
ECE 2400 Computer Systems Programming, Fall 2021
PA1: Math Functions

School of Electrical and Computer Engineering
Cornell University

revision: 2021-09-25-15-07

1. Introduction

Your first programming assignment is a warmup designed to give you experience with two im-
portant aspects of computer systems programming: software design and software testing. In this
assignment, you will leverage the basic concepts from lecture, ranging from variables and operators
to conditional and iteration statements. More advanced concepts such as recursion will also play a
key role in optimizing the performance of your code.

You will implement the square root math function twice: first using a simple but naive implemen-
tation, and then using a more sophisticated algorithm that can significantly improve performance.
We will leverage the CMake/CTest framework for unit testing, and GitHub Actions for continuous
integration testing.

After your code is functional and tested, you will write a four-page report that includes a discussion
of your testing strategy and a quantitative evaluation of the performance across three implementa-
tions. You should consult the programming assignment logistics document for more information
about the expectations for all programming assignments and how they will be assessed. While
the final code and report are all due at the end of the assignment, we also require meeting an
incremental milestone in this PA. Requirements specific to this PA for the incremental milestone
and the final submission are described at the end of this handout.

This handout assumes that you have read and understand the course tutorials and that you have
attended the discussion sections. To get started, log in to an ecelinux server, source the setup script,
and clone your individual remote repository from GitHub:

% source setup-ece2400.sh
% mkdir -p ${HOME}/ece2400
% cd ${HOME}/ece2400
% git clone git@github.com:cornell-ece2400/netid
% cd ${HOME}/ece2400/netid/pa1-math
% tree

Where netid should be replaced with your NetID. You can both pull and push to your individual
remote repository. You should never fork your individual remote repository! If you need to work
in isolation then use a branch within your individual remote repository. If you have already cloned
your individual remote repository, then use git pull to ensure you have any recent updates before
working on your programming assignment.

% cd ${HOME}/ece2400/netid
% git pull
% tree pa1-math

For this assignment, you will work in the pa1-math subproject, which includes the following files:

1

ECE 2400 Computer Systems Programming, Fall 2021 PA1: Math Functions

• CMakeLists.txt – CMake configuration script to generate Makefile

• src/ece2400-stdlib.h – Header file for course standard library
• src/ece2400-stdlib.c – Source code for course standard library

• src/sqrt-iter.h – Header file for iterative sqrt
• src/sqrt-iter.c – Source code for iterative sqrt
• src/sqrt-iter-adhoc.c – Ad-hoc test program for iterative sqrt

• src/sqrt-recur.h – Header file for recursive sqrt
• src/sqrt-recur.c – Source code for recursive sqrt
• src/sqrt-recur-adhoc.c – Ad-hoc test program for recursive sqrt

• eval/sqrt-iter-eval.c – Evaluation program for iterative sqrt
• eval/sqrt-recur-eval.c – Evaluation program for recursive sqrt
• eval/sqrt-std-eval.c – Evaluation program for standard C library sqrt

• test/sqrt-iter-directed-test.c – Directed test cases for iterative sqrt
• test/sqrt-iter-random-test.c – Random test cases for iterative sqrt
• test/sqrt-recur-directed-test.c – Directed test cases for recursive sqrt
• test/sqrt-recur-random-test.c – Random test cases for recursive sqrt

The programming assignment is divided into the following steps. Complete each step before moving
on to the next step.

• Step 1. Implement and test sqrt_iter
• Step 2. Implement and test sqrt_recur
• Step 3. Evaluate all implementations

2. Interface and Implementation Specifications

You will be implementing both iterative and recursive algorithms to compute the square root (sqrt)
math function. The algorithm used for the iterative implementation of sqrt is simple but slow. The
recursive algorithm is more complex but can potentially significantly improve performance com-
pared to the iterative version.

