
ECE 2400 Computer Systems Programming
Spring 2025

Topic 4: C Pointers

School of Electrical and Computer Engineering
Cornell University

revision: 2025-02-10-10-37

1 Pointer Basics 2

2 Call by Value vs. Call by Pointer 4

3 Mapping Conceptual Storage to Machine Memory 7

4 Pointers to Other Types 10

4.1. Pointers to struct . 10

4.2. Pointers to Nothing . 11

4.3. Pointers to Pointers . 13

The zyBooks logo is used to indicate additional readings and coding labs in-
cluded in the course zyBook which will not be discussed in detail in lecture. Students are
responsible for all material covered in lecture and in the course zyBook.

Copyright © 2025 Anne Bracy. All rights reserved. This handout was prepared by Prof.
Anne Bracy at Cornell University for ECE 2400 / ENGRD 2140 Computer Systems Pro-
gramming (derived from previous handouts prepared and copyrighted by Prof. Christo-
pher Batten). Download and use of this handout is permitted for individual educational
non-commercial purposes only. Redistribution either in part or in whole via both commer-
cial or non-commercial means requires written permission.

1. Pointer Basics

• Pointers refer to the location (or address) of a variable

• A variable can now to “point” to another variable

• Programmers can (1) access what a pointer points to and (2) change
a pointer to point to something else

• This is an example of indirection, a powerful programming concept

1. Pointer Basics

• Pointers require introducing new types and new operators
• Every type T has a corresponding pointer type T*
• A variable of type T* contains a pointer to a variable of type T

1 int* a_ptr; // pointer to a variable of type int
2 char* b_ptr; // pointer to a variable of type char
3 float* c_ptr; // pointer to a variable of type float

• The address-of operator (&) evaluates to the location of a variable
• The address-of operator is used to initialize/assign to pointers

1 int a; // variable of type int
2 int* a_ptr; // pointer to a variable of type int
3 a_ptr = &a; // assign location of a to a_ptr

• The dereference operator (*) evaluates to the value of the variable
the pointer points to

1 int b = 42; // initialize variable of type int to 42
2 int* b_ptr = &b; // pointer to a variable of type int
3 int c = *b_ptr; // initialize c with what b_ptr points to

Topic 4: C Pointers 2

1. Pointer Basics

Example declaring, initializing,
RHS dereferencing pointers

222 01 int a = 3;
222 02 int* a_ptr;
222 03 a_ptr = &a;
222 04

222 05 int b = 2;
222 06 int c = b + (*a_ptr);

stack

Example illustrating aliasing

222 01 int a = 3;
222 02 int* a_ptr0 = &a;
222 03 int* a_ptr1 = a_ptr0;
222 04 int c = (*a_ptr0) + (*a_ptr1);

stack

Example declaring, initializing,
LHS dereferencing pointers

222 01 int a = 3;
222 02 int b = 2;
222 03

222 04 int c;
222 05 int* c_ptr = &c;
222 06 *c_ptr = a + b;

stack

Topic 4: C Pointers 3

2. Call by Value vs. Call by Pointer

• Be careful – three very different uses of the * symbol!

– Multiplication operator int a = b * c;
– Pointer type int* d = &a;
– Dereference operator int e = *d;

2. Call by Value vs. Call by Pointer

• So far, we have always used call by value
• Call by value copies values into parameters
• Changes to parameters by callee are not seen by caller

222 01 void swap(int x, int y)
222 02 {
222 03 int temp = x;
222 04 x = y;
222 05 y = temp;
222 06 }
222 07

222 08 int main(void)
222 09 {
222 10 int a = 9;
222 11 int b = 5;
222 12 swap(a, b);
222 13 return 0;
222 14 }

stack

Topic 4: C Pointers 4

2. Call by Value vs. Call by Pointer

• Call by pointer uses pointers as parameters
• Callee can read and modify parameters by dereferencing pointers
• Changes to parameters by callee are seen by caller

222 01 void swap(int* x_ptr,
222 02 int* y_ptr)
222 03 {
222 04 int temp = *x_ptr;
222 05 *x_ptr = *y_ptr;
222 06 *y_ptr = temp;
222 07 }
222 08

222 09 int main(void)
222 10 {
222 11 int a = 9;
222 12 int b = 5;
222 13 swap(&a, &b);
222 14 return 0;
222 15 }

stack

https://tinyurl.com/zybookch4

Topic 4: C Pointers 5

2. Call by Value vs. Call by Pointer

Draw a state diagram corresponding to the
execution of this program

222 01 void avg(int* result_ptr,
222 02 int x, int y)
222 03 {
222 04 int sum = x + y;
222 05 *result_ptr = sum / 2;
222 06 }
222 07

222 08 int main(void)
222 09 {
222 10 int a = 10;
222 11 int b = 20;
222 12 int c;
222 13 avg(&c, a, b);
222 14 return 0;
222 15 }

stack

The course zyBook includes a coding lab to implement an in-place
square function that uses call-by-pointer.

