
ECE 2400 Computer Systems Programming

Topic 8: Complexity Analysis

http://www.csl.cornell.edu/courses/ece2400
School of Electrical and Computer Engineering

Cornell University

revision: 2025-03-03-19-30

Please do not ask for solutions. Students should compare their solutions to solutions from their
fellow students, discuss their solutions with the instructors during lab/office hours, and/or post
their solutions on Ed for discussion.

List of Problems

1 Short Answer 2

2 K-ary and Hybrid Search 3

2.A K-ary Search Algorithm . 3

2.B Hybrid Search Algorithm . 4

2.C Comparing Search Algorithms . 5

Note that there are also problems related to complexity analysis in earlier topics!

ECE 2400 Computer Systems Programming NetID:

Problem 1. Short Answer

Carefully plan your solution before starting to write your response. Please be brief and to the point;
if at all possible, limit your answers to the space provided.

2

ECE 2400 Computer Systems Programming NetID:

Problem 2. K-ary and Hybrid Search

In lecture we learned about linear and binary search. In this problem, you will explore two more
advanced searching algorithms: k-ary search and hybrid search. You will then compare and con-
trast these algorithms with linear and binary search.

Part 2.A K-ary Search Algorithm

A binary search algorithm assumes the input array is sorted. The algorithm recursively divides
this array into two halves, compares the search value to the midpoint, and then decides whether
to recursively search in the lower or higher half of the array. We can generalize binary search
into a K-ary search in which we divide the array into K partitions and then compare the search
value to decide which partition to recursively search. A generalized K-ary search algorithm is a
little complicated, so in this part we will focus on implementing the 3-ary search algorithm. The
algorithm should divide the array into three partitions and then compare the search value to decide
which of these three partitions to recursively search.

Develop and implement a ternary (3-ary) search algorithm. Implement your algorithm in a
ternary_search function which takes as input an array x, the size of the array n, and a search
value v. The function should return 1 if the search value is found and 0 if not found. You should
use a recursive function and you are free to include a helper function if you wish. Your implemen-
tation cannot modify the input array. Your implementation should be correct and efficient in terms
of both execution time and space usage. While you are welcome to use pseudo-code to plan your
approach, your final solution must be written using valid C syntax.

int ternary_search(int* x, int n, int v) {

3

ECE 2400 Computer Systems Programming NetID:

Part 2.B Hybrid Search Algorithm

A hybrid search will switch from binary search to linear search once the partition is reasonably
small. We will use the key parameter M to indicate how small the partition needs to be in order to
switch to linear search.

Develop and implement a hybrid search algorithm. Implement your algorithm in a hybrid_search
function which has the same interface as ternary_search. Your hybrid search should use binary search,
not K-ary or 3-ary search for the recursive part of the algorithm! Your implementation cannot modify the
input array. Your implementation should be correct and efficient in terms of both execution time
and space usage. While you are welcome to use pseudo-code to plan your approach, your final
solution must be written using valid C syntax.

const int M = 4;

int hybrid_search(int* x, int n, int v) {

4

ECE 2400 Computer Systems Programming NetID:

Part 2.C Comparing Search Algorithms

In this problem, you will be qualitatively comparing various search algorithms. Begin by filling in
the following table. Your analysis for K-ary search should be generalized for any value of K. Your
analysis for hybrid search should be generalized for any value of M. Hint: For K-ary search carefully
consider what computation increases and decreases with K! Your analysis should be for the worst case.
Note that this does not mean the worst case values of K or M. This means the worst case array data
and/or search value which produce the worst case function of N.

Worst Case Worst Case
Execution Time (T(N)) Time Complexity (big-O)

Linear Search

Binary Search

Ternary Search

K-ary Search

Hybrid Search

Use these results along with deeper insights to perform a comparative analysis of these search
algorithms, with the ultimate goal of making a compelling argument for which algorithm will
perform better across a large number of usage scenarios. While you are free to use whatever
approach you like, we recommend you structure your response in several paragraphs. The first
paragraph might discuss the performance of linear and binary search using time complexity analy-
sis summarizing what we learned in lecture. Justify the entries in the table. The second paragraph
might start by discussing the performance of 3-ary search using time complexity analysis before
generalizing this analysis for an arbitrary value of K. Justify the entries in the table. Remember
that asymptotic big-O time complexity analysis is not the entire story; it is just the starting point for
understanding execution time. Consider how the execution time varies as a function of K. Think critically
about what might be an optimum value of K. The third paragraph might discuss the performance of the
hybrid search algorithm using time complexity analysis. Justify the entries in the table. Remember
that asymptotic big-O time complexity analysis is not the entire story; it is just the starting point for
understanding execution time. Consider how the execution time varies as a function of M. Think criti-
cally about what kind of overheads a hybrid search algorithm is trying to optimize. The fourth paragraph
might discuss other qualitative metrics such as generality, maintainability, and design complexity.
The final paragraph can conclude with a compelling argument for which search algorithm will
perform better in the general case, or if you cannot strongly argue for any algorithm explain why.
Your answer will be assessed on how well you argue your position.

5

