
ECE 2400 Computer Systems Programming
Fall 2021

Topic 1: Introduction to C

School of Electrical and Computer Engineering
Cornell University

revision: 2021-08-29-22-42

1 Statements, Syntax, Semantics, State 3

2 Variables, Literals, Operators, Expressions 4

2.1. Variables . 5

2.2. Literals . 5

2.3. Operators . 6

2.4. Expressions . 7

2.5. Simple C Programs . 8

3 Blocks and Scope 9

3.1. Blocks . 9

3.2. Scope . 10

4 Functions 11

4.1. Function Definition . 11

4.2. Function Call . 12

4.3. The printf Function . 15

5 Conditional Statements 16

5.1. Boolean Operators . 16

5.2. if/else Conditional Statements . 18

6 Iteration Statements 21

6.1. for Loops . 21

The zyBooks logo is used to indicate additional material included in the course
zyBook which will not be discussed in detail in lecture. Students are responsible for all
material covered in lecture and in the course zyBook.

Copyright © 2021 Christopher Batten. All rights reserved. This handout was prepared
by Prof. Christopher Batten at Cornell University for ECE 2400 / ENGRD 2140 Computer
Systems Programming. Download and use of this handout is permitted for individual
educational non-commercial purposes only. Redistribution either in part or in whole via
both commercial or non-commercial means requires written permission.

Topic 1: Introduction to C 2

1. Statements, Syntax, Semantics, State

Before you can learn to write, you must learn to read!
This is true for foreign languages and programming languages.

1. Statements, Syntax, Semantics, State

Execution
Arrow

Statement
Syntax

State

Program

Statement

Statement
Semantics

Sequence of
statements

It is raining outside.
Should I use an umbrella?

Sentence It is raining outside.

Sentence
grammar

punctuation; “I” is a pronoun;
“is” uses present tense

Sentence
meaning

rain is water condensed from the
atmosphere, outside means in the
outdoors

Memory
of prior
statements

remember that it is raining outside
when considering umbrella

Topic 1: Introduction to C 3

2. Variables, Literals, Operators, Expressions

An example English “program”

222 01 Create box named x.
222 02 Put value 3 into box named x.
222 03 Create box named y.
222 04 Put value 2 into box named y.
222 05 Create box named z.
222 06 Put x + y into box named z.

2. Variables, Literals, Operators, Expressions

• is a box (in the computer’s memory) which stores a
value; variables have names and are used for “state”

• is a value written exactly as it is meant to be
interpreted; a literal is not a name, it is the value itself

• is a symbol with special semantics to “operate” on
variables and literals

• is a combination of variables, literals, and operators
which evaluates to a new value

Topic 1: Introduction to C 4

2. Variables, Literals, Operators, Expressions 2.1. Variables

2.1. Variables

• is a box (in the
computer’s memory) which stores a
value

• is used to name a
variable

• specifies the kind of
values that can be stored in a variable

1 int my_variable;
2 int MY_VARIABLE;
3 int myVariable;
4 int MyVariable;
5 int variable_0;
6 int _variable;
7 int __variable__;
8 int 0_variable;
9 int variable$1;

• creates a new variable

• Statements in C must end with a semicolon

2.2. Literals

• A literal is a value written exactly as it is meant to be interpreted

• A variable is a name for a box that can hold different values

• A constant variable is a name that can hold a single value

• A literal is not a name but the value itself

• Example integer literals

– 13 literally the number 13 in base 10
– -13 literally the number -13 in base 10
– 0x13 literally the number 13 in base 16 (i.e., 19 in base 10)
– 0xdeadbeef literally a large number in base 16

Topic 1: Introduction to C 5

2. Variables, Literals, Operators, Expressions 2.3. Operators

2.3. Operators

• An operator is a symbol with special semantics to “operate” on
variables and literals

• (=) “assigns” a new value to a variable

• combines the assignment operator with a
left-hand side (LHS) and a right-hand side (RHS)

• The LHS specifies the variable to change

• The RHS specifies the new value, possibly using a literal

1 int my_variable;
2 my_variable = 42;

