
ECE 2400 Computer Systems Programming
Fall 2021

Topic 2: C Recursion

School of Electrical and Computer Engineering
Cornell University

revision: 2021-08-29-22-42

1 Single Recursion 3

2 Multiple Recursion 6

3 Writing a Recursive Function 8

The zyBooks logo is used to indicate additional material included in the course
zyBook which will not be discussed in detail in lecture. Students are responsible for all
material covered in lecture and in the course zyBook.

Copyright © 2021 Christopher Batten. All rights reserved. This handout was prepared
by Prof. Christopher Batten at Cornell University for ECE 2400 / ENGRD 2140 Computer
Systems Programming. Download and use of this handout is permitted for individual
educational non-commercial purposes only. Redistribution either in part or in whole via
both commercial or non-commercial means requires written permission.

1



Our goal is to understand what the word “recursion” means, so let’s
look up “recursion” in the dictionary ...

• Recursion is when the algorithm is defined in terms of itself
• No new syntax or semantics
• Understanding recursion simply involves applying what we have

already learned with respect to functions, conditionals, iteration

Topic 2: C Recursion 2



1. Single Recursion

1. Single Recursion

Recall from mathematics, the factorial of a number (n!) is:

n! =

{
1 if n = 0
n × (n – 1)! if n > 0

So in other words:

0! = = 1

1! = = 1

2! = 1 × 2 = 2

3! = 1 × 2 × 3 = 6

4! = 1 × 2 × 3 × 4 = 24

5! = 1 × 2 × 3 × 4 × 5 = 120

We can write a function to calculate factorial using a for loop:

1 int factorial( int n ) {
2 int result = 1;
3 for ( int i = 1; i <= n; i++ )
4 result = result * i;
5 return result;
6 }

Topic 2: C Recursion 3



1. Single Recursion

• The loop implementation does not really resemble the original
mathematical formulation

• The mathematical formulation is inherently recursive

• Can we implement factorial more directly using recursion?

n! =

{
1 if n = 0
n × (n – 1)! if n > 0

Topic 2: C Recursion 4



1. Single Recursion

We can use the exact same
“by-hand” execution approach we
learned in the previous topic to
understand recursion.

2222222 01 int factorial( int n )
2222222 02 {
2222222 03 // base case
2222222 04 if ( n == 0 ) {
2222222 05 return 1;
2222222 06 }
2222222 07 // recursive case
2222222 08 if ( n > 0 ) {
2222222 09 return n *
2222222 10 factorial(n-1);
2222222 11 }
2222222 12 }
2222222 13

2222222 14 int main()
2222222 15 {
2222222 16 int a = factorial(3);
2222222 17 return 0;
2222222 18 }

Questions:

• What if n is negative?

• What if the execution arrow
reaches end of a non-void
function without encountering a
return statement?

stack

Topic 2: C Recursion 5



2. Multiple Recursion

2. Multiple Recursion

Recall from mathematics, the Fibonacci sequence is a sequence of
integers such that every number after the first two is the sum of the two
preceding ones:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

The numbers in the Fibonacci sequence are called “Fibonacci numbers”.
By definition, the first two numbers in the Fibonacci sequence are 0 and
1. Ancient scholars realized the importance of this sequence in both
mathematics and nature. Fibonacci sequences can be found in the
arrangement of leaves on a stem or patterns in a pine cone.

We can write a function to
calculate the nth Fibonacci
number using a for loop:

1 int fib( int n ) {
2

3 // by definition
4 if (n == 0) return 0;
5 if (n == 1) return 1;
6

7 int fib_minus2 = 0;
8 int fib_minus1 = 1;
9 int result = 0;

10

11 for ( int i=2; i<=n; i++ ) {
12

13 result = fib_minus1
14 + fib_minus2;
15

16 fib_minus2 = fib_minus1;
17 fib_minus1 = result;
18

19 }
20 return result;
21 }

Topic 2: C Recursion 6



2. Multiple Recursion

Can we implement factorial more elegantly using recursion?

Illustrating call tree for fib

Topic 2: C Recursion 7



3. Writing a Recursive Function

3. Writing a Recursive Function

Write pseudo-code for a recursive function which draws the tick marks
on a vertical ruler. The middle tick mark should be the longest and
mark the 1/2 way point, slightly shorter tick marks should mark the
1/4 way points, even slightly shorter tick marks should mark the 1/8
way points and so on. The function should take one argument: the
height of the middle tick mark (i.e., the number of dashes). The function
should always return 0.

ruler(4)
int ruler( int height ) {

Topic 2: C Recursion 8



3. Writing a Recursive Function

ruler(1)

-

ruler(2)

-
--
-

ruler(3)

-
--
-
---
-
--
-

ruler(4)

-
--
-
---
-
--
-
----
-
--
-
---
-
--
-

ruler(5)

-
--
-
---
-
--
-
----
-
--
-
---
-
--
-
-----
-
--
-
---
-
--
-
----
-
--
-
---
-
--
-

• Step 1: Work an example yourself

– height = 2, height = 3

• Step 2: Write down what you just did

– What is the base case?
– What is the recursive case?

• Step 3: Generalize your steps

– for any height

• Step 4: Test your algorithm

– does it work for height = 4?

• Step 5: Translate to pseudocode

Topic 2: C Recursion 9



3. Writing a Recursive Function

Think about the recursive call tree?

Manually work through example ruler

Topic 2: C Recursion 10


