
ECE 2400 Computer Systems Programming
Fall 2021

Topic 5: C Arrays

School of Electrical and Computer Engineering
Cornell University

revision: 2021-08-28-13-32

1 Array Basics 3

2 Mapping Conceptual Storage to Machine Memory 6

3 Iterating Over Arrays 8

4 Arrays as Function Parameters 10

5 Strings 11

The zyBooks logo is used to indicate additional material included in the course
zyBook which will not be discussed in detail in lecture. Students are responsible for all
material covered in lecture and in the course zyBook.

Copyright © 2021 Christopher Batten. All rights reserved. This handout was prepared
by Prof. Christopher Batten at Cornell University for ECE 2400 / ENGRD 2140 Computer
Systems Programming. Download and use of this handout is permitted for individual
educational non-commercial purposes only. Redistribution either in part or in whole via
both commercial or non-commercial means requires written permission.

1

• In C, we would like to be able to store a sequence of values all of the
same type and then perform operations on this sequence

• We already saw how to implement a sequence of values using a
chain of nodes; each node is a struct with a value and a next pointer

• Arrays are are alternative approach where the sequence of values is
directly mapped into a linear sequence of variables

stack stack

Topic 5: C Arrays 2

1. Array Basics

1. Array Basics

• Arrays require introducing new types and new operators
• Every type T has a corresponding array type
• T name[size] declares an array of size elements each of type T

1 int a[4]; // array of four ints
2 char b[4]; // array of four chars
3 float c[4]; // array of four floats

• size should be a constant expression (e.g., literal)
• Technically a const variable is not a constant expression
• Can initialize an array with {} initialization syntax

1 int a[] = { 10, 11, 12, 13 };

• Cannot assign to an array

1 int a[] = { 10, 11, 12, 13 }; // array of four ints
2 int b[4]; // array of four ints
3 b = a; // illegal!

Topic 5: C Arrays 3

1. Array Basics

Relationship between arrays and pointers

• Assume we declare an array int a[4]
• Type of the expression a is an “array of four ints”
• Expression a can act like a pointer to first element in the array
• Can use pointer arithmetic to access elements in an array
• The following expressions evaluate to pointers to each element

– a pointer to element 0
– a+1 pointer to element 1
– a+2 pointer to element 2
– a+3 pointer to element 3

Example declaring, initializing, accessing an array

222 01 int a[] = { 10, 11, 12, 13 };
222 02

222 03 int* a_ptr0 = a;
222 04 int* a_ptr1 = a+1;
222 05 int b = *a_ptr0 + *a_ptr1;
222 06

222 07 int c = *(a+2) + *(a+3);
222 08

222 09 *a = 20;
222 10 *(a+1) = 21;
222 11 *(a+2) = 22;
222 12 *(a+3) = 23;

stack

Topic 5: C Arrays 4

1. Array Basics

Subscript syntactic sugar

• The subscript operator (a[i]) is syntactic sugar for *(a+i)
• A pointer can act like an array
• Can use subscript operator to access elements via pointer

Example declaring, initializing, accessing an array

222 01 int a[] = { 10, 11, 12, 13 };
222 02

222 03 int b = a[0] + a[1];
222 04 int c = a[2] + a[3];
222 05

222 06 a[0] = 20;
222 07 a[1] = 21;
222 08 a[2] = 22;
222 09 a[3] = 23;
222 10

222 11 int* a_ptr0 = &(a[0]);
222 12 int* a_ptr1 = &(a[1]);
222 13 int d = a_ptr0[1] + a_ptr1[1];
222 14

222 15 int* a_ptr4 = &(a[4]);
222 16 int e = (a_ptr4 == &(a[4]));
222 17

222 18 int f = *a_ptr4;
222 19 int* a_ptr5 = &(a[5]);

stack

Topic 5: C Arrays 5

2. Mapping Conceptual Storage to Machine Memory

2. Mapping Conceptual Storage to Machine Memory

• Recall that our current use of state diagrams is conceptual
• Real machine uses memory to store variables
• Real machine does not use “arrows”, uses memory addresses
• Arrays are stored with index 0 at the lowest address

Execution
Arrow

Statement
Syntax

State

Program

Statement

Statement
Semantics

main

a[0]
a[1]

Conceptual
Storage

10

a[2]
11

124

0

Stack
(local variables)

Code

a

a[3]
12
13

13
12
11
10

Machine
Memory

Topic 5: C Arrays 6

2. Mapping Conceptual Storage to Machine Memory

Draw both a conceptual storage and machine memory
state diagram corresponding to the execution of this program

222 01 int a[] = { 10, 11 };
222 02 int b[] = { 20, 21 };
222 03
222 04 int* a_ptr = a;
222 05 int* b_ptr = b;
222 06
222 07 a_ptr = a_ptr + 1;
222 08
222 09 int c = *a_ptr;
222 10 int d = *b_ptr;
222 11 int e = b[1];

stack

Memory
(4B word addr)

0
4
8

...

