + x;
6 }
7 return z;
8 }

• Can we derive a generalized equation for T(y) for mul algorithm?

– Units are the number of X’s in our state diagram

• Is the number of X’s in our state diagram is a good choice for the
units of execution time?

– Depends on code formatting
– Complex work in a single line (line 4)
– Arithmetic work on some lines (line 5)
– Hardly any work on some lines (line 6)

• We will use the number of critical operations for the units of
execution time

– Choice involves the art of computer systems programming
– Number of critical multiplication, division, or remainder operations
– Number of critical comparisons, swaps, node accesses, array accesses
– Number of critical loop iterations
– Number of critical function calls

• Can we derive a generalized equation for T(y) for mul algorithm?

– Units are the number of add (+) operations
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1. Analyzing Simple Algorithms

The following three implementations implement a function to
determine if the given number x is prime (assume x > 2)

1 int is_prime_v1( int x )
2 {
3 int i = 2;
4 int ans = 1;
5 while ( i < x ) {
6 if ( x % i == 0 )
7 ans = 0;
8 i = i + 1;
9 }

10 return ans;
11 }

1 int is_prime_v2( int x )
2 {
3 int y = x / 2;
4 int i = 2;
5 int ans = 1;
6 while ( i <= y ) {
7 if ( x % i == 0 )
8 ans = 0;
9 i = i + 1;

10 }
11 return ans;
12 }

1 int is_prime_v3( int x )
2 {
3 int i = 2;
4 int ans = 1;
5 while ( i * i <= x ) {
6 if ( x % i == 0 )
7 ans = 0;
8 i = i + 1;
9 }

10 return ans;
11 }

Fill in table then derive generalized equations for Tv1(x), Tv2(x), Tv3(x)
• The “itr” column is the number of iterations of the while loop
• T(x) is measured in mul/div/rem operations

v1 v2 v3

x itr Tv1(x) itr Tv2(x) itr Tv3(x)
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2. Analyzing Simple Data Structures

2. Analyzing Simple
Data Structures

2222 01 typedef struct _node_t
2222 02 {
2222 03 int value;
2222 04 struct _node_t* next_ptr;
2222 05 }
2222 06 node_t;
2222 07
2222 08 node_t* prepend( node_t* n_ptr, int v )
2222 09 {
2222 10 node_t* new_ptr =
2222 11 malloc( sizeof(node_t) );
2222 12
2222 13 new_ptr->value = v;
2222 14 new_ptr->next_ptr = n_ptr;
2222 15 return new_ptr;
2222 16 }
2222 17
2222 18 int main( void )
2222 19 {
2222 20 node_t* n_ptr = NULL;
2222 21 n_ptr = prepend( n_ptr, 3 );
2222 22 n_ptr = prepend( n_ptr, 4 );
2222 23 free( n_ptr->next_ptr );
2222 24 free( n_ptr );
2222 25 return 0;
2222 26 }

• What is the space usage of this data
structure for specific values of N
where N is the number of elements
prepended to chain of nodes?

– Let S(N) be space usage for N elements

• What units to use for space usage?

– Bytes on the heap or stack
– Variables on the heap
– Frames on the stack
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2. Analyzing Simple Data Structures

• Can we derive a generalized equation for S(N) for chain of nodes?

– Units are variables on the heap
– We care about the maximum usage not the total usage

Derive generalized equation for S(N) for array of elements

• Units are the variables on the heap

1 int main( void )
2 {
3 int N = 1000;
4

5 int* a = malloc( N*sizeof(int) );
6 for ( int i = 0; i < N; i++ )
7 a[i] = i;
8 free(a);
9

10 int* b = malloc( N*sizeof(int) );
11 for ( int i = 0; i < N; i++ )
12 b[i] = i;
13 free(b);
14

