
ECE 2400 Computer Systems Programming, Fall 2021
PA2: List and Vector Data Structures

School of Electrical and Computer Engineering
Cornell University

revision: 2021-10-04-08-38

1. Introduction

The second programming assignment will give you experience working with two important data
structures in computer systems programming: a doubly linked list and a resizable vector. While
this programming assignment is more data-structure centric, you will still need to leverage your
knowledge of algorithms. Algorithms together with data structures provide the basis of all software
programs. In particular, learning to analyze and compare different data structures with similar inter-
faces is a fundamental skill and will be tremendously useful as you continue to work with software
programs.

Lists and vectors are data structures that are used extensively in computer systems programming, and
although you will create data structures that only store integers in this programming assignment, the
same approach can be used to store other types of elements as well. Although these data structures
have similar interfaces, they are internally organized with different approaches that heavily impact
their strengths and weaknesses. You will evaluate the impact of scaling the number of stored el-
ements on the execution time and space usage of the various data structures. As in the previous
assignment, we will leverage the CMake framework for building programs, the CTest framework for
unit testing, and GitHub Actions for continuous integration testing.

After your data structures are functional and tested, you will write a four-page report that includes
your complexity analysis and a quantitative evaluation of the performance across all implementa-
tions. You should consult the programming assignment logistics document for more information
about the expectations for all programming assignments and how they will be assessed. While
the final code and report are all due at the end of the assignment, we also require meeting an
incremental milestone in this PA. Requirements specific to this PA for the incremental milestone
and the final submission are described at the end of this handout.

This handout assumes that you have read and understand the course tutorials and that you have
attended the discussion sections. To get started, log in to an ecelinux server, source the setup script,
and clone your individual remote repository from GitHub:

% source setup-ece2400.sh
% mkdir -p ${HOME}/ece2400
% cd ${HOME}/ece2400
% git clone git@github.com:cornell-ece2400/netid
% cd ${HOME}/ece2400/netid/pa2-dstruct
% tree

Where netid should be replaced with your NetID. You can both pull and push to your individual
remote repository. You should never fork your individual remote repository! If you need to work
in isolation then use a branch within your individual remote repository. If you have already cloned

1

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

your individual remote repository, then use git pull to ensure you have any recent updates before
working on your programming assignment.

% cd ${HOME}/ece2400/netid
% git pull
% tree pa2-dstruct

For this assignment, you will work in the pa2-dstruct subproject, which includes the following files:

• CMakeLists.txt – CMake configuration script to generate Makefile

• src/ece2400-stdlib.h – Header file for course standard library
• src/ece2400-stdlib.c – Source code for course standard library

• src/list-int.h – Header file for list_int_t
• src/list-int.c – Source code for list_int_t
• src/list-int-adhoc.c – Ad-hoc test program for list_int_t

• src/vector-int.h – Header file for vector_int_t
• src/vector-int.c – Source code for vector_int_t
• src/vector-int-adhoc.c – Ad-hoc test program for vector_int_t

• test/list-int-directed-test.c – Directed test cases for list_int_t
• test/list-int-random-test.c – Random test cases for list_int_t
• test/vector-int-directed-test.c – Directed test cases for vector_int_t
• test/vector-int-random-test.c – Random test cases for vector_int_t

• eval/list-int.dat – Input dataset for list_int_t evaluation
• eval/vector-int.dat – Input dataset for vector_int_t evaluation
• eval/list-int-push-back-eval.c – Evaluation program for list_int_push_back
• eval/list-int-contains-eval.c – Evaluation program for list_int_contains
• eval/vector-int-push-back-v1-eval.c – Evaluation program for vector_int_push_back_v1
• eval/vector-int-push-back-v2-eval.c – Evaluation program for vector_int_push_back_v2
• eval/vector-int-contains-eval.c – Evaluation program for vector_int_contains

The programming assignment is divided into the following steps. Complete each step before moving
on to the next step.