Note that your implementations cannot use anything from the Standard C library except for the
printf function defined in stdio.h, the MIN/MAX macros defined in limits.h, and the assert
macro defined in assert.h.

sqrt Interface

The sqrt function will have the following prototype:

int sqrt(int x);

The function takes one input argument (x) and returns its square root (i.e.,
√

x). Notice that the
variant of sqrt that we will use in this assignment takes an integer input and returns another integer.
The return value is the square root of x rounded down to the nearest integer. For example, calling
sqrt(5) will return 2. If x is a negative value, the sqrt function must return -1 to report an invalid
input. Your implementations should work correctly when the input is zero and when the input is any
valid positive integer. Your implementations should not use any floating point arithmetic since this
can introduce unnecessary performance overhead. Your implementations should not use any magic

2

ECE 2400 Computer Systems Programming, Fall 2021 PA1: Math Functions

11 12

13

18

9

9

0 18

0

0

0

36

72

144

12

Initial
State

Step 1

Step 2

Step 3

Step 4

Step 5

Step 7

Step 8

11 13
Step 6

• Split the range [0, 144] into [0, 72] and [72, 144]

• Choose the lower range

• Split the range [0, 72] into [0, 36] and [36, 72]

• Choose the lower range

• Split the range [0, 36] into [0, 18] and [18, 36]

• Choose the lower range

• Split the range [0, 18] into [0, 9] and [9, 18]

• Choose the upper range

• Split the range [9, 18] into [9, 13] and [13, 18]

• Choose the lower range

• Split the range [9, 13] into [9, 11] and [11, 13]

• Choose the upper range

• Split the range [11, 13] into [11, 12] and [12, 13]

• Choose the lower range

• Search the range [11, 12]

• Identify the square root of 144 to be 12

Figure 1: Example of Recursive sqrt Algorithm – The range of integers that can contain the square
root is halved at each step.

numbers. Note that you can use INT_MAX and INT_MIN from limits.h if you need to determine the
largest and smallest value that can be stored in a variable of type int.

Iterative sqrt Implementation

The iterative implementation of the sqrt function should be implemented using an iteration state-
ment. Let i range from zero to x. For each i, compute i× i and compare the result with x. If i× i is
smaller than x, then i is less than the square root of x. If i× i is larger than x, then i is greater than
the square root of x. By gradually checking all values of i, you will be able to find the square root
of x rounded down to the nearest integer. Write your iterative implementation for sqrt inside of
src/sqrt-iter.c.

Recursive sqrt Implementation

The iterative implementation of sqrt is particularly slow when x is large because: (1) the computer
executes multiplication operations more slowly compared to simpler operations (e.g., addition, sub-
traction); and (2) the number of multiply operations increases linearly with

√
x since we are doing

an exhaustive search. We can use a more sophisticated search to reduce the number of multiply
operations. Consider the situation when x is 144. We can divide the search space into two ranges:

• Range of integers from 0 to x
2 , which is [0, 72] when x is 144

• Range of integers from x
2 to x, which is [72, 144] when x is 144

We can quickly determine which half the square root of x lies in by squaring the midpoint (i.e.,
72× 72 = 5184) and comparing to x. Observing 5184 > 144 tells us that our guess of 72 was much
too high, so the answer must be in the lower half (i.e., somewhere in the range [0, 72]), which is
true since we know in this example that the square root is 12. We can continue applying the same

3

ECE 2400 Computer Systems Programming, Fall 2021 PA1: Math Functions

approach on the smaller range, dividing the search space into smaller and smaller ranges. Figure 1
illustrates an example execution when x is 144. This approach allows us to quickly "zoom in" on the
square root of x. We can capture this algorithm iteratively, but a recursive solution is also possible
and may be more elegant and concise. The general approach of repeatedly halving the search space is
known as a binary search. We will learn more about this class of algorithms in the future. Write your
recursive implementation for sqrt inside of src/sqrt-recur.c. You may add additional helper
functions inside this file as needed.

be =

 1 if e = 0

b× b×
e
· · · × b if e > 0

be =


1 if e = 0
b if e = 1
(b2)e/2 if e > 1 and e is even
b× be−1 if e > 1 and e is odd

3. Testing Strategy

You are responsible for developing an effective testing strategy to ensure all implementations are
correct. Writing tests is one of the most important and challenging aspects of software programming.
Software engineers often spend far more time implementing tests than they do implementing the
actual program.

