
ECE 2400 Computer Systems Programming

Topic 13: Object-Oriented Programming

http://www.csl.cornell.edu/courses/ece2400
School of Electrical and Computer Engineering

Cornell University

revision: 2021-11-18-20-42

Please do not ask for solutions. Students should compare their solutions to solutions from their
fellow students, discuss their solutions with the instructors during lab/office hours, and/or post
their solutions on Ed for discussion.

List of Problems

1 Short Answer 2

1.A Constructors and Destructors . 3

1.B Accessor Member Function . 4

1.C Clock Class (Weight: ×2) . 5

1.D Integers in Sign Magnitude Form . 6

1.E Filling a Sequence with Zeros . 7

1.F Nested Virtual Function Calls . 9

1.G Dynamic Polymorphic Array of Objects . 10

1.H Shape Interface Inheritance . 12

2 Set Data Structures 13

2.A SetLL: Set Implemented with a List of Lists . 13

2.B SetLL::contains Complexity Analysis . 17

2.C SetAA: Set Implemented with an Array of Arrays . 19

2.D SetAA::contains Complexity Analysis . 21

2.E Comparing Set Data Structures . 22

ECE 2400 Computer Systems Programming NetID:

Problem 1. Short Answer

Carefully plan your solution before starting to write your response. Please be brief and to the point;
if at all possible, limit your answers to the space provided.

2

ECE 2400 Computer Systems Programming NetID:

heap

Part 1.A Constructors and Destructors

The following class Foo includes a single dynamically
allocated integer. Draw the state diagram that corre-
sponds to the execution of this C++ program. You
must clearly label all variables in your diagram (in-
cluding any implicit variables), explicitly show all con-
structors and destructors, and fully expand out the
stack frames for all function calls.

222 222 01 class Foo
222 222 02 {
222 222 03 public:
222 222 04

222 222 05 Foo() { m_p = nullptr; }
222 222 06

222 222 07 Foo(int v)
222 222 08 {
222 222 09 m_p = new int;
222 222 10 *m_p = v;
222 222 11 }
222 222 12

222 222 13 Foo(const Foo& x)
222 222 14 {
222 222 15 if (x.m_p != nullptr) {
222 222 16 m_p = new int;
222 222 17 *m_p = *x.m_p;
222 222 18 }
222 222 19 else
222 222 20 m_p = nullptr;
222 222 21 }
222 222 22

222 222 23 ~Foo() { delete m_p; }
222 222 24

222 222 25 private:
222 222 26 int* m_p;
222 222 27 };

222 222 28 void bar()
222 222 29 {
222 222 30 Foo a(3);
222 222 31 Foo b(a);
222 222 32 }

222 33 int main(void)
222 34 {
222 35 bar();
222 36 return 0;
222 37 }

stack

3

ECE 2400 Computer Systems Programming NetID:

Part 1.B Accessor Member Function

The following class Foo includes a single dynamically allo-
cated integer, and the class Bar includes a single dynam-
ically allocated instances of Foo. Draw the state diagram
that corresponds to the execution of this C++ program.
You must clearly label all variables in your diagram (includ-
ing any implicit variables), explicitly show all constructors
and destructors, and fully expand out the stack frames for
all function calls.

222 222 222 01 class Foo
222 222 222 02 {
222 222 222 03 public:
222 222 222 04 Foo() { m_i = new int; }
222 222 222 05 ~Foo() { delete m_i; }
222 222 222 06

222 222 222 07 void set(int v) {
222 222 222 08 *m_i = v;
222 222 222 09 }
222 222 222 10

222 222 222 11 private:
222 222 222 12 int* m_i;
222 222 222 13 };
222 222 222 14

222 222 222 15 class Bar
222 222 222 16 {
222 222 222 17 public:
222 222 222 18 Bar() { m_f = new Foo; }
222 222 222 19 ~Bar() { delete m_f; }
222 222 222 20

222 222 222 21 void set(int v) {
222 222 222 22 m_f->set(v);
222 222 222 23 }
222 222 222 24

222 222 222 25 private:
222 222 222 26 Foo* m_f;
222 222 222 27 };
222 222 222 28

222 222 222 29 int main(void)
222 222 222 30 {
222 222 222 31 Bar bar;
222 222 222 32 bar.set(12);
222 222 222 33 return 0;
222 222 222 34 };

heap

stack

4

ECE 2400 Computer Systems Programming NetID:

Part 1.C Clock Class (Weight: ×2)

Consider the following C++ program which defines a new
class Clock to represent a clock with both an hour (m_hour)
and a minute (m_min) field. Draw the state diagram that
corresponds to the execution of this C++ program. You
must clearly label all variables in your diagram (including
any implicit variables), explicitly show all constructors and
destructors, and fully expand out the stack frames for all
function calls.

