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• In C, we would like to be able to store a sequence of values all of the
same type and then perform operations on this sequence

• We already saw how to implement a sequence of values using a
chain of nodes; each node is a struct with a value and a next pointer

• Arrays are are alternative approach where the sequence of values is
directly mapped into a linear sequence of variables

stack stack
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1. Array Basics

1. Array Basics

• Arrays require introducing new types and new operators
• Every type T has a corresponding array type
• T name[size] declares an array of size elements each of type T

1 int a[4]; // array of four ints
2 char b[4]; // array of four chars
3 float c[4]; // array of four floats

• size should be a constant expression (e.g., literal)
• Technically a const variable is not a constant expression
• Can initialize an array with {} initialization syntax

1 int a[] = { 10, 11, 12, 13 };

• Cannot assign to an array

1 int a[] = { 10, 11, 12, 13 }; // array of four ints
2 int b[4]; // array of four ints
3 b = a; // illegal!

Topic 5: C Arrays 3



1. Array Basics

Relationship between arrays and pointers

• Assume we declare an array int a[4]
• Type of the expression a is an “array of four ints”
• Expression a can act like a pointer to first element in the array
• Can use pointer arithmetic to access elements in an array
• The following expressions evaluate to pointers to each element

– a pointer to element 0
– a+1 pointer to element 1
– a+2 pointer to element 2
– a+3 pointer to element 3

Example declaring, initializing, accessing an array

222 01 int a[] = { 10, 11, 12, 13 };
222 02

222 03 int* a_ptr0 = a;
222 04 int* a_ptr1 = a+1;
222 05 int b = *a_ptr0 + *a_ptr1;
222 06

222 07 int c = *(a+2) + *(a+3);
222 08

222 09 *a = 20;
222 10 *(a+1) = 21;
222 11 *(a+2) = 22;
222 12 *(a+3) = 23;

stack
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1. Array Basics

Subscript syntactic sugar

• The subscript operator (a[i]) is syntactic sugar for *(a+i)
• A pointer can act like an array
• Can use subscript operator to access elements via pointer

Example declaring, initializing, accessing an array

222 01 int a[] = { 10, 11, 12, 13 };
222 02

222 03 int b = a[0] + a[1];
222 04 int c = a[2] + a[3];
222 05

222 06 a[0] = 20;
222 07 a[1] = 21;
222 08 a[2] = 22;
222 09 a[3] = 23;
222 10

222 11 int* a_ptr0 = &(a[0]);
222 12 int* a_ptr1 = &(a[1]);
222 13 int d = a_ptr0[1] + a_ptr1[1];
222 14

222 15 int* a_ptr4 = &(a[4]);
222 16 int e = ( a_ptr4 == &(a[4]) );
222 17

222 18 int f = *a_ptr4;
222 19 int* a_ptr5 = &(a[5]);

stack
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2. Mapping Conceptual Storage to Machine Memory

2. Mapping Conceptual Storage to Machine Memory

• Recall that our current use of state diagrams is conceptual
• Real machine uses memory to store variables
• Real machine does not use “arrows”, uses memory addresses
• Arrays are stored with index 0 at the lowest address
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2. Mapping Conceptual Storage to Machine Memory

Draw both a conceptual storage and machine memory
state diagram corresponding to the execution of this program

222 01 int a[] = { 10, 11 };
222 02 int b[] = { 20, 21 };
222 03
222 04 int* a_ptr = a;
222 05 int* b_ptr = b;
222 06
222 07 a_ptr = a_ptr + 1;
222 08
222 09 int c = *a_ptr;
222 10 int d = *b_ptr;
222 11 int e = b[1];

stack
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3. Iterating Over Arrays

3. Iterating Over Arrays

• We primarily work with arrays by iterating over their elements
• Example of calculating average of an array of ints

22222 01 int a[] = { 10, 20, 30, 40 };
22222 02 int sum = 0;
22222 03 for ( int i = 0; i < 4; i++ )
22222 04 sum += a[i];
22222 05 int avg = sum / 4;

stack

• Similar code except using pointer arithmetic

1 int a[] = { 10, 20, 30, 40 };
2 int sum = 0;
3 for ( int i = 0; i < 4; i++ )
4 sum += *(a+i);
5 int avg = sum / 4;

1 int a[] = { 10, 20, 30, 40 };
2 int* curr = &(a[0]);
3 int* end = &(a[4]);
4

5 int sum = 0;
6 while ( curr != end ) {
7 sum += *curr;
8 curr++;
9 }

10 int avg = sum / 4;
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3. Iterating Over Arrays

Draw a state diagram corresponding to the execution of this program

22222 01 int a[] = { 0, 13, 0, 15 };
22222 02 int b[4];
22222 03

22222 04 int j = 0;
22222 05 for ( int i=0; i<4; i++ ) {
22222 06 if ( a[i] != 0 ) {
22222 07 b[j] = a[i];
22222 08 j++;
22222 09 }
22222 10 }

Should we use int or int?

• size_t is a typedef for a type
suitable for subscripting

• size_t is defined in stddef.h

• Originally, we advocated preferring
size_t over int since size_t cannot
be negative

• However, over the past several years
we have found it causes more bugs
than it prevents

• Growing consensus in the C++
community that usage of size_t
(except in very specific situations)
was a mistake

stack
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4. Arrays as Function Parameters

4. Arrays as Function Parameters

• Arrays are always passed by pointer
• Must pass the size along with the actual array

222222 01 int avg( int* x, int n )
222222 02 {
222222 03 int sum = 0;
222222 04 for ( int i=0; i<n; i++ )
222222 05 sum += x[i];
222222 06 return sum / n;
222222 07 }
222222 08

222222 09 int main( void )
222222 10 {
222222 11 int a[] = { 10, 20, 30, 40 };
222222 12 int b = avg( a, 4 );
222222 13 return 0;
222222 14 }

• Arrays are always passed by pointer
• ... even with the following syntax

1 int avg( int x[], int n )
2 {
3 int sum = 0;
4 for ( int i=0; i<n; i++ )
5 sum += x[i];
6 return sum / n;
7 }

• Prefer using int* x for parameters
• It makes it obvious arrays are always passed

by pointer

stack
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5. Strings

5. Strings

• Strings are just arrays of chars
• The length of a string is indicated in a special way
• The null terminator character (\0) indicates the end of string
• New syntax using double quotes for string literals ("")

222 01 char a[] = { 'e', 'c', 'e', '\0' };
222 02 char b[] = "2400";
222 03 char c[8];
222 04 c[0] = 'f';
222 05 c[1] = 'o';
222 06 c[2] = 'o';
222 07 c[3] = '\0';

• C standard library provides many
string manipulation functions

• These functions are declared in the
string.h header

– strlen : calculate length of a string
– strcmp : compare two strings
– strcpy : copy one string to another string
– atoi : convert a string into an integer

stack

Topic 5: C Arrays 11



5. Strings

Draw a state diagram corresponding to the execution of this program

222222 01 int strlen( char* str )
222222 02 {
222222 03 int i = 0;
222222 04 while ( str[i] != '\0' )
222222 05 i++;
222222 06 return i;
222222 07 }
222222 08

222222 09 int main( void )
222222 10 {
222222 11 char a[] = "ece2400";
222222 12 int b = strlen( a );
222222 13 return 0;
222222 14 }

stack
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