
ECE 2400 Computer Systems Programming

Topic 5: C Arrays

http://www.csl.cornell.edu/courses/ece2400
School of Electrical and Computer Engineering

Cornell University

revision: 2021-10-14-10-42

Please do not ask for solutions. Students should compare their solutions to solutions from their
fellow students, discuss their solutions with the instructors during lab/office hours, and/or post
their solutions on Ed for discussion.

List of Problems

1 Short Answer 2

1.A Out-of-Bound Array Accesses . 2

2 Count Matches in Two Arrays of Integers 3

2.A Quadratic Match Algorithm . 4

2.B Linear Match Algorithm . 4

2.C Comparing Match Algorithms . 6

3 Finding the Minimum of a Convex Function 7

3.A Iterative Search Algorithm . 8

3.B Recursive Search Algorithm . 9

3.C Comparing Search Algorithms . 10

ECE 2400 Computer Systems Programming NetID:

Problem 1. Short Answer

Carefully plan your solution before starting to write your response. Please be brief and to the point;
if at all possible, limit your answers to the space provided.

Part 1.A Out-of-Bound Array Accesses

The following out-of-bounds array access is legal according to the C programming language stan-
dard.

1 int main(void)
2 {
3 int a[] = { 1, 2, 3, 4 };
4 int b = a[100]; // out-of-bounds access
5 return 0;
6 }

Other programming languages (e.g., Python, MATLAB, Java) require that such out-of-bounds array
accesses cause a run-time error. Why doesn’t the C programming language check at runtime to
ensure that array accesses are never out of bounds?

2

ECE 2400 Computer Systems Programming NetID:

Problem 2. Count Matches in Two Arrays of Integers

In this problem, we will explore two algorithms to count the number of matches between two
unsorted arrays of integers. For example, consider the following two arrays:

int x[] = { 81, 38, 86, 36, 63, 14, 66, 37 };
int y[] = { 60, 66, 2, 97, 86, 4, 82, 44 };

The number of matches between the two arrays is two (i.e., 66, 86). Note that if there are duplicates
in either of the input arrays, then each duplicate can create a distinct match. For example, consider
the following two arrays:

int x[] = { 81, 38, 86, 36, 63, 86, 66, 37 };
int y[] = { 60, 66, 2, 97, 86, 66, 82, 44 };

The number of matches between the two arrays is four: 86 is included twice in array x, and each
of these values match with 86 in array y; 66 is included twice in array y, and each of these values
match with 66 in array x.

3

ECE 2400 Computer Systems Programming NetID:

Part 2.A Quadratic Match Algorithm

Develop an algorithm whose execution time is O(N2) to count the number of matches between
two arrays of integers. Implement your algorithm in a count_matches_v1 function which takes as
input an array x, an array y, and the size of both arrays n (i.e., both arrays are the same size). The
function returns the number of matches. Your implementation cannot modify either input array.
Your implementation should be correct and efficient in terms of both execution time and space
usage. While you are welcome to use pseudo-code to plan your approach, your final solution must
be written using valid C syntax.

int count_matches_v1(int* x, int* y, int n) {

Part 2.B Linear Match Algorithm

Now assume we know something about the distribution of the data stored in the array x. More
specifically, assume we know that most of the values stored in array x are duplicates. Let K be the
number of unique values in array x. For example, consider the following two arrays:

int x[] = { 70, 86, 86, 66, 70, 86, 66, 70 };
int y[] = { 60, 66, 2, 97, 86, 66, 82, 44 };

K = 3 since the array x only has four unique values (i.e., 70, 66, 86). The number of matches between
the two arrays is seven: 86 is included twice in array x, and each of these values match with 86 in
array y; 66 is included twice in array x, and each of these values match with the two copies of 66 in
array y.

4

ECE 2400 Computer Systems Programming NetID:

Develop an algorithm whose execution time is O(N) to count the number of matches between
two arrays of integers under the assumption that most of the values stored in array x are dupli-
cates. Implement your algorithm in a count_matches_v2 function which has the same interface as
count_matches_v1. You can assume K is a compile-time constant. Your implementation cannot modify
either input array. Your implementation should be correct and efficient in terms of both execution
time and space usage. While you are welcome to use pseudo-code to plan your approach, your
final solution must be written using valid C syntax.

int count_matches_v2(int* x, int* y, int n) {

5

ECE 2400 Computer Systems Programming NetID:

Part 2.C Comparing Match Algorithms

Note: This problem involves material on complexity analysis from Topic 8.

In this problem, you will be qualitatively comparing the two match algorithms. Begin by filling
in the following table. The units for execution time should be the number of inner loop itera-
tions. Your analysis should be for the worst case, but also generalized with respect to K (i.e., your
equations for execution time should include K if appropriate).