1 class Clock
2 {
3 public:
4
5 Clock()
6 {
7 m_hour = 0;
8 m_min = 0;
9 }

10
11 Clock(int hour, int min) {
12 if ((hour < 0) || (hour > 12)
13 || (min < 0) || (min >= 60))
14 throw -1;
15
16 m_hour = hour;
17 m_min = min;
18 }
19
20 void tick() {
21 m_min++;
22 if (m_min == 60) {
23 m_hour = m_hour + 1;
24 m_min = 0;
25 }
26 if (m_hour == 12)
27 m_hour = 0;
28 }
29
30 private:
31 int m_hour;
32 int m_min;
33 };
34
35 int main(void)
36 {
37 Clock c0;
38 Clock c1(9, 30);
39 c0 = c1;
40 c0.tick();
41 return 0;
42 }

stack

5

ECE 2400 Computer Systems Programming NetID:

Part 1.D Integers in Sign Magnitude Form

The following class Integer stores integer whole num-
bers in sign magnitude form (i.e., the m_pos field in-
dicates if the number is positive, and the m_mag field
is the unsigned magnitude). Draw the state diagram
that corresponds to the execution of this C++ pro-
gram. You must clearly label all variables in your di-
agram (including any implicit variables) and fully ex-
pand out the stack frames for all function calls. You
do not need to show any constructors or destructors at all
in your state diagram! However, you do need to show the
execute of constructors and destructors using the execution
boxes.

222 222 01 class Integer
222 222 02 {
222 222 03 public:
222 222 04

222 222 05 Integer()
222 222 06 {
222 222 07 m_pos = true;
222 222 08 m_mag = 0
222 222 09 }
222 222 10

222 222 11 Integer(int v)
222 222 12 {
222 222 13 m_pos = (v >= 0);
222 222 14 m_mag = m_pos ? v : -v;
222 222 15 }
222 222 16

222 222 17 int get_value() const
222 222 18 {
222 222 19 int sign = m_pos ? 1 : -1;
222 222 20 return sign * m_mag;
222 222 21 }
222 222 22

222 222 23 private:
222 222 24 bool m_pos;
222 222 25 unsigned int m_mag;
222 222 26 };
222 222 27

222 222 28 Integer
222 222 29 operator+(const Integer& w, int x)
222 222 30 {
222 222 31 int y = w.get_value();
222 222 32 Integer z(x + y);
222 222 33 return z;
222 222 34 }
222 222 35

222 222 36 int main(void)
222 222 37 {
222 222 38 Integer a(-3);
222 222 39 Integer b = a + 2;
222 222 40 return 0;
222 222 41 }

stack

6

ECE 2400 Computer Systems Programming NetID:

Part 1.E Filling a Sequence with Zeros

Recall the C++ singly linked list data structure from lecture. The interface and implementation
are shown below with one addition. We have added a new size member function to calculate the
number of elements currently stored in the linked list.

1 class SListInt
2 {
3 public:
4 SListInt();
5 ~SListInt();
6
7 void push_front(int v);
8 int size() const;
9

10 private:
11
12 struct Node
13 {
14 int value;
15 Node* next_p;
16 };
17
18 Node* m_head_p;
19 };

Consider the following algorithm to fill a
SListInt with zeros. Note the list may or may
not be initially empty. An example is shown
below illustrating the use of this algorithm on
a list which initially contains two elements.

52 void fill_with_zeros(SListInt* lst_p,
53 int N)
54 {
55 while (lst_p->size() < N)
56 lst_p->push_front(0);
57 }
58
59 int main(void)
60 {
61 SListInt lst;
62 lst.push_front(42);
63 lst.push_front(13);
64 fill_with_zeros(&lst, 10);
65 return 0;
66 }

19 SListInt::SListInt()
20 {
21 m_head_p = nullptr;
22 }
23
24 void SListInt::push_front(int v)
25 {
26 Node* new_node_p = new Node;
27 new_node_p->value = v;
28 new_node_p->next_p = m_head_p;
29 m_head_p = new_node_p;
30 }
31
32 SListInt::~SListInt()
33 {
34 while (m_head_p != nullptr) {
35 Node* temp_p
36 = m_head_p->next_p;
37 delete m_head_p;
38 m_head_p = temp_p;
39 }
40 }
41
42 int SListInt::size() const
43 {
44 int num_elm = 0;
45 Node* curr_p = m_head_p;
46 while (curr_p != nullptr) {
47 num_elm += 1;
48 curr_p = curr_p->next_p;
49 }
50 return num_elm;
51 }

7

ECE 2400 Computer Systems Programming NetID:

What is the time complexity of the fill_with_zeros algorithm when applied to SListInt as a
function of N? Use asymptotic big-O notation. Use the six-step process described in lecture for
complexity analysis to justify your answer. You must explicitly number and identify all six steps
to receive full credit.