• Step 1. Implement and test list_int_construct and list_int_destruct
• Step 2. Implement and test list_int_push_back, list_int_size, and list_int_at
• Step 3. Implement and test list_int_contains
• Step 4. Implement and test vector_int_construct and vector_int_destruct
• Step 5. Implement and test vector_int_push_back, vector_int_size, and vector_int_at
• Step 6. Implement and test vector_int_contains
• Step 7. Evaluate all implementations

We cannot stress enough how important it is to take an incremental design approach! You really
must implement and test each function before trying to move on to the next function. This means
more than just adhoc testing. You must do thorough directed testing of each function before imple-
menting the next function. Do not just implement all of the functions and then start testing.

2

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

2. Interface and Implementation Specifications

You will be implementing list and vector data structures to store integer values. You will need to
carefully consider why you pick a specific implementation approach, and how your design and im-
plementation choices might impact the storage requirements and performance of each data structure.

Note that your implementations cannot use anything from the Standard C library except for the
printf function defined in stdio.h, the MIN/MAX macros defined in limits.h, the NULL macro
defined in stddef.h, and the assert macro defined in assert.h. You should not use malloc and
free functions directly, but should instead be using ece2400_malloc and ece2400_free.

2.1. Doubly Linked List

You will implement multiple functions for manipulating a doubly linked list data structure which
is of type list_int_t. A list is composed of nodes. Each node is of type list_int_node_t and
contains an integer value, a pointer to the next node, and another pointer to the previous node (see
Figure 1). The pointers must be NULL if they do not point to any other node. A list_int_t data
structure organizes data by chaining together nodes to create a sequence of values (see Figure 2). In
this assignment, our list data structure is designed to only hold a sequence of ints. However, we
could potentially use this data structure to hold values of any other type if we changed the type of
the value field in the definition of list_int_node_t. We could revise the data structure to store a
sequence of doubles or even a sequence of other lists (i.e., a list of lists)!

Now that we know how to organize a sequence of integers as a list, we need to actually use the list.
For example, we might want to add an element to the list or to search the list for a value. Although
we could potentially re-write this code every time we want to use the list, it is better programming
practice to refactor common code into the following functions to capture each action we might like

typedef struct _list_int_node_t {
int value;
struct _list_int_node_t* next_p;
struct _list_int_node_t* prev_p;

}
list_int_node_t;

11value

next_p

list_int_node_t

prev_p

Figure 1: Definition and Example of a list_int_node_t Struct – The example list_int_node_t
struct has an integer value of 11, a next pointer, and a previous pointer. Both pointers point to NULL
(i.e., do not point to any other node).

typedef struct {
list_int_node_t* head_p;
list_int_node_t* tail_p;
int size;

}
list_int_t;

11 12 13

head_p

tail_p

list_int_t

size 3

Node 0 Node 1 Node 2

(Head Node) (Tail Node)

next_p

value

prev_p

next_p

value

prev_p

next_p

value

prev_p

Figure 2: Definition and Example of a list_int_t Struct – The example list_int_t struct has a
size of three elements, a head pointer which is pointing to Node 0, and a tail pointer which is pointing
to Node 2.

3

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

to perform: construct, destruct, push back, size, at, contains, and print. You are responsible for
implementing each of the following functions:

void list_int_construct (list_int_t* this);
void list_int_destruct (list_int_t* this);
void list_int_push_back (list_int_t* this, int value);
int list_int_size (list_int_t* this);
int list_int_at (list_int_t* this, int idx);
int list_int_contains (list_int_t* this, int value);
void list_int_print (list_int_t* this);

The specification for these functions is as follows:

• void list_int_construct(list_int_t* this);
Construct an empty list and initialize all fields in the given list_int_t. The head and tail point-
ers should be initialized to NULL to indicate that they do not point to any node. It is undefined to
call this function more than once on the same list.

• void list_int_destruct(list_int_t* this);
Destruct the list by freeing any dynamically allocated memory used by the list and also by any of
the nodes in the list. It is undefined to call this function more than once on the same list.