Topic 4: C Pointers 6

3. Mapping Conceptual Storage to Machine Memory

3. Mapping Conceptual Storage to Machine Memory

• Our current use of state diagrams is conceptual
• Real machine uses memory to store variables
• Real machine does not use “arrows”, uses memory addresses

Execution
Arrow

Statement
Syntax

State

Program

Statement

Statement
Semantics

Topic 4: C Pointers 7

3. Mapping Conceptual Storage to Machine Memory

• Can visualize memory using a “byte” or “word” view
• Stack stored at high addresses, stack grows “down”
• As a simplification, assume we only have 128 bytes of memory

222 01 int a = 3;
222 02 int* a_ptr;
222 03 a_ptr = &a;
222 04

222 05 int b = 2;
222 06 int c;
222 07 c = b + (*a_ptr);

Memory
(byte addr)

0

...

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Memory
(4B word addr)

0

...

112

116

120

124

Topic 4: C Pointers 8

3. Mapping Conceptual Storage to Machine Memory

• Both code and stack are stored in 128 bytes of memory
• Stack stored at high addresses, stack grows “down”
• Code stored at low addresses, execution moves “up”
• Stack Frame: collection of data on the stack associated with function

call including return value, return addr, parameters, local variables

222 01 void swap(int* x_ptr, int* y_ptr)
222 02 {
222 03 int temp = *x_ptr;
222 04 *x_ptr = *y_ptr;
222 05 *y_ptr = temp;
222 06 }
222 07

222 08 int main(void)
222 09 {
222 10 int a = 9;
222 11 int b = 5;
222 12 swap(&a, &b);
222 13 return 0;
222 14 }

Memory
(4B word addr)

0
4
8

12
16
20
24
28
32
36

...

104
108
112
116
120
124

*y_ptr = temp;
*x_ptr = *y_ptr;
int temp = *x_ptr;

...
return 0;
call swap
int b = 5;
int a = 9;

Topic 4: C Pointers 9

4. Pointers to Other Types 4.1. Pointers to struct

4. Pointers to Other Types

In addition to pointing to primitive types, pointers can also point to
other pointers, to structs, or even functions.

4.1. Pointers to struct

• Pointer to a struct is declared exactly as what we have already seen
• Be careful to dereference the pointer first, then access a field

222 01 typedef struct _node_t
222 02 {
222 03 int value;
222 04 struct _node_t* next_p;
222 05 }
222 06 node_t;
222 07
222 08 int main(void)
222 09 {
222 10 // First node
222 11 node_t node0;
222 12 node0.value = 3;
222 13
222 14 node_t* head_p = &node0;
222 15 (*head_p).value = 4;
222 16
222 17 // Second node
222 18 node_t node1;
222 19 node1.value = 5;
222 20 node1.next_p = &node0;
222 21
222 22 head_p = &node1;
222 23 (*head_p).value = 6;
222 24 (*((*head_p).next_p)).value = 7;
222 25
222 26 return 0;
222 27 }

stack

Topic 4: C Pointers 10

4. Pointers to Other Types 4.2. Pointers to Nothing

• C provides the arrow operator (->) as syntactic sugar
• a->b is equivalent to (*a).b

1 int main(void)
2 {
3 ...
4

5 node_t* head_p = &node0;
6 head_p->value = 4;
7

8 ...
9

10 head_p = &node1;
11 head_p->value = 6;
12 head_p->next_p->value = 7;
13 }

4.2. Pointers to Nothing

• NULL is defined in stddef.h to be a pointer to nothing
• NULL can be used to indicate “there is no answer” or “error”
• Simply write NULL in state diagrams
• In previous example, NULL can mean there is no next node

Topic 4: C Pointers 11

4. Pointers to Other Types 4.2. Pointers to Nothing

2222 01 #include <stddef.h>
2222 02
2222 03 typedef struct _node_t
2222 04 {
2222 05 int value;
2222 06 struct _node_t* next_p;
2222 07 }
2222 08 node_t;
2222 09
2222 10 int main(void)
2222 11 {
2222 12 node_t node0;
2222 13 node0.value = 3;
2222 14 node0.next_p = NULL;
2222 15
2222 16 node_t node1;
2222 17 node1.value = 4;
2222 18 node1.next_p = &node0;
2222 19
2222 20 node_t node2;
2222 21 node2.value = 5;
2222 22 node2.next_p = &node1;
2222 23
2222 24 int sum = 0;
2222 25 node_t* curr_p = &node2;
2222 26 while (curr_p != NULL) {
2222 27 sum += curr_p->value;
2222 28 curr_p = curr_p->next_p;
2222 29 }
2222 30 return 0;
2222 31 }

stack

The course zyBook includes a coding lab to implement a function to
find the maximum value in a chain of nodes.

Topic 4: C Pointers 12

4. Pointers to Other Types 4.2. Pointers to Nothing

4.3. Pointers to Pointers
222 01 int a = 3;
222 02 int* a_ptr = &a;
222 03 int** a_pptr = &a_ptr;
222 04 int*** a_ppptr = &a_pptr;
222 05

222 06 int b = ***a_ppptr + 1;

stack

Code is also stored in memory, so a function pointer points to code.
The course zyBook includes more information on function pointers,
which are complicated but critical for understanding some of the
more sophisticated programming paradigms later in the course. The
course zyBook also includes a coding lab to implement a count_if
function that uses a function pointer as a parameter to decide what
elements to count in a chain of nodes.

Topic 4: C Pointers 13