15 return 0;
16 }

Kinds of Heap Space Usage

• Heap space usage of the data structure itself as function of N

• Heap space usage for an algorithm as a function of N
– Should we include the heap space usage of an input data structure?
– This heap space usage is always the same regardless of the function!
– Auxiliary heap space usage focuses on the heap space usage that the

algorithm requires in addition to the heap space usage required by the
data structure itself
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3. Analyzing Algorithms and Data Structures 3.1. Linear Search

3. Analyzing Algorithms and Data Structures

• Assume we have a sorted input array of integers
• Consider algorithms to check if a given value is in the array
• The algorithm should return 1 if value is in array, otherwise return 0

int search( int* x, int n, int v )

• Let N be the size of the input array
• Let T be the execution time measured in num of element comparisons
• Let S be the stack space usage measured in number of stack frames
• Our goal is to derive equations for T and S as a function of N
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3. Analyzing Algorithms and Data Structures 3.1. Linear Search

3.1. Linear Search

2222 01 int lsearch( int* x, int n, int v )
2222 02 {
2222 03 for ( int i = 0; i < n; i++ ) {
2222 04 if ( x[i] == v )
2222 05 return 1;
2222 06 // else if ( x[i] > v )
2222 07 // return 0;
2222 08 }
2222 09 return 0;
2222 10 }
2222 11
2222 12 int main( void )
2222 13 {
2222 14 int a[] = { 0, 10, 20, 30,
2222 15 40, 50, 60, 70 };
2222 16 int b = lsearch( a, 8, 20 );
2222 17 return 0;
2222 18 }

Fill in table then derive generalized
equations for Tk(N) and Sk(N)

• Execution time in units of element
comparisons (i.e., == on line 4)

• Space usage in units of stack frames
• Let k be the array index of v in x

v k T(8) S(8)
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99

stack
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3. Analyzing Algorithms and Data Structures 3.2. Binary Search

3.2. Binary Search

222 01 int bsearch_h( int* x, int first,
222 02 int last, int v )
222 03 {
222 04 int size = last - first;
222 05 if ( size == 1 )
222 06 return ( x[first] == v );
222 07
222 08 int mid = (first + last)/2;
222 09 if ( v < x[mid] )
222 10 return bsearch_h( x, first, mid, v );
222 11 else
222 12 return bsearch_h( x, mid, last, v );
222 13 }
222 14
222 15 int bsearch( int* x, int n, int v )
222 16 {
222 17 return bsearch_h( x, 0, n, v );
222 18 }
222 19
222 20 int main( void )
222 21 {
222 22 int a[] = { 0, 10, 20, 30,
222 23 40, 50, 60, 70 };
222 24 int b = bsearch( a, 8, 20 );
222 25 return 0;
222 26 }

stack
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3. Analyzing Algorithms and Data Structures 3.2. Binary Search

Annotating call tree with execution time and stack space usage

v k T(8) T(16)

0

10

20

70

99

Topic 8: Complexity Analysis 11



3. Analyzing Algorithms and Data Structures 3.2. Binary Search

8

4

2

1 1

2

1 1

4

2

1 1

2

1 1

16

8

4

2

1 1

2

1 1

4

2

1 1

2

1 1

8

4

2

1 1

2

1 1

4

2

1 1

2

1 1

N = 8 = 23

r = 3
N = 16 = 24

r = 4

32

16

8

4

2

1 1

2

1 1

4

2

1 1

2

1 1

8

4

2

1 1

2

1 1

4

2

1 1

2

1 1

16

8

4

2

1 1

2

1 1

4

2

1 1

2

1 1

8

4

2

1 1

2

1 1

4

2

1 1

2

1 1

N = 32 = 25

r = 5

N

N
2

N
4

...

2

1 1

...

2

1 1

N
4

...

2

1 1

...

2

1 1

N
2

N
4

...

2

1 1

...

2

1 1

N
4

...

2

1 1

...