• void list_int_push_back(list_int_t* this, int value);
Push a new element with the given value (value) onto the end of the list (the tail end). You
should dynamically allocate one node each time list_int_push_back is called. After a new
node is created, you will need to set its value, correctly update its next pointer and previous
pointer, and also the tail node’s next pointer to add the new node to the end of the list. You will
also need to correctly update the head_p and tail_p fields in list_int_t. You can assume your
implementation will never run out of memory (i.e., ece2400_malloc will never return NULL). It is
undefined to call this function before construct or after destruct.

• int list_int_size(list_int_t* this);
Return the current number of elements in the list. If the list is empty, this function should return
0. It is undefined to call this function before construct or after destruct.

• int list_int_at(list_int_t* this, int idx);
Return the value at the given index (idx) of the list. You will need to traverse the list until you
reach the given index and return the value stored in that index. Since each node has pointers to
its previous and next nodes, the list can be traversed in both directions (i.e., either toward the tail
node using the next pointers or toward the head node using the previous pointers). You should
think about how to minimize the number of nodes you need to traverse. If the given index (idx)
is out-of-bounds, the implementation should return 0. It is undefined to call this function before
construct or after destruct.

• int list_int_contains(list_int_t* this, int value);
Search the list for the given value (value) and return 1 if the value is found and 0 if it is not. If the
list is empty, then the function should always return 0. It is undefined to call this function before
construct or after destruct.

4

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

• void list_int_print(list_int_t* this);
Print the contents of the list. This function is used for your own debugging purpose. You can
implement this function in any way you like. You do not need to test this function. It is undefined
to call this function before construct or after destruct.

The functions vary in complexity, and some may require just a few lines of code to implement. Notice
that each function takes as its first argument a pointer this to a list_int_t. This tells the function
which list_int_t to operate on. In general, you will first declare a list_int_t and then use your
functions by passing in a pointer to your list. The behavior of all the functions above is undefined if
the this pointer is NULL or points to an invalid list_int_t struct.

To give you an idea of how this works, here is a simple program that constructs a list, pushes back
three values, gets the middle value, and then destructs the list:

int main(void)
{

list_int_t lst; // Declare a list_int_t on the stack
list_int_construct (&lst); // Construct an empty list
list_int_push_back (&lst, 11); // Push back 11
list_int_push_back (&lst, 12); // Push back 12
list_int_push_back (&lst, 13); // Push back 13
int a = list_int_at(&lst, 1); // int a now has 12
list_int_destruct (&lst); // Destruct lst
return 0;

}

The interface for the doubly linked list is provided for you in src/list-int.h. Write the imple-
mentation of list_int_t and list_int_node_t in src/list-int.h and the implementation of each
function inside of src/list-int.c.

2.2. Resizable Vector

You will implement multiple functions for manipulating a vector data structure which is of type
vector_int_t. The vector data structure organizes data sequentially as a continuous chunk of mem-
ory (see Figure 3). The example vector in Figure 3 holds five integers in a contiguous chunk of
memory (i.e., maxsize is 5) but is only occupying the first three spaces (i.e., size is 3). If more than
five integers need to be held, we must find a new and larger contiguous chunk of memory!

Now that we know how to organize a sequence of integers as a vector, we again want to actually
use the vector. We can capture each action we want to perform into individual functions: construct,
destruct, push back, size, at, contains, and print. Notice that these provide the same functionality
for vector as our list provides. You are responsible for implementing each of the following functions:

void vector_int_construct (vector_int_t* this);
void vector_int_destruct (vector_int_t* this);
void vector_int_push_back_v1 (vector_int_t* this, int value);
void vector_int_push_back_v2 (vector_int_t* this, int value);
int vector_int_size (vector_int_t* this);
int vector_int_at (vector_int_t* this, int idx);
int vector_int_contains (vector_int_t* this, int value);
void vector_int_print (vector_int_t* this);

5

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

typedef struct {
int* data;
int maxsize;
int size;

}
vector_int_t;

a[0]

vector_int_t

a[1]

a[2]

size

data

maxsize

a

3

5
contiguous

chunk of
memory

a[3]

a[4]

11

12

13

?

? uninitialized
values

Figure 3: Definition and Example of a vector_int_t Struct – The example vector_int_t struct has
a size of three elements, a maxsize of five elements, and a pointer to an internal array that holds the
data.