8

ECE 2400 Computer Systems Programming NetID:

Part 1.F Nested Virtual Function Calls

Consider the following three classes: Foo and Bar in-
herit from IBase. Draw the state diagram that corre-
sponds to the execution of this C++ program. You
must clearly label all variables in your diagram (in-
cluding any implicit variables) and fully expand out
the stack frames for all function calls. You do not need
to show any constructors or destructors at all in your state
diagram! However, you do need to show the execute of con-
structors and destructors using the execution boxes. You
must explicitly indicate which version of baz and go is be-
ing called.

222 222 222 01 class IBase
222 222 222 02 {
222 222 222 03 public:
222 222 222 04 virtual ~IBase() { }
222 222 222 05 virtual void baz(IBase* x) = 0;
222 222 222 06 virtual void go() = 0;
222 222 222 07 };
222 222 222 08

222 222 222 09 class Foo : public IBase
222 222 222 10 {
222 222 222 11 public:
222 222 222 12 Foo() { m_d = 0; }
222 222 222 13 void baz(IBase* x) { x->go(); }
222 222 222 14 void go() { m_d += 1; }
222 222 222 15

222 222 222 16 private:
222 222 222 17 int m_d;
222 222 222 18 };
222 222 222 19

222 222 222 20 class Bar : public IBase
222 222 222 21 {
222 222 222 22 public:
222 222 222 23 Bar() { m_d = 10; }
222 222 222 24 void baz(IBase* x) { x->go(); }
222 222 222 25 void go() { m_d += 2; }
222 222 222 26

222 222 222 27 private:
222 222 222 28 int m_d;
222 222 222 29 };
222 222 222 30

222 222 222 31 int main(void)
222 222 222 32 {
222 222 222 33 Foo a;
222 222 222 34 Bar b;
222 222 222 35 a.baz(&b);
222 222 222 36 Foo c;
222 222 222 37 c.baz(&c);
222 222 222 38 return 0;
222 222 222 39 }

stack

9

ECE 2400 Computer Systems Programming NetID:

Part 1.G Dynamic Polymorphic Array of Objects

The code on the following page illustrates using dynamic polymorphism to create an array of two
IObjects. Draw the state diagram that corresponds to the execution of this C++ program. You
must clearly label all variables in your diagram (including any implicit variables) and fully ex-
pand out the stack frames for all function calls. However, you do not need to show any constructors or
destructors at all on the stack or execution boxes!

10

ECE 2400 Computer Systems Programming NetID:

You do not need to show
any constructors or
destructors at all on the
stack or execution
boxes!

heap

222 222 222 01 class IObject
222 222 222 02 {
222 222 222 03 public:
222 222 222 04 virtual IObject* clone() const = 0;
222 222 222 05 ...
222 222 222 06 };
222 222 222 07

222 222 222 08 class Integer : public IObject
222 222 222 09 {
222 222 222 10 public:
222 222 222 11 Integer(int i) { m_i = i; }
222 222 222 12 IObject* clone() const {
222 222 222 13 return new Integer(*this);
222 222 222 14 }
222 222 222 15 ...
222 222 222 16 private:
222 222 222 17 int m_i;
222 222 222 18 };
222 222 222 19

222 222 222 20 class Double : public IObject
222 222 222 21 {
222 222 222 22 public:
222 222 222 23 Double(double d) { m_d = d; }
222 222 222 24 IObject* clone() const {
222 222 222 25 return new Double(*this);
222 222 222 26 }
222 222 222 27 ...
222 222 222 28 private:
222 222 222 29 double m_d;
222 222 222 30 };
222 222 222 31

222 222 222 32 void append(IObject** objs, int idx,
222 222 222 33 const IObject& obj)
222 222 222 34 {
222 222 222 35 objs[idx] = obj.clone();
222 222 222 36 }
222 222 222 37