2

1 1

Topic 8: Complexity Analysis 12



3. Analyzing Algorithms and Data Structures 3.3. Comparing Linear vs. Binary Search

3.3. Comparing Linear vs. Binary Search

1 2 3 4 5 6 7 8

1
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Linear: Tw(N) = N
Binary: Tw(N) = log2(N) + 1

N Linear Binary
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Linear: Tw(N) = N
Binary: Tw(N) = 2 log2(N) + 2

int bsearch_h( int* x, int first,
int last, int v )

{
int size = last - first;
if ( size == 1 ) {

// what if we need extra
// element comparison here?
return ( x[first] == v );

}

// what if we need extra
// element comparison here?
int mid = (first + last)/2;
if ( v < x[mid] )

return bsearch_h( x, first, mid, v );
else

return bsearch_h( x, mid, last, v );
}
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4. Time and Space Complexity

4. Time and Space Complexity

• We have been using high-level units such as the number of critical
operations, stack frames, and heap variables

• We want to analyze algorithms and data-structures at an even higher
level to broadly characterize high-level trends as some input variable
(e.g., N) grows asymptotically large

• Big-O notation is a formal way to characterize high-level trends

f (N) is O(g(N)) ⇔ ∃N0, c. ∀N > N0. f (N) ≤ c · g(N)

• f (N) is O(g(N)) if there is some value N0 and some value c such
that for all N greater than N0, f (N) ≤ c · g(N)

– g(N) can be thought of as an “upper bounding function”
– f (N) can be T(N) or S(N) (i.e., the “function of interest”)

1 2 3 4 5 6 7 8
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T(N) = N + 2
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4. Time and Space Complexity

1 2 3 4 5 6 7 8
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T(N) = 2N + 1
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T(N) = 2 log2(N) + 2
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4. Time and Space Complexity
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4. Time and Space Complexity

• Big-O notation captures the fastest-growing term (high-level trend)
as N becomes asymptotically large

• With large enough c, g(N) can ignore ...

– ... constant factors in f (N)

– ... trailing terms in f (N)
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T(N) = N + 2
T(N) is O(N)
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T(N) = 2
√

N + 2
T(N) is O(
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T(N) = 2 log2(N) + 2
T(N) is O(log2(N))
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T(N) is O(N)
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4. Time and Space Complexity

• Technically all four functions are O(N2)

– Choose c = 1 and N0 is around 2

• Saying all four functions are O(N2) does not provide any insight

• We want to choose the function with the “tightest” bound which
will provide the most insight for our analysis
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4. Time and Space Complexity

Big-O Examples

f (N) is O(g(N))

3 is O(1)
2N is O(N)
2N + 3 is O(N)
4N2 is O(N2)
4N2 + 2N + 3 is O(N2)
4 · log2(N) is O(log(N))
N + 4 · log2(N) is O(N)

• Big-O notation captures the
fastest-growing term (high-level
trend) as N becomes
asymptotically large

• Constant factors do not matter
in big-O notation

• Trailing terms do not matter in
big-O notation

• Base of log does not matter in
big-O notation

Big-O Classes

Class N = 100 requires

O(1) Constant 1 step
O(log(N)) Logarithmic 2–7 steps
O(

√
N) Square Root 10 steps

O(Nc) where c < 1 Fractional Power
O(N) Linear 100 steps
O(N · log(N)) Log-Linear 664 steps
O(N2) Quadratic 10K steps
O(N3) Cubic 1M steps
O(Nc) where c > 1 Polynomial
O(2N) Exponential 1e30 steps
O(N!) Factorial 9e157 steps

• Exponential and factorial time algorithms are considered intractable

• With one nanosecond steps, exponential time requires many
centuries and factorial time requires the lifetime of the universe
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4. Time and Space Complexity

Revisiting linear vs. binary search

Linear Tw(N) = N is O(N) linear time
Binary Tw(N) = log2(N) + 1 is O(log(N)) logarithmic time

Linear Sw(N) = 1 is O(1) constant stack space
Binary Sw(N) = log2(N) + 2 is O(log(N)) logarithmic stack space

• Does this mean binary search is always faster?