The specification for these functions is as follows:

• void vector_int_construct(vector_int_t* this);
Construct an empty vector by initializing all fields in vector_int_t. size should be initialized
to 0. maxsize should be initialized appropriately given the rest of the implementation. It is
undefined to call this function more than once on the same vector.

• void vector_int_destruct(vector_int_t* this);
Destruct the vector by freeing any dynamically allocated memory used by the vector. It is unde-
fined to call this function more than once on the same vector.

• int vector_int_size(vector_int_t* this);
Return the current number of elements in the vector. If the vector is empty, this function should
return 0. It is undefined to call this function before construct or after destruct.

• void vector_int_push_back_v1(vector_int_t* this, int value);
Push a new element with the given value at the end of the vector. If there is not enough allocated
contiguous space, dynamically allocate more memory to store both existing elements and the new
element. This function should allocate just enough memory (e.g., (size + 1) elements) to store both
existing and new elements. You need to copy the data from the old space into the new space with
a loop, and finally free the memory in the old space. You can assume your implementation will
never run out of memory (i.e., ece2400_malloc will never return NULL). It is undefined to call this
function before construct or after destruct.

• void vector_int_push_back_v2(vector_int_t* this, int value);
Similar to vector_int_push_back_v1, this function also pushes a new element with the given
value at the end of the vector. If there is not enough allocated contiguous space, this function
doubles its current memory space to accommodate the new element. You also need to copy
the data from the old space into the new space and free the old memory space. maxsize will
just be the total amount of memory allocated for the vector, while size will just be the amount
that is currently used. You can assume your implementation will never run out of memory (i.e.,
ece2400_malloc will never return NULL). It is undefined to call this function before construct or
after destruct.

• int vector_int_at(vector_int_t* this, int idx);
Return the value at the given index (idx) of the vector. If the given index (idx) is out-of-bounds,
the implementation should return 0. It is undefined to call this function before construct or after
destruct.

6

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

• int vector_int_contains(vector_int_t* this, int value);
Search the vector for the given value (value) and return 1 if the value is found and 0 if it is not. If
the vector is empty, then the function should always return 0. We want to minimize the number of
comparisons if possible. It is undefined to call this function before construct or after destruct.

• void vector_int_print(vector_int_t* this);
Print the content in the vector. This function is used for your own debugging purpose. You can
implement this function in any way you like. You do not need to test this function. It is undefined
to call this function before construct or after destruct.

The functions vary in complexity, and some may require just a few lines of code to implement. Notice
that each function takes as its first argument a pointer this to an vector_int_t. In general, you will
first declare a vector_int_t and then use your functions by passing in a pointer to your vector.
This tells the function which vector_int_t to operate on. The behavior of all the functions above is
undefined if the this pointer is NULL or points to an invalid vector_int_t struct.

For reference, here is a simple program that constructs a vector, pushes back three values, gets the
middle value, and then destructs the vector:

int main(void)
{

vector_int_t vec; // Declare a vector_int_t on the stack
vector_int_construct (&vec); // Construct an empty vector
vector_int_push_back_v1(&vec, 11); // Push back 11
vector_int_push_back_v1(&vec, 12); // Push back 12
vector_int_push_back_v1(&vec, 13); // Push back 13
int a = vector_int_at (&vec, 1); // int a now has 12
vector_int_destruct (&vec); // Destruct vec
return 0;

}

The interface for the resizable vector is provided for you in src/vector-int.h. Write the implemen-
tation of vector_int_t in src/vector-int.h and the implementation of each function in src/vector-int.c.

2.3. ECE 2400 Malloc and Free

Instead of using the malloc function directly for dynamic memory allocation in the list and vector
data structures, we provide you a pair of wrapper functions called ece2400_malloc and ece2400_free.
These functions are declared inside src/ece2400-stdlib.h. These two functions internally call
malloc and free, but they also keep track of how much heap memory your program has allocated
so far.