Note that while there are limitations on what you can use from the Standard C library in your imple-
mentations there are no limitations on what you can use from the Standard C library in your testing
strategy. You should feel free to use the Standard C library in your golden reference models and/or
for random testing.

3.1. Ad-hoc Testing

To help students start testing, we provide an ad-hoc test program for each implementation (e.g.,
src/sqrt-iter-adhoc.c). Students are encouraged to start compiling and running these ad-hoc test
programs directly in the src directory without using any build or test frameworks (e.g., CMake or
Make). You can build and run the given ad-hoc test programs like this:

% cd ${HOME}/ece2400/netid/pa1-math/src

% gcc -Wall -o sqrt-iter-adhoc ece2400-stdlib.c sqrt-iter.c sqrt-iter-adhoc.c
% ./sqrt-iter-adhoc

% gcc -Wall -o sqrt-recur-adhoc ece2400-stdlib.c sqrt-recur.c sqrt-recur-adhoc.c
% ./sqrt-recur-adhoc

The -Wall flags will ensure that gcc reports most warnings.

4

ECE 2400 Computer Systems Programming, Fall 2021 PA1: Math Functions

3.2. Systematic Unit Testing

While ad-hoc test programs help you quickly see results of your implementations, these ad-hoc tests
are often too simple to cover most scenarios. We need a systematic and automatic unit testing strat-
egy to hopefully test all possible scenarios efficiently.

In this course, we are using CMake/CTest as our build and test automation framework. For each
implementation, we provide a directed test program that should include several test cases to target
different categories and a random test program that should test that your implementation works for
random inputs. We only provide a very few directed tests and no random tests. You must add
many more directed and random tests to thoroughly test your implementations!

A directed test case involves manually pre-computing the output for a specific set of inputs, and then
verifying that your implementation produces this desired output. Start by writing as many directed
test cases as you can for some simple and more complex inputs. As you design your implementa-
tions, pay careful attention to corner cases and unexpected inputs (e.g., negative inputs) that break
the functionality of your code. When you encounter such a case, capture the situation with a directed
test case and verify your implementation now passes that test case. Carefully read the implementa-
tion specification (i.e., the inputs, the outputs, and the behavior), so you know how your program
should respond in all possible scenarios. Convince yourself that your implementations are robust by
carefully developing a testing strategy.

In addition to writing directed tests, you should also add random tests to increase your confidence in
the correctness of your implementation. You can randomly generate inputs using the rand function
in the standard C library (include stdlib.h). Use the srand function to initialize the random seed
to a deterministic value to ensure your random tests are repeatable. You can use the sqrt function
in the standard C library (include math.h) as a golden reference model to generate correct reference
outputs which you can then compare to the results from your own implementations. Note that you
are not allowed to use the sqrt function in the standard C library for your implementation, only for
testing.

We provide you a testing framework you should use for your directed and random testing. See
the provided test programs in the test subdirectory for how to use this framework. The ECE 2400
standard library in ece2400-stdlib.h contains the following macros you should use to check the
correctness of your implementations:

• ECE2400_CHECK_FAIL() – check program does not reach this point
• ECE2400_CHECK_TRUE(expr_) – check expr_ is always true
• ECE2400_CHECK_FALSE(expr_) – check expr_ is always false
• ECE2400_CHECK_INT_EQ(expr0_, expr1_) – check expr0_ equals expr1_

Before running the tests you need to create a separate build directory and use cmake to create the
Makefile like this:

% cd ${HOME}/ece2400/netid/pa1-math
% mkdir -p build
% cd build
% cmake ..

