
ECE 2400 Computer Systems Programming
Fall 2021

Topic 3: C Types

School of Electrical and Computer Engineering
Cornell University

revision: 2021-08-29-22-42

1 Binary and Hexadecimal Numbers 3

2 Basic Data Types 4

2.1. int Type . 4

2.2. char Type . 9

2.3. const Types . 10

2.4. void Types . 10

3 Programmer-Defined Types 11

3.1. Typedefs . 11

3.2. struct Types . 11

4 Working With Types 14

4.1. Type Checking . 14

4.2. Type Inference . 15

4.3. Type Casting . 15

4.4. Type Conversion . 17

1

The zyBooks logo is used to indicate additional material included in the course
zyBook which will not be discussed in detail in lecture. Students are responsible for all
material covered in lecture and in the course zyBook.

Copyright © 2021 Christopher Batten. All rights reserved. This handout was prepared
by Prof. Christopher Batten at Cornell University for ECE 2400 / ENGRD 2140 Computer
Systems Programming. Download and use of this handout is permitted for individual
educational non-commercial purposes only. Redistribution either in part or in whole via
both commercial or non-commercial means requires written permission.

Topic 3: C Types 2

1. Binary and Hexadecimal Numbers

• In C, the type of a variable specifies the kind of values that can be
stored in that variable; must answer three questions:

– What is the meaning of the variable’s value?
– How should the variable’s value be stored in the computer
– What operations are allowed on the variable?

• Critical to keep concept of types separate from concept of values

• C is a statically typed language, meaning that the type of a variable
must be known at compile time

• Keep in mind that no matter how complex the type, everything is
ultimately stored as a binary number in the computer

1. Binary and Hexadecimal Numbers

Let’s review decimal, binary, and hexadecimal number representations.

Topic 3: C Types 3

2. Basic Data Types 2.1. int Type

2. Basic Data Types

We will primarily use the following primitive C types

• int: For representing integer numbers
• char: For representing characters
• float and double: For representing real numbers
• const T: For representing constant values of type T
• void: For representing situations where a value is not allowed

The course zyBook includes more information on two’s complement
representation and the float/double types for representing real num-
bers.

2.1. int Type

• Meaning? Integer whole numbers in a limited range
• Stored? 32-bit two’s complement binary representation
• Operations? Basic integer arithmetic

• Unlike some productivity-level programming languages, variables
of type int cannot represent arbitrarily large or small integers

• Such variables have a fixed upper limit and lower limit

Topic 3: C Types 4

2. Basic Data Types 2.1. int Type

222 01 int avg(int x, int y)
222 02 {
222 03 int sum = x + y;
222 04 return sum / 2;
222 05 }
222 06

222 07 int main()
222 08 {
222 09 int a = 10;
222 10 int b = 20;
222 11 int c = avg(a, b);
222 12 return 0;
222 13 }

stack

Topic 3: C Types 5

2. Basic Data Types 2.1. int Type

4-Bit Unsigned Integers

• By default, an int is short-hand for the type signed int which can
represent both positive and negative integers

• unsigned int can only represent positive integers

• To start, let’s focus on variables of type unsigned int and let’s
assume all variables are only four bits

Un-
Bits signed

0000 0
0001 1
0010 2
0011 3

0100 4
0101 5
0110 6
0111 7

1000 8
1001 9
1010 10
1011 11

1100 12
1101 13
1110 14
1111 15

222 01 unsigned int a = 4;
222 02 unsigned int b = 15;
222 03 unsigned int c = 0;
222 04 unsigned int d = a + 1;
222 05 unsigned int e = b + 1;
222 06 unsigned int f = c - 1;

stack

Topic 3: C Types 6

2. Basic Data Types 2.1. int Type

4-Bit Signed Integers

• Now let’s consider variables of type signed int and let’s continue
to assume all variables are only four bits

• There can be multiple ways to encode a given value into a sequence
of bits (e.g., sign magnitude, one’s complement, two’s complement)

• The C language specification does not actually specify the exact
encoding, but essentially all machines use two’s complement

Sign One’s Two’s
Bits Mag Comp Comp

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3

0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7

1000 –0 –7 –8
1001 –1 –6 –7
1010 –2 –5 –6
1011 –3 –4 –5

1100 –4 –3 –4
1101 –5 –2 –3
1110 –6 –1 –2
1111 –7 –0 –1

222 01 signed int a = 4;
222 02 signed int b = 7;
222 03 signed int c = -8;
222 04 signed int d = a + 1;
222 05 signed int e = b + 1;
222 06 signed int f = c - 1;

stack

Topic 3: C Types 7

2. Basic Data Types 2.1. int Type

• An int is a signed 32-bit binary number
• Can store values between -2,147,483,648 to 2,147,483,647
• What happens if you add one to 2,147,483,647?
• What happens if you subtract one from -2,147,483,648?