• void* ece2400_malloc(size_t mem_size);
Dynamically allocate a memory space of size mem_size on the heap. The function returns a
pointer to the newly allocated space. If the allocation fails, a NULL is returned. Note that just
like malloc, this function has a parameter of type size_t. Because we use the -Wconversion flag
to tell the compiler to warn of us of any potentially unsafe implicit type conversions, this means
we need to explicitly cast any variables of time int to size_t when calling this function. See an
example below.

• void ece2400_free(void* ptr);
Deallocate the memory space pointed by ptr in the heap. If ptr is NULL, no action occurs. Note

7

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

that this function must be used in pair with ece2400_malloc, i.e., ptr must be a pointer returned
by ece2400_malloc. Using this function on a pointer returned by normal malloc is undefined
and may result in a segmentation fault

For reference, here is a simple function that allocates an array of N integers on the heap.

int main(void)
{

int N = 32;
int* data = ece2400_malloc((size_t) N * sizeof(int));

// ... do something with data ...

ece2400_free(data);
return 0;

}

Notice the need to use an explicitly cast the variable N to size_t. Technically this means if N is
negative you will allocate a huge amount of memory on the heap, so you should ensure that N is not
negative.

3. Testing Strategy

You are responsible for developing an effective testing strategy to ensure all implementations are
correct. Writing tests is one of the most important and challenging aspects of software programming.
Software engineers often spend far more time implementing tests than they do implementing the
actual program.

Note that while there are limitations on what you can use from the Standard C library in your imple-
mentations there are no limitations on what you can use from the Standard C library in your testing
strategy. You should feel free to use the Standard C library in your golden reference models and/or
for random testing.

3.1. Ad-hoc Testing

To help students start testing, we provide one ad-hoc test program per implementation in src/list-int-adhoc.c
and src/vector-int-adhoc.c. Students are encouraged to start compiling and running these ad-hoc
test programs directly in the src/ directory without using any build-automation tool (e.g., CMake
and Make).

You can build and run the given ad-hoc test programs like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct/src
% gcc -Wall -o list-int-adhoc ece2400-stdlib.c list-int.c list-int-adhoc.c
% ./list-int-adhoc

% gcc -Wall -o vector-int-adhoc ece2400-stdlib.c vector-int.c vector-int-adhoc.c
% ./vector-int-adhoc

The -Wall flag will ensure that gcc reports most warnings.

8

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

3.2. Systematic Unit Testing

While ad-hoc test programs help you quickly see results of your implementations, they are often
too simple to cover most scenarios. We need a systematic unit testing strategy to hopefully test all
possible scenarios efficiently.

In this course, we are using CMake/CTest as a build and test automation tool. For each implemen-
tation, we provide a directed test program that should include several test cases to target different
categories, and a random test program that should test that your implementation works for random
inputs. We only provide a very few directed tests and no random tests. You must add many more
directed and random tests to thoroughly test your implementations!

Design your directed tests to stress various common cases but also to capture cases that you as a
programmer suspect may be challenging for your functions to handle. Random testing will be par-
ticularly useful in this programming assignment to grow your lists and vectors to arbitrary lengths,
get values from random indices, and find random values that may or may not be present in your
data structure. Ensure that your random tests are repeatable by calling the srand function once at
the top of your test case with a constant seed (e.g., srand(0)).

We provide you a testing framework you should use for your directed and random testing. See
the provided test programs in the test subdirectory for how to use this framework. The ECE 2400
standard library in ece2400-stdlib.h contains the following macros you should use to check the
correctness of your implementations:

• ECE2400_CHECK_FAIL() – check program does not reach this point
• ECE2400_CHECK_TRUE(expr_) – check expr_ is always true
• ECE2400_CHECK_FALSE(expr_) – check expr_ is always false
• ECE2400_CHECK_INT_EQ(expr0_, expr1_) – check expr0_ equals expr1_

Before running the tests you need to create a separate build directory and use cmake to create the
Makefile like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct
% mkdir -p build
% cd build
% cmake ..