Now you can build and run all unit tests for all implementations like this:

% cd ${HOME}/ece2400/netid/pa1-math/build
% make check

5

ECE 2400 Computer Systems Programming, Fall 2021 PA1: Math Functions

If you are failing a test program, then you can “zoom in” and run all of the unit tests for a single test
program (e.g., directed tests for sqrt-iter) like this:

% cd ${HOME}/ece2400/netid/pa1-math/build
% make sqrt-iter-directed-test
% ./sqrt-iter-directed-test

You can then “zoom in” to a specific test case by passing in the index of that test case like this:

% cd ${HOME}/ece2400/netid/pa1-math/build
% make sqrt-iter-directed-test
% ./sqrt-iter-directed-test 1
% ./sqrt-iter-directed-test 2

3.3. Test-Case Crowd Sourcing

While a comprehensive test suite provides strong evidence that your implementation has the correct
functionality, it is particularly challenging to write high-quality test cases for all of your implemen-
tations. Students can use test-case crowd-sourcing after the milestone to reduce the workload of
constructing a comprehensive test suite. Test-case crowd-sourcing will use a Canvas discussion
page; students cannot see any of the currently posted test cases until they post one of their own.
Focus on uploading one or two very strong directed or random test cases. Do not upload more than
two test cases. Avoid uploading simple directed test cases since students will have already devel-
oped such test cases for the milestone. Posting the basic test case provided by the course instructors,
posting an obviously too simple test case, and/or posting something which is obviously meant to
“game” the system is not allowed. Let’s all work together to crowd-source a great test suite that
every student can take advantage of!

You can use test cases posted in the Canvas discussion page in your test programs as long as you
acknowledge the author, so be sure to include the comment in your source code which describes
the test case and includes the author’s name. You will need to renumber the test cases and call them
correctly from main(). Make sure you understand the test case and that you feel it is testing correct
behavior before including it in your test suite!

3.4. Code Coverage

After your implementations pass all unit tests, you can evaluate how effective your test suite is by
measuring its code coverage. The code coverage will tell you how much of your source code your
test suite executed during your unit testing. The higher the code coverage is, the less likely some
bugs have not been detected. You can run the code coverage like this:

% cd ${HOME}/ece2400/netid/pa1-math
% rm -rf build-coverage
% mkdir -p build-coverage
% cd build-coverage
% cmake ..
% make check
% make coverage

6

ECE 2400 Computer Systems Programming, Fall 2021 PA1: Math Functions

Note that these code coverage results will reflect all prior runs of the test and evaluation programs in
the build directory. That is why in the above example, we do a fresh build in a separate build-coverage
build directory.

If you want to drill down and explore the coverage of each line in a program you use use the elinks
web browser like this:

% cd ${HOME}/ece2400/netid/pa2-dstruct/build-coverage
% elinks coverage-html/index.html

Code coverage is just one more piece of evidence you can use to make a compelling case for the
correct functionality of your implementations. It is not required that students achieve 100% code
coverage. It is far more important that students simply use code coverage as a way to guide their
test-driven design than to overly focus on the specific code coverage number.

4. Evaluation

Once you have tested the functionality of the iterative and recursive implementations, you can then
start to evaluate the performance of these implementations. We provide you an evaluation program
for each implementation in the eval subdirectory. In addition, we also provide you an evaluation
program for the sqrt function provided in the standard math library. You should not need to modify
the evaluation programs. The ECE 2400 standard library in ece2400-stdlib.h contains the follow-
ing functions that are used in the evaluation programs to measure the execution time:

• ece2400_timer_reset() – reset the global timer
• ece2400_timer_get_elapsed() – return the elapsed time in seconds since last reset

You can build the evaluation programs like this:

% cd ${HOME}/ece2400/netid/pa1-math
% rm -rf build-eval
% mkdir -p build-eval
% cd build-eval
% cmake -DCMAKE_BUILD_TYPE=eval ..
% make eval

Note how we are working in a separate build-eval build directory, and that we are using the
-DCMAKE_BUILD_TYPE=eval command line option to the cmake script. This tells the build system
to create optimized executables without any extra debugging information. You must do your quan-
titative evaluation using an eval build. Using a debug build for evaluation produces meaningless
results.

To run an evaluation, you simply specify the inputs on the command line. For example, the following
runs an evaluation for one of the sqrt implementations to find the square root of 100.