• An unsigned int is an unsigned 32-bit binary number
• Can store values from 0 to 4,294,967,295
• What happens if you add one to 4,294,967,295?
• What happens if you subtract one from 0?

1 #include <stdio.h>
2

3 int main()
4 {
5 int a = 2147483647;
6 int b = a + 1;
7 printf("%d + 1 = %d (%x)\n",a,b,b);
8

9 int c = -2147483648;
10 int d = c - 1;
11 printf("%d - 1 = %d (%x)\n",c,d,d);
12

13 unsigned int e = 4294967295;
14 unsigned int f = e + 1;
15 printf("%u + 1 = %u (%x)\n",e,f,f);
16

17 unsigned int g = 0;
18 unsigned int h = g - 1;
19 printf("%u - 1 = %u (%x)\n",g,h,h);
20

21 return 0;
22 } https://repl.it/@cbatten/ece2400-T03-ex1

• New format specifiers for hexadecimal (%x) and unsigned int (%u)

Topic 3: C Types 8

2. Basic Data Types 2.2. char Type

2.2. char Type

• Meaning? Character in a “word”
• Stored? 8-bit binary representation using ASCII standard
• Operations? Basic integer arithmetic

222 01 char a = 'e';
222 02 char b = 'c';
222 03 char c = 'e';

stack

1 #include <stdio.h>
2

3 int main()
4 {
5 char a = 'e';
6 char b = 'c';
7 char c = 'e';
8 printf("%c%c%c\n",a,b,c);
9 return 0;

10 }

• New format specifier for char (%c)

Topic 3: C Types 9

2. Basic Data Types 2.3. const Types

2.3. const Types

• Meaning? Indicates variable will not change
• Stored? Whatever is required for “base” type
• Operations? Read-only operations, cannot modify variable

1 // Constant at global scope
2 const double PI = 3.1415926535;
3

4 int main()
5 {
6 const double a = 2.0;
7 int b = a * PI;
8

9 const int d = 15;
10 d = b; // compile time error!
11

12 return 0;
13 }

2.4. void Types

• Meaning? No values are allowed
• Stored? No storage needed
• Operations? None

1 void print_line(void)
2 {
3 for (int i = 0; i < 74; i++)
4 printf("-");
5 }

• Technically, we should use void for empty parameter lists
• This applies to main as well

Topic 3: C Types 10

3. Programmer-Defined Types 3.2. Typedefs

3. Programmer-Defined Types

In addition to the default types that are included as part of the C
programming language (e.g., int, unsigned int, char, float, double),
C also enables programmers to define their own new types.

The course zyBook includes more information on enum which enables
creating multiple named constants.

3.1. Typedefs

• A typedef actually does not define a new type
• A typedef simply provides a new alias for an already defined type

1 typedef type_name new_type_name;

• The following code is perfectly fine

1 typedef unsigned int uint_t;
2 uint_t a = 2;
3 uint_t b = 3;
4 unsigned int c = a + b;

3.2. struct Types

• A struct enables bundling multiple variables into a single entity
• A struct definition creates a new type and specifies the type and

names of the variables (fields) contained within the struct

1 struct _complex_t
2 {
3 double real;
4 double imag;
5 };
6 typedef struct _complex_t complex_t;

1 typedef struct
2 {
3 double real;
4 double imag;
5 }
6 complex_t;

Topic 3: C Types 11

3. Programmer-Defined Types 3.2. struct Types

• Struct definitions are at global scope just like function definitions
• Can declare a struct variable just like any other variable

1 complex_t a; // variable of type complex_t

• Structs require a new operator to access the fields
• The dot operator (.) composes a struct variable name with a struct

field name to create a fully qualified variable name

1 complex_t a; // variable of type complex_t
2 a.real = 1.0; // use dot operator to access real field
3 a.imag = 2.5; // use dot operator to access imag field
4

5 complex_t b; // variable of type complex_t
6 b.real = a.real; // use dot operator to copy real field
7 b.imag = a.imag; // use dot operator to copy imag field

• Can copy an entire struct in a single statement
• Semantics of such a copy are to simply copy each field individually

1 complex_t a; // variable of type complex_t
2 a.real = 1.0; // use dot operator to access real field
3 a.imag = 2.5; // use dot operator to access imag field
4

5 complex_t b; // variable of type complex_t
6 b = a; // copy all fields from a to b

Topic 3: C Types 12

3. Programmer-Defined Types 3.2. struct Types

• Struct declaration statement simply creates multiple variables on the
stack in a single statement

222 01 typedef struct
222 02 {
222 03 int x;
222 04 int y;
222 05 }
222 06 point_t;
222 07

222 08 point_t point_add(point_t pt1,
222 09 point_t pt2)
222 10 {
222 11 point_t pt3;
222 12 pt3.x = pt1.x + pt2.x;
222 13 pt3.y = pt1.y + pt2.y;
222 14 return pt3;
222 15 }
222 16

222 17 int main(void)
222 18 {
222 19 point_t pt_a;
222 20 pt_a.x = 2;
222 21 pt_a.y = 3;
222 22

222 23 point_t pt_b;
222 24 pt_b.x = 4;
222 25 pt_b.y = 5;
222 26

222 27 point_t pt_c;
222 28 pt_c = point_add(pt_a, pt_b);
222 29

222 30 return 0;
222 31 }

stack

Topic 3: C Types 13

4. Working With Types 4.2. Type Checking

4. Working With Types

Types can offer strong static guarantees about correctness, but also need
to be carefully managed.

