ECE 2400 Computer Systems Programming
Spring 2025

Topic 5: C Arrays

School of Electrical and Computer Engineering
Cornell University

revision: 2025-02-12-09-46

1 Array Basics 3
2 Iterating Over Arrays 6
3 Arrays as Function Parameters 7
4 Strings 8
5 Mapping Conceptual Storage to Machine Memory 10

The zyBooks logo is used to indicate additional readings and coding labs in-
cluded in the course zyBook which will not be discussed in detail in lecture. Students are
responsible for all material covered in lecture and in the course zyBook.

Copyright © 2025 Anne Bracy. All rights reserved. This handout was prepared by Prof.
Anne Bracy at Cornell University for ECE 2400 / ENGRD 2140 Computer Systems Pro-
gramming (derived from previous handouts prepared and copyrighted by Prof. Christo-
pher Batten). Download and use of this handout is permitted for individual educational
non-commercial purposes only. Redistribution either in part or in whole via both commer-
cial or non-commercial means requires written permission.

* In C, we would like to be able to store a sequence of values all of the
same type and then perform operations on this sequence

* We already saw how to implement a sequence of values using a
chain of nodes; each node is a struct with a value and a next pointer

* Arrays are are alternative approach where the sequence of values is
directly mapped into a linear sequence of variables

stack stack

Topic 5: C Arrays 2

1. Array Basics

1. Array Basics

* Arrays require introducing new types and new operators
¢ Every type T has a corresponding array type
* T name[size] declares an array of size elements each of type T

1oint al4]; // array of four ints
> char bl[4]; // array of four chars
s float c[4]; // array of four floats

* size should be a constant expression (e.g., literal)
¢ Technically a const variable is not a constant expression
¢ Can initialize an array with {} initialization syntax

1 int all = { 10, 11, 12, 13 };
¢ Cannot assign to an array

v int all = { 10, 11, 12, 13 }; // array of four ints
» int b[4]; // array of four ints
5 b = a; // illegal!

Topic 5: C Arrays

1. Array Basics

Relationship between arrays and pointers

¢ Assume we declare an array int a[4]

* Type of the expression a is an “array of four ints”

¢ Expression a can act like a pointer to first element in the array
¢ Can use pointer arithmetic to access elements in an array

¢ The following expressions evaluate to pointers to each element

- a pointer to element 0
- a+1 pointer to element 1
— a+2 pointer to element 2
— a+3 pointer to element 3

Example declaring, initializing, accessing an array

int al[]l = { 10, 11, 12, 13 };
int* a_ptr0 = a;
int* a_ptrl = a+1;

int b = *a_ptr0O + *a_ptril;

int ¢ = *x(a+2) + *(a+3);

*a = 20;
*(a+1) = 21;
*(a+2) = 22;
*(a+3) = 23;

stack

Topic 5: C Arrays

1. Array Basics

Subscript syntactic sugar

¢ The subscript operator (a[i]) is syntactic sugar for * (a+i)

* A pointer can act like an array

¢ Can use subscript operator to access elements via pointer

Example declaring, initializing, accessing an array

int al = { 10, 11, 12, 13 };

int b = al0] + a[1];

int ¢ = al[2] + al3];

al0] = 20;

a[1] = 21;

al2] = 22;

a[3] = 23;

int* a_ptr0 = &(al0]);

int* a_ptrl = &(al1]);

int d = a_ptrO[1] + a_ptri[1];

int e = al[4];

stack

Topic 5: C Arrays

2. Iterating Over Arrays

2. Iterating Over Arrays

¢ We primarily work with arrays by iterating over their elements
¢ Example of calculating average of an array of ints

int a[] = { 10, 20, 30, 40 }; stack

int sum = 0;

for (int i = 0; 1 < 4; i++)
sum += ali];

int avg = sum / 4;

¢ Similar code except using pointer arithmetic

int all = { 10, 20, 30, 40 }; : int all { 10, 20, 30, 40 };

int sum = 0; 2 int* curr = &(al0]);
for (int i = 0; 1 < 4; i++) s int* end = &(al4l]);
sum += *(a+i); 4
int avg = sum / 4; 5 int sum = 0;
¢ while (curr !'= end) {
7 sum += *curr;
8 curr++;
s }