• A variable declaration statement and an assignment statement can
be combined into a single initialization statement

1 int my_variable = 42;

• Other operators are provided for arithmetic functions such as
addition (+), subtraction (-), multiplication (*), division (/), and
modulus (%)

• Division is integer division

– 6 / 2 is 3
– 5 / 2 is 2 not 2.5

• Modulus is integer remainder

– 6 % 2 is 0
– 5 % 2 is 1

• We will explore overflow, underflow, etc in Topic 3

Topic 1: Introduction to C 6

2. Variables, Literals, Operators, Expressions 2.4. Expressions

2.4. Expressions

• An expression is a combination of variables, literals, and operators
which evaluates to a new value

1 3 + 4
2 3 + 4 * 2 + 7
3 3 * 4 / 2 * 6

• Operator precedence is a set of rules describing in what order we
should apply a sequence of operators in an expression

Category Operator Associativity

Multiplicative * / % left to right

Additive + - left to right

Assignment = right to left

Be explicit – use parenthesis!

Topic 1: Introduction to C 7

2. Variables, Literals, Operators, Expressions 2.5. Simple C Programs

2.5. Simple C Programs

We can compose assignment and initialization statements which use vari-
ables, literals, operators, and expressions to create a simple C program.

Translating our English “program”
into a C program

222 01 int x;
222 02 x = 3;
222 03 int y;
222 04 y = 2;
222 05 int z;
222 06 z = x + y;

An empty box in a state diagram means
the variable contains an undefined value

Draw a state diagram corresponding to the
execution of this program

222 01 int x = 2;
222 02 int y = x;
222 03 x = 3;
222 04 int z = x + y * 5;
222 05 y = x + y * x + y;

Topic 1: Introduction to C 8

3. Blocks and Scope 3.1. Blocks

3. Blocks and Scope

• Blocks and scope provide syntax and semantics to help manage
more complex programs

3.1. Blocks

• A block is a compound statement
• Curly braces are used to open and close a block ({})
• Blocks are critical for defining functions, conditional statements, and

iteration statements

1 {
2 int x = 2;
3 int y = x;
4 };
5

6 {
7 int z = 3;
8 z = z + 1;
9 };

• Since a block is itself a statement, it has a trailing semicolon
• In practice, the trailing semicolon may be (should be) omitted

1 {
2 int x = 2;
3 int y = x;
4 }

Topic 1: Introduction to C 9

3. Blocks and Scope 3.2. Scope

3.2. Scope

• Scope of a variable is the region of code where it is accessible
• C blocks create new local scopes
• We can declare new variables that are only in scope in the block

222 01 int w = 1;
222 02 {
222 03 int x = 2;
222 04 int y = 3;
222 05 }
222 06 int z = w;

Use an X on the right of a variable box to
indicate that this variable has gone out of
scope and thus has been deallocated

Draw a state diagram corresponding to the
execution of this program

222 01 int x = 1;
222 02 {
222 03 int y = 2;
222 04 {
222 05 y = 3;
222 06 }
222 07 x = y;
222 08 }
222 09 int z = y;

The course zyBook includes more information on name binding which
provides a precise set of rules for associating a specific variable name
to a specific in-scope variable declaration.

Topic 1: Introduction to C 10

4. Functions 4.1. Function Definition

4. Functions

• names a parameterized sequence of statements

• describes how a function behaves

• is a new kind of expression to execute a function

• All code in C programs are inside functions!

4.1. Function Definition

1 rtype function_name(ptype0 pname0, ptype1 pname1, ...)
2 {
3 function_body;
4 }

• is a unique identifier for the function

• is the parameterized sequence of statements

• is a list of parameter types and names

• is the type of the value returned by the function

1 int avg(int x, int y)
2 {
3 int sum = x + y;
4 int ans = sum / 2;
5 return ans;
6 }

• Function prototype is just line 1

• Useful for informing the compiler that a function exists with a
specific interface, but without specifying the implementation

Topic 1: Introduction to C 11

4. Functions 4.2. Function Call

1 int main()
2 {
3 int a = 10;
4 int b = 20;
5 int c = (a + b) / 2;
6 return 0;
7 }

• main is special: it is always the first function executed in a program
• main returns its “value” to the “system”
• The return value is called the exit status for the program
• Returning zero means success in Linux
• Returning greater than zero means failure in Linux

4.2. Function Call

1 function_name(pvalue0, pvalue1, ...)

