ECE 2400 Computer Systems Programming
Spring 2025

Topic 6: C Dynamic Allocation

School of Electrical and Computer Engineering
Cornell University

revision: 2025-02-14-10-20

1 Usingmalloc to Allocate Memory 2
2 Using free to Deallocate Memory 8
3 Mapping Conceptual Storage to Machine Memory 10

The zyBooks logo is used to indicate additional readings and coding labs in-
cluded in the course zyBook which will not be discussed in detail in lecture. Students are
responsible for all material covered in lecture and in the course zyBook.

Copyright © 2025 Anne Bracy. All rights reserved. This handout was prepared by Prof.
Anne Bracy at Cornell University for ECE 2400 / ENGRD 2140 Computer Systems Pro-
gramming (derived from previous handouts prepared and copyrighted by Prof. Christo-
pher Batten). Download and use of this handout is permitted for individual educational
non-commercial purposes only. Redistribution either in part or in whole via both commer-
cial or non-commercial means requires written permission.

1. Using malloc to Allocate Memory

1. Usingmalloc to Allocate Memory

* Let’s revisit an example we saw in a previous topic
* Assume we wish to refactor prepending a node to the front of a
chain of nodes into its own function

Draw a state diagram corresponding stack
to the execution of this program

typedef struct _node_t

{
int value;
struct _node_t* next_p;
}
node_t;

node_t* prepend(node_t* head_p,
int v)
{
node_t node;
node.value = v;
node.next_p = head_p;
return &node;

}

int main(void)

{
node_t* head_p = NULL;
head_p = prepend(head_p, 3);
head_p = prepend(head_p, 4);
return O;

Topic 6: C Dynamic Allocation

1. Using malloc to Allocate Memory

* Let’s consider a similar idea for arrays
* Assume we wish to refactor allocating an array and then initializing
all elements to zero into its own function

1 int* init_array(int n)

2 {

3 int x[n];

4

5 for (int i=0; i<n; i++)
6 x[i] = 0;

7

8 return X;

s }

10

n int main(void)

12 {

1 int* a = init_array(3);
14 return O;

15}

List two errors with this function:

Topic 6: C Dynamic Allocation

1. Using malloc to Allocate Memory

* Dynamic memory allocation uses the heap (new region of memory)

* Because dynamically allocated variables are not on a function’s stack
frame, they are not deallocated when a function returns

¢ We can dynamically allocate variables on the heap using malloc

* malloc takes the number of bytes to allocate as a parameter and
returns a pointer to the new variable allocated on the heap

¢ Since the amount of memory allocated is dynamic, we can create
arrays where the number of elements is not known until runtime

® malloc is defined in stdlib.h stack

int* a_ptr =
malloc(sizeof(int));

*a_ptr = 42;

int* b_ptr =
malloc(4 * sizeof(int));

b_ptr[0] = 10;
b_ptr[1] = 11;
b_ptr[2] = 12;
h
b_ptr[3] = 13; eap

Topic 6: C Dynamic Allocation 4

1. Using malloc to Allocate Memory

Draw a state diagram corresponding to the execution of this program

typedef struct stack
{
double real;
double imag;

}

complex_t;

int main(void)
{
complex_t* c_ptr0 =
malloc(sizeof (complex_t));

B

1.5
3.5;

c_ptrO->real
c_ptr0->imag

complex_t* c_ptrl =

malloc(sizeof (complex_t));

heap
c_ptril->real = c_ptrO->real;
c_ptrl->imag = c_ptrO->imag;

return O;

Topic 6: C Dynamic Allocation 5

1. Using malloc to Allocate Memory

¢ Assume we wish to refactor
prepending a node to the front of a
chain of nodes into its own function

typedef struct _node_t

{
int value;
struct _node_t* next_p;
}
node_t;

node_t* prepend(node_t* head_p,
int v)
{
node_t* new_node_p =
malloc(sizeof(node_t));

new_node_p->value = v;
new_node_p->next_p = head_p;
return new_node_p;

}

int main(void)

{
node_t* head_p = NULL;
head_p = prepend(head_p, 3);
head_p = prepend(head_p, 4);
return O;

}

zyBoocks The course zyBook includes a coding
lab to implement a function to append a node
to the back of a chain of nodes.