Now you can build and run all unit tests for all implementations like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct/build
% make check

If you are failing a test program, then you can “zoom in” and run all of the unit tests for a single test
program (e.g., directed tests for list) like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct/build
% make list-int-directed-test
% ./list-int-directed-test

You can then “zoom in” to a specific test case by passing in the index of that test case like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct/build
% make list-int-directed-test

9

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

% ./list-int-directed-test 1
% ./list-int-directed-test 2

3.3. Test-Case Crowd Sourcing

While a comprehensive test suite provides strong evidence that your implementation has the correct
functionality, it is particularly challenging to write high-quality test cases for all of your implemen-
tations. Students can use test-case crowd-sourcing after the milestone to reduce the workload of
constructing a comprehensive test suite. Test-case crowd-sourcing will use a Canvas discussion
page; students cannot see any of the currently posted test cases until they post one of their own.
Focus on uploading one or two very strong directed or random test cases. Do not upload more than
two test cases. Avoid uploading simple directed test cases since students will have already devel-
oped such test cases for the milestone. Posting the basic test case provided by the course instructors,
posting an obviously too simple test case, and/or posting something which is obviously meant to
“game” the system is not allowed. Let’s all work together to crowd-source a great test suite that
every student can take advantage of!

You can use test cases posted in the Canvas discussion page in your test programs as long as you
acknowledge the author, so be sure to include the comment in your source code which describes
the test case and includes the author’s name. You will need to renumber the test cases and call them
correctly from main(). Make sure you understand the test case and that you feel it is testing correct
behavior before including it in your test suite!

3.4. Memory Leaks

Students are also responsible for making sure that their program contains no memory leaks or other
issues with dynamic allocation. We have included a make target called memcheck which runs all of
the test programs with Valgrind. Valgrind will force the test to fail if it detects any kind of memory
leak or other issues with dynamic allocation.

You can check memory leaks and other issues with dynamic memory allocation for all your test
programs like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct/build
% make memcheck

You can just check one test program (e.g. list-int-directed-test) like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct/build
% make list-directed-test
% valgrind --trace-children=yes --leak-check=full \

--error-exitcode=1 --undef-value-errors=no ./list-int-directed-test

Those are quite a few command line options to Valgrind, so we have created an ece2400-valgrid
script. This script is just a simple wrapper which calls Valgrind with the right options.

% cd ${HOME}/ece2400/netid/pa2-dstruct/build
% make list-int-directed-test
% ece2400-valgrind ./list-int-directed-test

10

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

3.5. Code Coverage

After your implementations pass all unit tests, you can evaluate how effective your test suite is by
measuring its code coverage. The code coverage will tell you how much of your source code your
test suite executed during your unit testing. The higher the code coverage is, the less likely some
bugs have not been detected. You can run the code coverage like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct
% rm -rf build-coverage
% mkdir -p build-coverage
% cd build-coverage
% cmake ..
% make check
% make coverage

Note that these code coverage results will reflect all prior runs of the test and evaluation programs in
the build directory. That is why in the above example, we do a fresh build in a separate build-coverage
build directory.

If you want to drill down and explore the coverage of each line in a program you use use the elinks
web browser like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct/build-coverage
% elinks coverage-html/index.html

Code coverage is just one more piece of evidence you can use to make a compelling case for the
correct functionality of your implementations. It is not required that students achieve 100% code
coverage. It is far more important that students simply use code coverage as a way to guide their
test-driven design than to overly focus on the specific code coverage number.

4. Evaluation

Once you have tested the functionality of the list and vector implementations, you can evaluate their
performance and also memory usage. We provide you with an evaluation program for the push_back
and contains functions: list_int_push_back, list_int_contains, vector_int_push_back_v1,
vector_int_push_back_v2, and vector_int_contains. You should not need to modify the aevalua-
tion programs. The ECE 2400 standard library in ece2400-stdlib.h contains the following functions
that are used in the evaluation programs to measure the execution time and heap space usage.