• To call a function we simply use its name and pass in one value for
each parameter in the parameter list surrounded by parenthesis

• If parameters are expressions, then we must evaluate them before
calling the function

• A function call is itself an expression which evaluates to the value
returned by the function

• Function parameters and “local” variables declared within a
function are effectively in a new block which is called the function’s
stack frame

• The value of each parameter is copied into these local variables
(call-by-value semantics)

Topic 1: Introduction to C 12

4. Functions 4.2. Function Call

Steps for calling a function

1. Evaluate parameters, allocate temp storage in caller’s stack frame?
2. Allocate storage on caller’s stack frame for the return value?
3. Allocate the callee’s stack frame with space allocated for parameters
4. Copy evaluated parameters from step 1 into callee’s stack frame
5. Record location of function call
6. Move execution arrow to first statement in callee
7. Evaluate statements inside the callee
8. At return statement, evaluate argument, update variable in caller
9. Return execution arrow back to where function was called in caller

10. Deallocate the callee’s stack frame

222 01 int avg(int x, int y)
222 02 {
222 03 int sum = x + y;
222 04 int ans = sum / 2;
222 05 return ans;
222 06 }
222 07

222 08 int main()
222 09 {
222 10 int a = 10;
222 11 int b = 20;
222 12 int c = avg(a, b);
222 13 return 0;
222 14 }

Use dot in an execution box for a function
call. Always shift one column of execution
boxes to the left when you move the
execution arrow backwards. Use vertical
line to for skipping statements.

stack

Topic 1: Introduction to C 13

4. Functions 4.2. Function Call

Draw a state diagram
corresponding to the execution of
this program

222 01 int add(int r, int s)
222 02 {
222 03 int t = r + s;
222 04 return t;
222 05 }
222 06

222 07 int avg(int x, int y)
222 08 {
222 09 int sum = add(x, y);
222 10 return sum / 2;
222 11 }
222 12

222 13 int main()
222 14 {
222 15 int a = 10;
222 16 int b = 20;
222 17 int c = avg(a, b);
222 18 return 0;
222 19 }

stack

Topic 1: Introduction to C 14

4. Functions 4.3. The printf Function

4.3. The printf Function

The printf function is provided by the C standard library and can be
used to print values to the screen. Here is pseudocode for the printf
function definition.

1 printf(format_string, value0, value1, ...)
2 {
3 substitute value0 into format_string
4 substitute value1 into format_string
5 ...
6 display final format_string on the screen
7 }

Here is an example of calling printf.

1 #include <stdio.h>
2

3 int avg(int x, int y)
4 {
5 int sum = x + y;
6 return sum / 2;
7 }
8

9 int main()
10 {
11 int a = 10;
12 int b = 20;
13 int c = avg(a, b);
14 printf("average of %d and %d is %d\n", a, b, c);
15 return 0;
16 }

• https://repl.it/@cbatten/ece2400-T01-ex1
• https://godbolt.org/z/crzvMf

Topic 1: Introduction to C 15

5. Conditional Statements 5.1. Boolean Operators

printf is used for sending output to the console. The course zyBook
also discusses scanf which is used to retrieve input from the console.

5. Conditional Statements

• Conditional statements enable programs to make decisions
based on the values of their variables

• Conditional statements enable non-linear forward control flow

5.1. Boolean Operators

• Boolean operators are used in expressions which evaluate to a either
true or false

• In C, a Boolean value is just an integer, where we interpret a value of
zero to mean false and any non-zero value to mean true

expr1 == expr2 tests if expr1 is to expr2

expr1 != expr2 tests if expr1 is to expr2

expr1 < expr2 tests if expr1 is to expr2

expr1 <= expr2 tests if expr1 is to expr2

expr1 > expr2 tests if expr1 is to expr2

expr1 >= expr2 tests if expr1 is to expr2

!expr computes the logical of expr

expr1 && expr2 computes the logical of expr1 and expr2

expr1 || expr2 computes the logical of expr1 and expr2

Using these operators in an expression evaluates
to either zero (false) or one (true)

