
ECE 2400 Computer Systems Programming
Spring 2025

Topic 2: C Recursion

School of Electrical and Computer Engineering
Cornell University

revision: 2025-01-29-12-07

1 Single Recursion 3

2 Multiple Recursion 6

3 Writing a Recursive Function 8

The zyBooks logo is used to indicate additional readings and coding labs in-
cluded in the course zyBook which will not be discussed in detail in lecture. Students are
responsible for all material covered in lecture and in the course zyBook.

Copyright © 2025 Anne Bracy. All rights reserved. This handout was prepared by Prof.
Anne Bracy at Cornell University for ECE 2400 / ENGRD 2140 Computer Systems Pro-
gramming (derived from previous handouts prepared and copyrighted by Prof. Christo-
pher Batten). Download and use of this handout is permitted for individual educational
non-commercial purposes only. Redistribution either in part or in whole via both commer-
cial or non-commercial means requires written permission.

1. Single Recursion

1. Single Recursion

Recall from mathematics, the factorial of a number (n!) is:

n! =

{
1 if n = 0
n × (n − 1)! if n > 0

So in other words:

0! = = 1

1! = = 1

2! = 1 × 2 = 2

3! = 1 × 2 × 3 = 6

4! = 1 × 2 × 3 × 4 = 24

5! = 1 × 2 × 3 × 4 × 5 = 120

We can write a function to calculate factorial using a for loop:

1 int factorial(int n) {
2 int result = 1;
3 for (int i = 1; i <= n; i++)
4 result = result * i;
5 return result;
6 }

Topic 2: C Recursion 2

1. Single Recursion

• The loop implementation does not really resemble the original
mathematical formulation

• The mathematical formulation is inherently recursive

• Can we implement factorial more directly using recursion?

n! =

{
1 if n = 0
n × (n − 1)! if n > 0

Topic 2: C Recursion 3

1. Single Recursion

We can use the exact same
“by-hand” execution approach we
learned in the previous topic to
understand recursion.

2222222 01 int factorial(int n)
2222222 02 {
2222222 03 // base case
2222222 04 if (n == 0) {
2222222 05 return 1;
2222222 06 }
2222222 07 // recursive case
2222222 08 if (n > 0) {
2222222 09 return n *
2222222 10 factorial(n-1);
2222222 11 }
2222222 12 }
2222222 13

2222222 14 int main()
2222222 15 {
2222222 16 int a = factorial(3);
2222222 17 return 0;
2222222 18 }

Questions:

• What if n is negative?

• What if the execution arrow
reaches end of a non-void
function without encountering a
return statement?

stack

Topic 2: C Recursion 4

2. Multiple Recursion

2. Multiple Recursion

Recall from mathematics, the Fibonacci sequence is a sequence of
integers such that every number after the first two is the sum of the two
preceding ones:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

The numbers in the Fibonacci sequence are called “Fibonacci numbers”.
By definition, the first two numbers in the Fibonacci sequence are 0 and
1. Ancient scholars realized the importance of this sequence in both
mathematics and nature. Fibonacci sequences can be found in the
arrangement of leaves on a stem or patterns in a pine cone.

We can write a function to
calculate the nth Fibonacci
number using a for loop:

1 int fib(int n) {
2

3 // by definition
4 if (n == 0) return 0;
5 if (n == 1) return 1;
6

7 int fib_minus2 = 0;
8 int fib_minus1 = 1;
9 int result = 0;

10

11 for (int i=2; i<=n; i++) {
12

13 result = fib_minus1
14 + fib_minus2;
15

16 fib_minus2 = fib_minus1;
17 fib_minus1 = result;
18

19 }
20 return result;
21 }

Topic 2: C Recursion 5

2. Multiple Recursion

Can we implement fib more elegantly using recursion?

Illustrating call tree for fib

Topic 2: C Recursion 6

3. Writing a Recursive Function

3. Writing a Recursive Function

Write pseudo-code for a recursive function which draws the tick marks
on a vertical ruler. The middle tick mark should be the longest and
mark the 1/2 way point, slightly shorter tick marks should mark the
1/4 way points, even slightly shorter tick marks should mark the 1/8
way points and so on. The function should take one argument: the
height of the middle tick mark (i.e., the number of dashes). The function
should always return 0.

ruler(4)
int ruler(int height) {

Topic 2: C Recursion 7

3. Writing a Recursive Function

ruler(1)

-

ruler(2)

-
--
-

ruler(3)

-
--
-

-
--
-

ruler(4)

-
--
-

-
--
-

-
--
-

-
--
-

ruler(5)

-
--
-

-
--
-

-
--
-

-
--
-

-
--
-

-
--
-

-
--
-

-
--
-

• Step 1: Work an example yourself

– height = 2, height = 3

• Step 2: Write down what you just did

– What is the base case?
– What is the recursive case?

• Step 3: Generalize your steps

– for any height

• Step 4: Test your algorithm

– does it work for height = 4?

• Step 5: Translate to pseudocode

Topic 2: C Recursion 8

3. Writing a Recursive Function

Think about the recursive call tree?

Manually work through example ruler

The course zyBook includes a coding lab to implement a recursive
algorithm to print a down/up sequence.

Topic 2: C Recursion 9