Worst Case Execution Time Worst Case Time Complexity
TK(N) big-O

count_matches_v1

count_matches_v2

Use these results along with deeper insights to perform a comparative analysis of these two match
algorithms, with the ultimate goal of making a compelling argument for which algorithm will
perform better across a large number of usage scenarios. While you are free to use whatever
approach you like, we recommend you structure your response in several paragraphs. The first
paragraph might discuss the performance of both algorithms using time complexity analysis. Jus-
tify the entries in the table. Remember that time complexity analysis is not the entire story; it is just
the starting point for performance analysis. The second paragraph might discuss the stack or heap
space usage of both algorithms using space complexity analysis. Remember that space complexity
analysis is not the entire story; it is just the starting point for storage requirement analysis. The
third paragraph might discuss other qualitative metrics such as generality, maintainability, and de-
sign complexity. The final paragraph can conclude by making a compelling argument for which
algorithm will perform better in the general case, or if you cannot strongly argue for either im-
plementation/algorithm explain why. Your answer will be assessed on how well you argue your
position.

6

ECE 2400 Computer Systems Programming NetID:

Problem 3. Finding the Minimum of a Convex Function

In this problem, we will explore two algorithms to find the minimum of a convex function. A con-
vex function is a continuous function whose value at the midpoint of every interval in its domain
does not exceed the arithmetic mean of its values at the ends of the interval. Technically, we will
only be considering strictly convex functions in which there is one and only one minimum value.
So there is only one local minimum and that local minimum is also a global minimum. The plot on
the left shows a continuous convex function, while the plot on the right shows the corresponding
discrete function sampled at integer values of x.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

min

x

f(
x)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

min

x

f(
x)

We can represent any discrete function as an array of doubles. The following shows an array cor-
responding to the above convex discrete function.

double y[] = { 3.1, 2.4, 1.9, 1.6, 1.5, 1.6, 1.9, 2.4, 3.1, 4.0, 5.1 };

Our goal is to develop algorithms to find the minimum of (strictly) convex functions. These algo-
rithms will take as input an array of doubles and the size of that array as parameters, and they will
return the minimum value of the convex function. You can assume the input array is indeed a valid
(strictly) convex function. Here are some additional convex functions your algorithms should be
able to analyze.

x

f(
x)

x

f(
x)

x

f(
x)

x

f(
x)

7

ECE 2400 Computer Systems Programming NetID:

Part 3.A Iterative Search Algorithm

The first algorithm starts at the first element in the input array and does a linear search until it finds
the minimum of the convex function. Implement this iterative search algorithm as a C function.
Your algorithm should not scan the entire array, but should instead stop as soon as it finds the
minimum. You must handle any corner cases correctly. While you are welcome to use pseudocode
to plan your approach, your final solution must be written using valid C syntax. You can assume the
input array size is always greater than one.

double find_min(double* y, int n) {
assert(n > 1);

8

ECE 2400 Computer Systems Programming NetID:

Part 3.B Recursive Search Algorithm

The second algorithm uses a recursive search to find the minimum. Implement this recursive
search algorithm as a C function. You must handle any corner cases correctly. While you are
welcome to use pseudocode to plan your approach, your final solution must be written using valid
C syntax. You can assume the input array size is always greater than one and is also even. You can assume
the input array will always correspond to a convex function with exactly one minimum value. We have
provided you with the corresponding recursive helper function and the base case condition.

double find_min(double* y, int n) {
assert((n > 1) && ((n % 2) == 0));
return find_min_h(y, 0, n-1);

}

double find_min_h(double* y, int left, int right) {
// Condition to check for the base case
if ((right - left) == 1) {

9

ECE 2400 Computer Systems Programming NetID:

Part 3.C Comparing Search Algorithms

Note: This problem involves material on complexity analysis from Topic 8.

In this problem, you will be qualitatively comparing the two search algorithms. Begin by filling in
the following table.

Wost Case Worst Case
Time Complexity Stack Space Complexity

Iterative Search

Recursive Search

Use these results along with deeper insights to perform a comparative analysis of these two search
algorithms, with the ultimate goal of making a compelling argument for which algorithm will
perform better across a large number of usage scenarios. While you are free to use whatever
approach you like, we recommend you structure your response in several paragraphs. The first
paragraph might discuss the performance of both algorithms using time complexity analysis. Jus-
tify the entries in the table. Remember that time complexity analysis is not the entire story; it is
just the starting point for performance analysis. The second paragraph might discuss the stack
space usage of both algorithms using space complexity analysis. Justify the entries in the table.
Remember that space complexity analysis is not the entire story; it is just the starting point for
storage requirement analysis. The third paragraph might discuss other qualitative metrics such as
generality, maintainability, and design complexity. The final paragraph can conclude by making a
compelling argument for which algorithm will perform better in the general case, or if you cannot
strongly argue for either algorithm explain why. Your answer will be assessed on how well you
argue your position.

10