Topic 1: Introduction to C 16

5. Conditional Statements 5.1. Boolean Operators

• Logical operators also have a place in the operator precedence table

Category Operator Associativity

Unary ! right to left

Multiplicative * / % left to right

Additive + - left to right

Relational < <= > >= left to right

Equality == != left to right

Logical AND && left to right

Logical OR || left to right

Assignment = right to left

Topic 1: Introduction to C 17

5. Conditional Statements 5.2. if/else Conditional Statements

5.2. if/else Conditional Statements

1 if (conditional_expression)
2 then_statement;
3 else
4 else_statement;

• is an expression which returns a Boolean
• is executed if the conditional expression is true
• is executed if the conditional expression is false

• Recall that blocks are compound statements

1 if (conditional_expression0)
2 then_statement0;
3 else if (conditional_expression1)
4 then_statement1;
5 else
6 else_statement;

• If the first cond expression is true, execute first then statement
• If the first cond expression is false, evaluate second cond expression
• If second cond expression is true, execute second then statement
• If second cond expression is false, execute else statement

Topic 1: Introduction to C 18

5. Conditional Statements 5.2. if/else Conditional Statements

222 01 int min(int x, int y)
222 02 {
222 03 int z;
222 04 if (x < y) {
222 05 z = x;
222 06 }
222 07 else {
222 08 z = y;
222 09 }
222 10 return z;
222 11 }
222 12

222 13 int main()
222 14 {
222 15 int a = min(5, 9);
222 16 int b = min(7, 3);
222 17 return 0;
222 18 }

stack

Topic 1: Introduction to C 19

5. Conditional Statements 5.2. if/else Conditional Statements

222 01 int min3(int x, int y, int z)
222 02 {
222 03 if (x < y) {
222 04 if (x < z)
222 05 return x;
222 06 }
222 07 else if (y < z) {
222 08 return y;
222 09 }
222 10 return z;
222 11 }
222 12

222 13 int main()
222 14 {
222 15 int a = min3(3, 7, 2);
222 16 return 0;
222 17 }

stack

The course zyBook includes more information on switch/case condi-
tional statements that enable immediately jumping to a specific state-
ment based on a selection expression.

Topic 1: Introduction to C 20

6. Iteration Statements 6.1. for Loops

6. Iteration Statements

• Iteration statements enable programs to execute the same code
multiple times based on a conditional expression

• Iteration statements enable backward flow control
• Two primary kinds of iteration statements: while and for loops

6.1. for Loops

1 for (initialization_stmt; cond_expr; increment_stmt)
2 loop_body;

• is executed once before loop executes
• is an expression which returns a Boolean
• is a statement which is executed as long as the

conditional expression is true
• is executed at the end of each iteration

22222 01 int mul(int x, int y)
22222 02 {
22222 03 int z = 0;
22222 04 for (int i=0; i<y; i=i+1) {
22222 05 z = z + x;
22222 06 }
22222 07 return z;
22222 08 }
22222 09

22222 10 int main()
22222 11 {
22222 12 int a = mul(2,3);
22222 13 return 0;
22222 14 }

stack

Topic 1: Introduction to C 21

6. Iteration Statements 6.1. for Loops

Output a sequence

Write a C function that takes one
integer input (N) that is
non-negative. The C function
should output a sequence of
integers according to the pattern on
the right. So for example, if N is 4,
then the C function should print
out 0 0 0 3 4. The C function
should always return 0.

N output

0: 0
1: 0 0
2: 0 0 0
3: 0 0 0 3
4: 0 0 0 3 4
5: 0 0 0 3 4 5
6: 0 0 0 3 4 5 6

int print_seq(int N) {

The course zyBook includes more information on while loops, an
alternative form of iteration statement, and more generally, syntatic
sugar which adds new syntax but not new semantics

Topic 1: Introduction to C 22