• ece2400_timer_reset() – reset global timer
• ece2400_timer_get_elapsed() – return elapsed time in seconds since last reset
• ece2400_mem_reset() – reset global memory usage counter
• ece2400_mem_get_aux_usage() – return max heap space allocated in bytes since last reset

You can build these evaluation programs like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct
% mkdir -p build-eval
% cd build-eval
% cmake -DCMAKE_BUILD_TYPE=eval ..
% make eval

11

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

Note how we are working in a separate build-eval build directory, and that we are using the
-DCMAKE_BUILD_TYPE=eval command line option to the cmake script. This tells the build system
to create optimized executable without any extra debugging information. You must do your quanti-
tative evaluation using an eval build. Using a debug build for evaluation produces meaningless
results.

To run an evaluation for push back, you simply specify the number of push backs that you want to
evaluate on the command line. For example, the following runs an evaluation for 100 push backs for
the list data structure.

% cd ${HOME}/ece2400/netid/pa2-dstruct/build-eval
% make list-int-push-back-eval
% ./list-int-push-back-eval 100

To run an evaluation for contains, you need to specify the number of elements that are in the list
or vector. The evaluation program will always perform 5000 calls to the contains function, with
the argument to contains uniformly randomly chosen from the values present in the data structure.
The inputs are not sorted in any order. The following runs an evaluation for 5000 contains on a
100-element list:

% cd ${HOME}/ece2400/netid/pa2-dstruct/build-eval
% make list-int-contains-eval
% ./list-int-contains-eval 100

The evaluation programs measure the execution time as well as the memory (heap) usage. This will
enable you to compare the performance and memory usage between list and vector. The evaluation
programs also verify that your implementations are producing the correct results. However, you
should not use the evaluation programs for testing. If your implementations fail during the evalua-
tion, then your testing strategy is insufficient. You must add more unit tests to effectively test your
program before returning to evaluation.

You should quantitatively evaluate the three push back functions and two contains functions for a
range of inputs. We suggest running the list-int-push-back-eval, vector-int-push-back-v1-eval,
and vector-int-push-back-v2-eval with input from 100 to 2000. For list-int-contains-eval
and vector-int-contains-eval, run them with input from 100 to 2000. Record all of this perfor-
mance data.

5. Milestone and Final Submission

This section includes critical information about the incremental milestone, final code submission,
and the final report specific to this PA. The programming assignment logistics document provides
general details about the requirements for the milestone and final submission. You must actually
read the document to ensure you know how we will access your milestone and final submission.

5.1. Incremental Milestone

While the final code and report are all due at the end of the assignment, we also require you to com-
plete an incremental milestone and push your code to GitHub by the date specified by the instructor.
In this PA, to meet the incremental milestone, you will need to implement the list and write an ex-
tensive test suite including many directed and random tests for this implementation. Here is how
we will be testing your milestone:

12

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

% mkdir -p ${HOME}/ece2400/submissions
% cd ${HOME}/ece2400/submissions
% rm -rf repo
% git clone git@github.com:cornell-ece2400/netid

% cd ${HOME}/ece2400/submissions/netid/pa2-dstruct
% mkdir -p build
% cd build
% cmake ..
% make check-milestone

5.2. Final Code Submission

Your code quality score will be based on the way you format the text in your source files, proper use
of comments, deletion of instructor comments, and uploading the correct files to GitHub (only source
files should be uploaded, no generated build files). To assist you in formatting your code correctly,
we have created a make target that will autoformat the code for you. You can use it like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct
% mkdir -p build
% cd build
% cmake ..
% make autoformat
% git diff
... check all changes ...
% git commit -a -m "autoformat"

Note that the autoformat target will only work if you have already committed all of your work. This
way you can easily use git diff to view the changes made by the autoformatting and commit those
changes when you are happy with them. Since we provide students an automated way to format
their code correctly, students have no excuse for not following the course coding conventions!

Note that students must remove unnecessary comments that are provided by instructors in the
code distributed to students. Students must not commit executable binaries or any other unnec-
essary files. The autoformat target will not take care of these issues for you.

To submit your code you simply upload it to GitHub. Your code will be assessed both in terms of
functionality and code quality. Your functionality score will be determined by running your code
against a series of tests developed by the instructors to test its correctness. Here is how we will be
testing your final code submission:

% mkdir -p ${HOME}/ece2400/submissions
% cd ${HOME}/ece2400/submissions
% rm -rf repo
% git clone git@github.com:cornell-ece2400/netid

% cd ${HOME}/ece2400/submissions/netid/pa2-dstruct
% mkdir -p build
% cd build
% cmake ..
% make check

13

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

% make eval
... run the eval programs ...