88
92
96

100
104
108
112
116
120
124

Topic 5: C Arrays 7

3. Iterating Over Arrays

3. Iterating Over Arrays

• We primarily work with arrays by iterating over their elements
• Example of calculating average of an array of ints

22222 01 int a[] = { 10, 20, 30, 40 };
22222 02 int sum = 0;
22222 03 for (int i = 0; i < 4; i++)
22222 04 sum += a[i];
22222 05 int avg = sum / 4;

stack

• Similar code except using pointer arithmetic

1 int a[] = { 10, 20, 30, 40 };
2 int sum = 0;
3 for (int i = 0; i < 4; i++)
4 sum += *(a+i);
5 int avg = sum / 4;

1 int a[] = { 10, 20, 30, 40 };
2 int* curr = &(a[0]);
3 int* end = &(a[4]);
4

5 int sum = 0;
6 while (curr != end) {
7 sum += *curr;
8 curr++;
9 }

10 int avg = sum / 4;

Topic 5: C Arrays 8

3. Iterating Over Arrays

Draw a state diagram corresponding to the execution of this program

22222 01 int a[] = { 0, 13, 0, 15 };
22222 02 int b[4];
22222 03

22222 04 int j = 0;
22222 05 for (int i=0; i<4; i++) {
22222 06 if (a[i] != 0) {
22222 07 b[j] = a[i];
22222 08 j++;
22222 09 }
22222 10 }

Should we use int or int?

• size_t is a typedef for a type
suitable for subscripting

• size_t is defined in stddef.h

• Originally, we advocated preferring
size_t over int since size_t cannot
be negative

• However, over the past several years
we have found it causes more bugs
than it prevents

• Growing consensus in the C++
community that usage of size_t
(except in very specific situations)
was a mistake

stack

Topic 5: C Arrays 9

4. Arrays as Function Parameters

4. Arrays as Function Parameters

• Arrays are always passed by pointer
• Must pass the size along with the actual array

222222 01 int avg(int* x, int n)
222222 02 {
222222 03 int sum = 0;
222222 04 for (int i=0; i<n; i++)
222222 05 sum += x[i];
222222 06 return sum / n;
222222 07 }
222222 08

222222 09 int main(void)
222222 10 {
222222 11 int a[] = { 10, 20, 30, 40 };
222222 12 int b = avg(a, 4);
222222 13 return 0;
222222 14 }

• Arrays are always passed by pointer
• ... even with the following syntax

1 int avg(int x[], int n)
2 {
3 int sum = 0;
4 for (int i=0; i<n; i++)
5 sum += x[i];
6 return sum / n;
7 }

• Prefer using int* x for parameters
• It makes it obvious arrays are always passed

by pointer

stack

Topic 5: C Arrays 10

5. Strings

5. Strings

• Strings are just arrays of chars
• The length of a string is indicated in a special way
• The null terminator character (\0) indicates the end of string
• New syntax using double quotes for string literals ("")

222 01 char a[] = { 'e', 'c', 'e', '\0' };
222 02 char b[] = "2400";
222 03 char c[8];
222 04 c[0] = 'f';
222 05 c[1] = 'o';
222 06 c[2] = 'o';
222 07 c[3] = '\0';

• C standard library provides many
string manipulation functions

• These functions are declared in the
string.h header

– strlen : calculate length of a string
– strcmp : compare two strings
– strcpy : copy one string to another string
– atoi : convert a string into an integer

stack

Topic 5: C Arrays 11

5. Strings

Draw a state diagram corresponding to the execution of this program

222222 01 int strlen(char* str)
222222 02 {
222222 03 int i = 0;
222222 04 while (str[i] != '\0')
222222 05 i++;
222222 06 return i;
222222 07 }
222222 08

222222 09 int main(void)
222222 10 {
222222 11 char a[] = "ece2400";
222222 12 int b = strlen(a);
222222 13 return 0;
222222 14 }

stack

Topic 5: C Arrays 12