• Does this mean linear search always requires less storage?

• For large N, but we don’t always know N0

– T(N) or S(N) can have very large constants
– T(N) or S(N) can have very large trailing terms

• This analysis is for worst case complexity

– results can look very different for best case complexity
– results can look very different for average complexity

• For real-world problem sizes and/or different input data
characteristics, sometimes an algorithm with worse time (space)
complexity can still be faster (smaller)

• If two algorithms or data structures have the same complexity, then
constants and trailing terms are what makes the difference!
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4. Time and Space Complexity 4.1. Six-Step Process for Complexity Analysis

4.1. Six-Step Process for Complexity Analysis

1. Choose units for execution time or space usage

– critical multiplication, division, remainder operations
– critical comparisons, swaps, node accesses, array accesses
– critical function calls
– critical loop iterations
– stack frames, heap variables

2. Choose input variable and key parameters

– Let N be a variable, we want to explore how time and space grow with N
– Let K be a parameter, we want to explore the interaction between N and K

(K is constant w.r.t. to N?, K is function of N?, optimal K?)
– Let TK(N) be execution time, N is input variable, K is key parameter
– Let SK(N) be space usage, N is input variable, K is key parameter

3. Choose kind of analysis

– worst, average, or best case input data value analysis
– must explain what is meant by worst, average, or best case input data!
– usually focus on worst or average case, occasionally best case
– worst/best case is never N = large number or N = 1
– we want worst/average/best case function of N, not value of N
– worst/average/best case can involve K (e.g., worst case is when K = N)
– amortized analysis is over a sequence of operations

4. Analyze for specific values of input variable and key parameters

– T8(10) = ...
– T32(99) = ...

5. Generalize for any value of input variable and key parameters

– TK(N) = ...

6. Characterize asymptotic behavior using big-O notation

– TK(N) = ... which is O(1)
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5. Comparing Lists and Vectors

5. Comparing Lists and Vectors

• The list and vector data structures ...
– have similar interfaces, but
– very different execution times, and
– very different space usage.

Analysis of time and space complexity of slist_int_push_front

1 void slist_int_push_front( slist_int_t* this, int v )
2 allocate new node
3 set new node’s value to v
4 set new node’s next ptr to head ptr
5 set head ptr to point to new node

What is the time complexity?

What is the auxiliary heap space complexity?

Analysis of time and space complexity of bvector_int_push_front

1 void bvector_int_push_front( bvector_int_t* this, int v )
2 for i in bvector’s size to 0
3 set bvector’s data[i] to data[i-1]
4 set bvector’s data[0] to v
5 set bvector’s size to size + 1

What is the time complexity?

What is the auxiliary heap space complexity?
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5. Comparing Lists and Vectors

Compare the time and space complexity of the algorithms

Time Complexity Space Complexity

Operation slist bvector slist bvector

construct

destruct

push_front

pop_front

push_back

pop_back

size

at

insert_idx

remove_idx

insert_ptr

remove_ptr

• What about comparing a doubly linked list or a resizable vector?
• What about the space complexity of the data structure itself?
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6. Art, Principle, and Practice

6. Art, Principle, and Practice

• The art of computer systems programming is ...

– designing new algorithms and/or data structures
– choosing the right units that provide most insight
– choosing the input variable and key parameters that provide most insight
– choosing the kind of analysis that provides the most insight

• The principle of computer systems programming is ...

– performing rigorous time and space complexity analysis
– analyzing, generalizing, characterizing
– considering modularity, hierarchy, encapsulation, extensibility

• The practice of computer systems programming is ...

– implementing and integrating algorithms and/or data structures
– performing real experiments to evaluate execution time and space usage
– considering the constant factors and trailing terms

Art

Principle Practice

Computer
Systems

Programming

time and space
complexity

critical operations
stack frames
heap variables

conceptual state
diagrams

machine instructions
machine memory

bytes on stack and heap

seconds and bytes on
real machine
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