4.1. Type Checking

• Compiler will check to ensure types are consistent
• Inconsistent types will cause a compile-time error

1 typedef struct
2 {
3 int x;
4 int y;
5 }
6 point_t;
7

8 point_t point_add(point_t pt1,
9 point_t pt2)

10 {
11 point_t pt3;
12 pt3.x = pt1.x + pt2.x;
13 pt3.y = pt1.y + pt2.y;
14 return pt3;
15 }
16

17 int main(void)
18 {
19 int a = 2;
20 int b = 3;
21 point_t pt_c = point_add(a, b);
22 return 0;
23 }

https://repl.it/@cbatten/ece2400-T03-ex3

Topic 3: C Types 14

4. Working With Types 4.2. Type Inference

4.2. Type Inference

• Compiler uses type inference to determine type of an expression

1 int a = 2;
2 int b = 3;
3 int c = a + b; // expr (a + b) has type int
4 int d = a / b; // expr (a / b) has type int
5

6 float e = 2.0;
7 float f = 3.0;
8 float g = e + f; // expr (e + f) has type float
9 float h = e / f; // expr (e / f) has type float

4.3. Type Casting

• Type checking prevents assigning a value with a given type T to a
variable with a different type

• Programmers can use type casting to explicitly convert a value of
one type to a value of another type

• The cast operator can be used for explicit type casting

1 unsigned int a = 1;
2 signed int b = (signed int) a;
3

4 signed int a = 1;
5 unsigned int b = (unsigned int) a;
6

7 int a = 2;
8 float b = (float) a;
9

10 float a = 2.0;
11 int b = (int) a;

Topic 3: C Types 15

4. Working With Types 4.3. Type Casting

1 float a = 2.5;
2 double b = (double) a;
3

4 double a = 2.5;
5 float b = (float) a;

• Example of using explicit type casting

1 #include <stdio.h>
2

3 float avg(int x, int y)
4 {
5 int sum = x + y;
6 return ((float) sum) / ((float) 2);
7 }
8

9 int main(void)
10 {
11 float a = 10;
12 float b = 15;
13 float c = avg(a, b);
14 printf(" average of %f and %f is %f\n", a, b, c);
15 return 0;
16 }

https://repl.it/@cbatten/ece2400-T03-ex5

Topic 3: C Types 16

4. Working With Types 4.4. Type Conversion

4.4. Type Conversion

• Compiler can also use implicit type conversion
• Compiler can automatically convert types so they match
• Lower precision types can be converted to higher precision types
• Higher precision types can be converted to lower precision types

1 unsigned int a = 1;
2 signed int b = a;
3

4 signed int a = 1;
5 unsigned int b = a;
6

7 int a = 2;
8 float b = a;
9

10 float a = 2.0;
11 int b = a;
12

13 float a = 2.5;
14 double b = a;
15

16 double a = 2.5;
17 float b = a;
18

19 int a = 2;
20 float b = 3;
21 float c = a + b; // converts a to float
22 float d = a / b; // converts a to float
23

24 unsigned int a = 2;
25 signed int b = -3;
26 unsigned int c = a * b; // converts a to signed int

Topic 3: C Types 17

4. Working With Types 4.4. Type Conversion

• Type conversion seems convenient but is at the heart of why C only
supports weak static typing and can lead to many subtle bugs

1 unsigned int a = 4294967295;
2 signed int b = a; // careful! b == -1
3

4 signed int a = -1;
5 unsigned int b = a; // careful! b == 4294967295
6

7 float a = 2.5;
8 int b = a; // careful! b == 2
9

10 double a = 3.14159265358;
11 float b = a; // careful! b != 3.14159265358

• The following example illustrates automatic type conversion

1 #include <stdio.h>
2

3 int avg(int x, int y)
4 {
5 int sum = x + y;
6 return sum / 2;
7 }
8

9 int main(void)
10 {
11 float a = 10;
12 float b = 15;
13 float c = avg(a, b);
14 printf(" average of %f and %f is %f\n", a, b, c);
15 return 0;
16 }

https://repl.it/@cbatten/ece2400-T03-ex4

Topic 3: C Types 18