222 222 222 38 int main(void)
222 222 222 39 {
222 222 222 40 IObject* objs[2];
222 222 222 41 Integer a(5);
222 222 222 42 append(objs, 0, a);
222 222 222 43 Double b(2.5);
222 222 222 44 append(objs, 1, b);
222 222 222 45 return 0;
222 222 222 46 };

stack

11

ECE 2400 Computer Systems Programming NetID:

Part 1.H Shape Interface Inheritance

Consider the following C++ program which uses an
IShape class hierarchy similar to lecture. Draw the state
diagram that corresponds to the execution of this C++
program. You must clearly label all variables in your
diagram (including any implicit variables) and fully
expand out the stack frames for all function calls. You do
not need to show any constructors or destructors at all in your
state diagram!

1 class IShape
2 {
3 public:
4 virtual void scale(int s) = 0;
5 ...
6 };
7
8 class Point : public IShape
9 {

10 public:
11 Point() { m_x = 0; m_y = 0; }
12 Point(int x, int y) { m_x = x; m_y = y; }
13 void scale(int s) { m_x = m_x*s; m_y = m_y*s; }
14 ...
15 private:
16 int m_x; int m_y;
17 };
18
19 class Circle : public IShape
20 {
21 public:
22 Circle() { m_x=0; m_y=0; m_r=0; }
23 Circle(int x, int y, int r) { m_x=x; m_y=y; m_r=r; }
24 void scale(int s) { m_r = m_r*s; }
25 ...
26 private:
27 int m_x; int m_y; int m_r;
28 };
29
30 void scale_shapes(IShape* s0, IShape* s1, int s)
31 {
32 s0->scale(s);
33 s1->scale(s);
34 }
35
36 int main(void)
37 {
38 Point a(1,2);
39 Circle b(3,4,2);
40 scale_shapes(&a, &b, 2);
41 return 0;
42 }

stack

Do not
show any
construc-
tors or
destructors
at all!

12

ECE 2400 Computer Systems Programming NetID:

Problem 2. Set Data Structures

In this problem, you will explore two different approaches to implementing a set abstract data type
(ADT) for integers. The first approach will use a list of lists, while the second approach will use an
array of arrays. Recall that the set ADT should be able to add items to the set and to also query if
the set contains an item.

Part 2.A SetLL: Set Implemented with a List of Lists

The first implementation of the set data structure will use a list of lists. An important aspect of this
implementation is that it will rely on the notion of a key associated with each integer added to the
set. The key k of an integer v is defined as k = v % K where % is the C/C++ modulus operator and
K is an implementation-defined constant. Recall that the modulus operator essentially returns the
remainder of v/K. So for example, if v = 24 and K = 10, then k = 4 (i.e., 24/10 leaves a remainder
of 4) and if v = 30 and K = 8, then k = 6 (i.e., 30/8 leaves a remainder of 6).

The high-level idea for this implementation is shown below. This example uses K = 10, and the set
contains { 24, 37, 44, 72, 74, 97 }. Each node in the outer list contains a key, an inner list of integers,
and a pointer to the next node of the outer list. This implementation should preserve the invariant
that all integers with the same key are stored in the same inner list. So we use the following steps
when adding integers to the set: (1) check to see if the integer is already in the set; (2) if the integer
is not in the set, then we iterate through the outer list to see if the integer’s key is already in the set;
(3) if the integer’s key is in the set, then we simply push the new integer onto the front of the list
corresponding to the integer’s key; (4) if the integer’s key is not in the set, then we add a new node
to the outer list and push the new integer onto the front of the list corresponding to this new node.

key

list

next_p

key

list

next_p

key

list

next_p

m_head_p

4

2

7

44 24 74

72

37 97

Outer List

Inner List

13

ECE 2400 Computer Systems Programming NetID:

For the inner list, our implementation will use the standard list data structure for ints which we
discussed in lecture. The interface for this data structure is shown below for reference. You should
assume the implementation of this list data structure is exactly as described in lecture.

1 class ListInt
2 {
3 public:
4
5 ListInt();
6 ~ListInt();
7
8 void push_front(int v);
9

10 class Itr
11 {
12 public:
13 Itr(Node* node_p);
14 void next();
15 int& get();
16 bool eq(const Itr& itr) const;
17
18 private:
19 Node* m_node_p;
20 };
21
22 Itr begin();
23 Itr end();
24
25 private:
26
27 struct Node
28 {
29 int value;
30 Node* next_p;
31 };
32
33 Node* m_head_p;
34
35 };
36
37 ListInt::Itr operator++(ListInt::Itr& itr, int); // postfix (itr++)
38 ListInt::Itr& operator++(ListInt::Itr& itr); // prefix (++itr)
39 int& operator*(ListInt::Itr& itr);
40 bool operator!=(const ListInt::Itr& itr0, const ListInt::Itr& itr1);

14

ECE 2400 Computer Systems Programming NetID:

The interface and the private member fields for the set data structure which uses a list of lists is
shown below. We have also provided the implementation of the add member function. Study this
function closely before continuing with this problem.