0 int avg = sum / 4;

Topic 5: C Arrays 6

3. Arrays as Function Parameters

3. Arrays as Function Parameters

¢ Arrays are always passed by pointer
* Must pass the size along with the actual array

int avg(int x[], int n)
{
int sum = 0;
for (int i=0; i<n; i++)
sum += x[i];
return sum / n;

}

int main(void)

{
int a[] = { 10, 20, 30, 40 };
int b = avg(a, 4);
return 0;

}

* Arrays are always passed by pointer
e ... so prefer the following syntax

1 int avg(int* x, int n)

> {

3 int sum = 0;

4 for (int i=0; i<n; i++)
5 sum += x[i];

6 return sum / n;

7}

stack

zyBoocks The course zyBook includes coding labs to implement a function to

find the maximum value in an array and to implement a count_if

function that uses a function pointer as a parameter to decide what

elements to count in an array.

Topic 5: C Arrays

4. Strings

4. Strings

e Strings are just arrays of chars
¢ The length of a string is indicated in a special way
* The null terminator character (\0) indicates the end of string
* New syntax using double quotes for string literals ("")

char a[l = { 'e', 'c', 'e', '\O' };

char b[] = "2400";

char c[8]; a” Y stack
C[O] = 'f'; “on \.e(
cl[1] = 'o'; ST
cl2] = 'o'; | dtg —

cl3] = "\0'; *~ E
a[s] \o'
¢ Cstandard library provides many Al 4

string manipulation functions b LOJ A
b [lJ Ty

¢ These functions are declared in the s —
string.h header b [-7'] o
W03 = Al

- strlen : calculate length of a string

— stremp : compare two strings ok [‘43 “\o'
— strcpy : copy one string to another string | = ¢ TV
— atoi :convert a string into an integer ¢ Qo) \.([!
cCa o
el o'
s [o
el }
efs]
etal |

Topic 5: C Arrays

4. Strings

Draw a state diagram corresponding to the execution of this program

int strlen(char* str) stack
{
int i = 0y
while (str[i] !'= '\0')
it++;
return i;
}

int main(void)

{
char a[] = "ece2400";
int b = strlen(a);
return 0O;

}

zyBoocks The course zyBook includes a coding lab to implement a function to
copy a string from a source array to a destination array.

Topic 5: C Arrays

5. Mapping Conceptual Storage to Machine Memory

5. Mapping Conceptual Storage to Machine Memory
¢ Recall that our current use of state diagrams is conceptual
* Real machine uses memory to store variables
¢ Real machine does not use “arrows”, uses memory addresses
¢ Arrays are stored with index 0 at the lowest address
ljlpgr_ag} Conceptual
K N [T Storage
Execution __/jl———11" " [7 main .
Arrow |"F———1 State f K
Al ==/ i \
""" \\ I V.4 (\ ‘
Statement ~—[=7 : bo] [107] | |
/ S | bl [T
.\
Statemeént \ N E% g ,
A /
Syrltax Statement g S —
" Semantics e
| //
| il
\ 1243 H
\ . 13
\ Machine R Stack
\\ Memory 1 (local variables)
\ 10
\
\ v
\
\
\
\
\
N
N
N
N
) U
Code
0

Topic 5: C Arrays

10

5. Mapping Conceptual Storage to Machine Memory

Draw both a conceptual storage and machine memory
state diagram corresponding to the execution of this program

int a = 42;

int b[] = { 10, 11 };
int c[1 = { 20, 21 };

int* b_ptr = b;
int* c_ptr = c;

b_ptr = b_ptr + 1; Memory
(4B word addr)
int d = *b_ptr;
int e = c_ptr[1]; 124
120
e e stack 116
E
b~ 108
6ed [1o] 104
o [T 100
R ORI 96
RGO I S Y 92
el 4 11 T 88
T —
eer U 4
4 Lo |
e[} 8 | int ol = {20,21};
- 4 | int b[] = {10,11};
0 | int a = 42;

Topic 5: C Arrays