% cd ${HOME}/ece2400/netid/pa1-math/build-eval
% make eval
% ./sqrt-iter-eval 100

The evaluation programs apply your math functions to the input you specify at the command line
in a loop and report the total wall-clock runtime. This will enable you to compare the performance
between your iterative algorithms, recursive algorithms, and the implementations provided in the

7

ECE 2400 Computer Systems Programming, Fall 2021 PA1: Math Functions

standard math library. The evaluation programs also ensure that your implementations are produc-
ing the correct results, however, you should not use the evaluation programs for testing. If your
implementations fail during the evaluation, then your testing strategy is insufficient. You must add
more unit tests to effectively test your program before returning to performance evaluation.

You should quantitatively evaluate all three evaluations for a range of values. We suggest evaluat-
ing your sqrt implementations from zero to one million with a reasonable number of intermediate
points as long as the implementation doesn’t take too long to run. Record all of this performance
data.

5. Milestone and Final Submission

This section includes critical information about the incremental milestone, final code submission,
and the final report specific to this PA. The programming assignment logistics document provides
general details about the requirements for the milestone and final submission. You must actually
read the document to ensure you know how we will access your milestone and final submission.

5.1. Incremental Milestone

While the final code and report are all due at the end of the assignment, we also require you to com-
plete an incremental milestone and push your code to GitHub by the date specified by the instructor.
In this PA, to meet the incremental milestone, you will need to first complete the iterative implemen-
tation of sqrt and then write an extensive test suite including many directed and random tests for
this implementation. Here is how we will be testing your milestone:

% mkdir -p ${HOME}/ece2400/submissions
% cd ${HOME}/ece2400/submissions
% rm -rf repo
% git clone git@github.com:cornell-ece2400/netid

% cd ${HOME}/ece2400/submissions/netid/pa1-math
% mkdir -p build
% cd build
% cmake ..
% make check-milestone

5.2. Final Code Submission

Your code quality score will be based on the way you format the text in your source files, proper use
of comments, deletion of instructor comments, and uploading the correct files to GitHub (only source
files should be uploaded, no generated build files). To assist you in formatting your code correctly,
we have created a make target that will autoformat the code for you. You can use it like this:

% cd ${HOME}/ece2400/netid/pa1-math
% mkdir -p build
% cd build
% cmake ..
% make autoformat
% git diff
... check all changes ...
% git commit -a -m "autoformat"

8

ECE 2400 Computer Systems Programming, Fall 2021 PA1: Math Functions

Note that the autoformat target will only work if you have already committed all of your work. This
way you can easily use git diff to view the changes made by the autoformatting and commit those
changes when you are happy with them. Since we provide students an automated way to format
their code correctly, students have no excuse for not following the course coding conventions!

Note that students must remove unnecessary comments that are provided by instructors in the
code distributed to students. Students must not commit executable binaries or any other unnec-
essary files. The autoformat target will not take care of these issues for you.

To submit your code you simply upload it to GitHub. Your code will be assess both in terms of
functionality and code quality. Your functionality score will be determined by running your code
against a series of tests developed by the instructors to test its correctness. Here is how we will be
testing your final code submission:

% mkdir -p ${HOME}/ece2400/submissions
% cd ${HOME}/ece2400/submissions
% rm -rf repo
% git clone git@github.com:cornell-ece2400/netid

% cd ${HOME}/ece2400/submissions/netid/pa1-math
% mkdir -p build
% cd build
% cmake ..
% make check
% make eval
... run the eval programs ...

5.3. Final Report

The final report must be uploaded to Canvas. The date you upload your report will indicate how
many slip days you are using for the assignment. For this PA, we require you to include four sections:
introduction, testing strategy, quantitative evaluation, and conclusion.

The quantitative evaluation section of your report must include a performance plot. The plot should
have the input to sqrt on the x-axis and the wall-clock runtime on the y-axis. Plot a line for each of
the three implementations of sqrt. Ensure your plot is easy to read with a legend, reasonable font
sizes, and appropriate colors/markers for black-and-white printing. You must discuss these results
in the quantitative evaluation section.

Acknowledgments

This programming assignment was created by Christopher Batten, Jose Martínéz, Christopher Torng,
Xiaodong Wang, Shuang Chen, Shunning Jiang, Tuan Ta, Yanghui Ou, Peitian Pan, and Nick Cebry
as part of the ECE 2400 Computer Systems Programming course at Cornell University.

9