1 class SetLL
2 {
3 public:
4
5 SetLL();
6 ~SetLL();
7
8 void add(int v);
9 bool contains(int v) const;

10
11 private:
12
13 // Compile-time constant
14 static const int K = 10;
15
16 struct OuterNode
17 {
18 int key;
19 ListInt list;
20 OuterNode* next_p;
21 };
22
23 OuterNode* m_head_p;
24 };

1 void SetLL::add(int v)
2 {
3 // Key is the remainder of v / K
4 int key = v % K;
5
6 // Step 1. See if set already contains v
7
8 if (contains(v))
9 return;

10
11 // Step 2. See if key is in the set
12
13 bool found = false;
14 OuterNode* curr_p = m_head_p;
15 while (!found && (curr_p != nullptr)) {
16
17 // Step 3. Key is in the set, add v to list
18 if (curr_p->key == key) {
19 curr_p->list.push_front(v);
20 found = true;
21 }
22
23 curr_p = curr_p->next_p;
24 }
25
26 // Step 4. Key is not in set so ...
27 // ... create new outer node
28 // ... add v to the list in new outer node
29
30 if (!found) {
31 OuterNode* new_node_p = new OuterNode();
32 new_node_p->key = key;
33 new_node_p->list = ListInt();
34 new_node_p->next_p = m_head_p;
35 m_head_p = new_node_p;
36
37 // Insert the value into front of new list
38 m_head_p->list.push_front(v);
39 }
40 }

15

ECE 2400 Computer Systems Programming NetID:

Implement the SetLL::contains C++ member function. Clearly identify any corner cases and
choose a reasonable approach to handle those corner cases. While you are welcome to use pseu-
docode to plan your approach, your final solution must be written using valid C++ syntax.

bool SetLL::contains(int v) const {

16

ECE 2400 Computer Systems Programming NetID:

Part 2.B SetLL::contains Complexity Analysis

Assume we have N integers in the set, and that the values of these integers are uniformly dis-
tributed across the entire range of integers. Recall that K is a compile-time constant used to calculate
the keys. What is the worst-case execution time and time complexity for the SetLL::contains
member function as a function of N and K? Use asymptotic big-O notation for time complexity.
Justify your answer.

As before, assume we have N integers in the set, and that the values of these integers are uniformly
distributed across the entire range of integers. What is the space usage and space complexity of
this data structure as a function of N and K? Use asymptotic big-O notation for space complexity.
Justify your answer. In other words, how much space is requied to store N unique integers in the
set as a function of N and K?

17

ECE 2400 Computer Systems Programming NetID:

In the previous analysis, we assumed K was fixed at compile time. Consider an adaptive variant of
this data structure which attempts to ensure K is always roughly proportional to

√
N. To implement

the adaptive variant, we would augment the SetLL::add member function to periodically check
to see if K is much smaller or larger than

√
N. When K is far from

√
N, the SetLL::add member

function will create a new list of lists and then copy the contents of the current set into the new
list of lists using K =

√
N. The adaptive variant will have the property that K will always be

roughly proportional to
√

N. What is the worst-case execution time and time complexity for
the SetLL::contains member function for the adaptive variant of this set data structure? Use
asymptotic big-O notation for the time complexity. Justify your answer. Again, you must assume
that the N integers currently in the set are uniformly distributed across the entire range of integers.
You can ignore the time it takes to periodically create a new list of lists and copy the integers into this new
list of lists.

18

ECE 2400 Computer Systems Programming NetID:

Part 2.C SetAA: Set Implemented with an Array of Arrays

The second implementation of the set data structure will use an array of arrays. This implemen-
tation will also rely on the notion of a key associated with each integer added to the set. The key
k of an integer v is defined as k = v % K, exactly as in the previous parts of this problem. This
part will also assume that we only wish to add positive integers to the set, and that we know at
compile time the maximum integer (M− 1) we might ever want to add to the set. So there are three
key parameters or variables we will need to take into consideration: N is the number of integers
currently in the set, K is used to calculate the key for any given integer, and M− 1 is the maximum
integer we might ever want to add to the set.