5.3. Final Report

The final report must be uploaded to Canvas. The date you upload your report will indicate how
many slip days you are using for the assignment. For this PA, we require you to include four sections:
introduction, complexity analysis, quantitative evaluation, and conclusion.

The complexity analysis section of your report must include a table that summarizes the time and
space complexity (in big-O notation) of several functions (see Table 1 for a template). For time com-
plexity analysis, you need to pick a key operator. For space complexity analysis, you need to analyze
the auxillary heap space usage of just that function (i.e., do not include the heap space usage of the data-
structure before calling the function). The input parameter is N where N is the number of elements
stored in the data structure. This means your complexity analysis should capture the trend as we call
the function on larger and larger data-structures. Best/worst case complexity analysis for the at function
should consider the best/worst case values of the given index (idx). Average case complexity analysis
for contains should assume the function is called with a value chosen from the values present in
the data structure using a uniform random distribution. Amortized complexity analysis for push_back
should assume a scenario where you want to fill an empty data structure with N elements by calling
push_back N times. Then analyze the amortized cost of each push_back call as discussed in lecture.
Justify your entries in the table in the complexity analysis section. Note that you don’t need to explic-
itly discuss all six steps of complexity analysis and we are not looking for a rigorously formal proof,
but you do need to be clear about the assumptions you made during analysis and provide some kind
of compelling high-level argument.

The quantitative evaluation section of your report must include three plots of execution time and
auxillary heap space usage. You should create the plots using the data recorded from your quanti-
tative evaluation. The first plot should have the number of push backs on the x-axis and amortized
execution time in microseconds for doing that number of push backs on the y-axis. Plot a data series
for each of the three implementations (list-int, vector-int-v1, vector-int-v2) of push back. The
second plot should have the number of push backs on the x-axis and the amortized auxillary heap space
usage in bytes on the y-axis. Plot a data series for each of the three implementations of push back.
The third plot should have the number of elements stored in the data structure on the x-axis and
average execution time in microseconds per call to list_int_contains and vector_int_contains
on the y-axis. Ensure your plots are easy to read with a legend, reasonable font sizes, and appropri-
ate colors/markers for black-and-white printing. The quantitative evaluation section of your report
must describe how you collected this data and what conclusions can be drawn from this data.

The quantitative evaluation section of your report must also include a table reporting a best-fit lin-
ear or polynomial equation as a function of N for each data series determined using a tool of your
choice (see Table 2 for a template). The equation should be in units of microseconds for execution
time and in units of bytes for auxillary heap space usage. Any term that is less than 0.001 µs should
be rounded to zero. For example, if the best fit for the execution time data is a quadratic equation
of the form 10.48N2 + 7.32e-04N + 31.6 in microseconds, then the appropriate equation for the table
would be 10.48N2 + 31.6 (i.e., the constant factor for the N term is effectively zero). The quan-
titative evaluation section of your report must discuss the connection between your theoretical
complexity analysis and your experimental data as captured by these best-fit linear or polynomial
regressions.

14

ECE 2400 Computer Systems Programming, Fall 2021 PA2: List and Vector Data Structures

Time Complexity Space Complexity

Function Analysis list_int vector_int list_int vector_int

push_back_v1 amortized

push_back_v2 amortized n/a n/a

size worst

at best

at worst

contains average

Table 1: Template for Complexity Analysis Table

Execution Time (µs) Aux Heap Space Usage (B)

Function Analysis list_int vector_int list_int vector_int

push_back_v1 amortized

push_back_v2 amortized n/a n/a

contains average

Table 2: Template for Measured Execution Time and Space Usage Equation Table

Acknowledgments

This programming assignment was created by Christopher Batten, Christopher Torng, Tuan Ta,
Yanghui Ou, Peitian Pan, and Nick Cebry as part of the ECE 2400 Computer Systems Programming
course at Cornell University.

15