M1~ stacky

el 3)
New

L]

| [@Mactoc ¥|

Topic 6: C Dynamic Allocation

1. Using malloc to Allocate Memory

¢ Assume we wish to refactor allocating an array and then initializing
all elements to zero into its own function

1 int* init_array(int n)

2 {

3 int* x = malloc(n * sizeof(int));
4

5 for (int i=0; i<n; i++)
6 x[i] = 0;

7

8 return x;

s

10

n int main(void)

12 {

13 int* a = init_array(3);
14 return 0;

15 }

How does this address the two errors we identified earlier?

zyBocks The course zyBook includes a coding lab to implement a function to
duplicate a given array on the heap and return a pointer to this newly
allocated array.

Topic 6: C Dynamic Allocation 7

2. Using free to Deallocate Memory

2. Using free to Deallocate Memory

Draw a state diagram corresponding to the execution of this program

typedef struct stack
{
double real;
double imag;

}

complex_t;

int main(void)
{
complex_t* c_ptr =
malloc(sizeof (complex_t));

c_ptr->real = 1.5;
5

|

1
c_ptr->imag = 3.

B

heap
c_ptr =

malloc(sizeof (complex_t));

c_ptr->real = 2.5;
c_ptr->imag = 4.5

>

return O;

}

Topic 6: C Dynamic Allocation

2. Using free to Deallocate Memory

¢ Every call to malloc must have corresponding call to free
* free takes a pointer to a dynamically allocated variable

1

2

3

18

19

20

21

22

23

24

25

26

27

typedef struct

double real;
double imag;

complex_t;

int main(void)

complex_t* c_ptr =
malloc(sizeof (complex_t));

c_ptr->real = 1.5;
c_ptr->imag = 3.5

free(c_ptr);

c_ptr =
malloc(sizeof (complex_t));

>

c_ptr->real = 2.5;
c_ptr->imag = 4.5

free(c_ptr);

return 0;

Topic 6: C Dynamic Allocation

3. Mapping Conceptual Storage to Machine Memory

3. Mapping Conceptual Storage to Machine Memory

¢ Recall that our current use of state diagrams is conceptual

* Real machine uses memory to store variables

* Real machine does not use “arrows”, uses memory addresses
* Heap is stored above code and grows up

Program Conceptual
A g U E— R Storage
Execution t — \‘ ~~~~~ / e ~
Arrow —F— | | State y \
e J a[do] |\
\ N — '/ ptr \\
Statement - o T o avs |
! \ ey
Statemént \)‘ y[20] ||V
Syritax Statement W —
] Semantics ,{ ,"—“1\\
f e)
| , Pi%
\ 124 5 /‘*——’
\ . Stack ’
\\ llt/l/lzfr}:é?e (local Var1ables)
\ Yy
\
\
N v
\ ? /
\ /
\ %
N ¥ YHea
N (dynamically allocated
N variables)
) U
Code
0
10

Topic 6: C Dynamic Allocation

3. Mapping Conceptual Storage to Machine Memory

int a = 3;
int* a_ptr = &a;

int* b_ptr = malloc(sizeof(int));

*b_ptr = 42;

int* ¢ = malloc(4 * sizeof(int));

cl[0] = 10;
c[1] = 11
cl2] = 12;

124
120
116
112

48
44
40
36
32

Memory
(4B word addr)

int* b_ptr

int* a_ptr = &a;

int a = 3;

Topic 6: C Dynamic Allocation

11

3. Mapping Conceptual Storage to Machine Memory

Machine memory in real systems

* Machine memory size ranges from KBs (embedded) to TBs (server)

* Lowest address range reserved to detect NULL pointer dereference

e Static data region is used for global variables

* Machine memory as shown is really the virtual memory space

* Different programs have their own virtual memory spaces mapped
to a single large physical memory space

Program Conceptual
p N T Storage
Execution_L/’ —— \\ ’/’m;i;\
Arrow "F——F—1 | State ')
== g a[do] |\
Al ==/ [\
Statement - <=7 || @ ave |
II ‘\ x| 10 /’
Statemeént \% — ,
Syrl{tax Statement e =]
', Semantics Pl /"—_‘7‘\
l N)
\ OXFFFFFFFF M , T
. Stack
‘\ Machine /
\ Memory /
\ /
\ * f 4
. /
. %
\ = .
\
" Heap
N
N 9
\\\ Static Data
Code
0x00000000

Topic 6: C Dynamic Allocation 12