The high-level idea for this implementation is shown below. This example uses K = 10 and M =
100, and the set contains { 24, 37, 44, 72, 74, 97 }. There is one element in the data structure for
every possible integer we might ever want to add to the set. The value of the element is true if the
corresponding integer is in the set and false if the corresponding integer is not in the set. Each
element in the outer array is essentially an inner array. There are K elements in the outer array and
each of the K inner arrays have M/K elements. You can assume that M is evenly divisible by K.

The interface and the private member fields for the set data structure which uses an array of arrays
is also shown below.

00 0 0 0 0 0 0 0 0

00 0 0 0 0 0 0 0 0

00 0 0 0 0 0 1 0 0

00 0 0 0 0 0 0 0 0

00 1 0 1 0 0 1 0 0

00 0 0 0 0 0 0 0 0

00 0 0 0 0 0 0 0 0

00 0 1 0 0 0 0 0 1

00 0 0 0 0 0 0 0 0

00 0 0 0 0 0 0 0 0

K

M/K

O
u

te
r

A
rr

ay

Inner Array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

1 class SetAA
2 {
3 public:
4
5 SetAA();
6 ~SetAA();
7
8 void add(int v);
9 bool contains(int v) const;

10
11 private:
12
13 // Compile-time constants
14 static const int M = 100;
15 static const int K = 10;
16
17 bool m_data[K][M/K];
18
19 };

19

ECE 2400 Computer Systems Programming NetID:

Implement the SetAA::add and SetAA::contains C++ member functions. Clearly identify any
corner cases and choose a reasonable approach to handle those corner cases. While you are wel-
come to use pseudocode to plan your approach, your final solution must be written using valid
C++ syntax.

void SetAA::add(int v)
{

assert((v >= 0) && (v < M));

bool SetAA::contains(int v)
{

assert((v >= 0) && (v < M));

20

ECE 2400 Computer Systems Programming NetID:

Part 2.D SetAA::contains Complexity Analysis

Assume we have N integers in the set, and that the values of these integers are uniformly dis-
tributed across the range from 0 to M− 1. Recall that K is a compile-time constant used to calculate
the keys and that M− 1 is the largest possible integer we might ever want to add to the set. What is
the worst-case execution time and time complexity for the SetAA::contains member function?
Use asymptotic big-O notation for time complexity. Justify your answer.

Assume we have N integers in the set, and that the values of these integers are uniformly dis-
tributed across the range from 0 to M− 1. What is the space usage and space complexity of this
data structure? Use asymptotic big-O notation for the space complexity. Justify your answer. In
other words, how much space is required to store N unique integers (in the range 0 to M − 1) in
the set as a function of N, K, and M?

21

ECE 2400 Computer Systems Programming NetID:

Part 2.E Comparing Set Data Structures

In this problem, you will be qualitatively comparing various search algorithms. Begin by filling in
the following table based on your analysis in this problem. The time complexity should be the
worst-case time complexity for the contains member function assume we have N integers in the
set, and that the values of these integers are uniformly distributed across the range of 0 to M− 1.
Recall that for the adaptive implementation, you can ignore the time it takes to periodically create a
new list of lists and copy the integers into this new list of lists. The space complexity should capture
how much heap space is required to store N unique integers in the set. Your answers should be
in terms of N, K, and M as appropriate. For the SetL row, assume we implement the set using a
single linked list as discussed in lecture.

Implementation Time Complexity Space Complexity

SetL (one list)

SetLL (list of lists, not adaptive)

SetLL (list of lists, adaptive)

SetAA (array of arrays)

Use these results along with deeper insights to perform a comparative analysis of these set data
structures, with the ultimate goal of making a compelling argument for which data structure will
perform better across a large number of usage scenarios. While you are free to use whatever ap-
proach you like, we recommend you structure your response in several paragraphs. The first para-
graph might discuss the performance of contains for all four data structure using time complexity
analysis. Remember that time complexity analysis is not the entire story; it is just the starting point
for understanding execution time. The second paragraph might discuss the heap space usage of
all four data structures using space complexity analysis. Remember that space complexity analysis
is not the entire story; it is just the starting point for understanding space usage. The The third
paragraph might discuss other qualitative metrics such as generality, maintainability, and design
complexity. The final paragraph can conclude by making a compelling argument for which data
structure will perform better in the general case, or if you cannot strongly argue for a single data
structure explain why. Your answer will be assessed on how well you argue your position.

22

