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• An abstract data type (ADT) is a high-level conceptual specification
of an interface for a data type

– an informal sketch
– formal mathematical definition
– programming language construct

• A data structure is a concrete implementation of an ADT

• In this topic, we will discuss seven ADTs:

– Indexed Sequence insert, remove, at
– Iterable Sequence insert, remove, begin, end, next, get
– Stack push, pop
– Queue enq, deq
– Priority Queue insert, extract
– Set add, remove, contains, union, intersect
– Map add, remove, lookup

• For each ADT we will:

– sketch the high-level idea using an analogy
– provide an example C-based interface for the ADT
– discuss implementation trade-offs for the ADT
– discuss applications for the ADT

Topic 10: Abstract Data Types 3



1. Indexed Sequence ADT 1.1. Indexed Sequence Interface

1. Indexed Sequence ADT

• Imagine putting together a music playlist
• We can insert songs into any position in the playlist
• We can remove songs from any position in the playlist
• We can access/change songs at a position in the playlist

1.1. Indexed Sequence Interface

1 typedef struct { /* implementation defined */ } idxseq_t;
2 typedef /* any type */ item_t;
3

4 void idxseq_construct ( idxseq_t* this );
5 void idxseq_destruct ( idxseq_t* this );
6 void idxseq_insert ( idxseq_t* this, int idx, item_t v );
7 void idxseq_remove ( idxseq_t* this, int idx );
8 item_t* idxseq_at ( idxseq_t* this, int idx );

Example of using indexed sequence interface

1 idxseq_t idxseq;
2 idxseq_construct ( &idxseq );
3 idxseq_insert ( &idxseq, 1, 2 );
4 idxseq_insert ( &idxseq, 2, 4 );
5 idxseq_insert ( &idxseq, 3, 6 );
6 idxseq_insert ( &idxseq, 4, 3 );
7

8 for ( int i = 0; i < 4; i++ )
9 int value = *idxseq_at(i);

10

11 idxseq_destruct ( &idxseq );
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1. Indexed Sequence ADT 1.2. Indexed Sequence Implementation

1.2. Indexed Sequence Implementation

• List implementation

– All operations must step through each node in the list to reach the item
with desired index (may need to step through entire list thus worst-case
time complexity is O(N))

• Vector implementation

– idxseq_insert/idxseq_remote can directly index to desired element,
but then must shift up/down remaining elements in vector (may need to
shift all elements thus worst-case time complexity is O(N))

– idxseq_at can directly index to desired element (time complexity is O(1))
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2. Iterable Sequence ADT 2.2. Iterable Sequence Interface

2. Iterable Sequence ADT

• Same music playlist analogy now with a stronger emphasis on being
able to iterate through the playlist to play the music

2.1. Iterable Sequence Interface

1 typedef struct { /* implementation defined */ } itrseq_t;
2 typedef /* any type */ item_t;
3 typedef /* implementation defined */ itr_t;
4

5 void itrseq_construct ( itrseq_t* this );
6 void itrseq_destruct ( itrseq_t* this );
7 void itrseq_insert ( itrseq_t* this, itr_t itr );
8 void itrseq_remove ( itrseq_t* this, itr_t itr );
9 itr_t itrseq_begin ( itrseq_t* this );

10 itr_t itrseq_end ( itrseq_t* this );
11 itr_t itrseq_next ( itrseq_t* this, itr_t itr );
12 item_t* itrseq_get ( itrseq_t* this, itr_t itr );

Example of using iterable sequence interface

1 itrseq_t itrseq;
2 itrseq_construct ( &itrseq );
3 itrseq_insert ( &itrseq, itrseq_end(&itrseq), 2 );
4 itrseq_insert ( &itrseq, itrseq_end(&itrseq), 4 );
5 itrseq_insert ( &itrseq, itrseq_end(&itrseq), 6 );
6 itrseq_insert ( &itrseq, itrseq_end(&itrseq), 3 );
7

8 itr_t itr = itrseq_begin( &itrseq );
9 while ( itr != itrseq_end( &itrseq ) ) {

10 int value = *itrseq_get( &itrseq, itr );
11 itr = itrseq_next( &itrseq, itr );
12 }
13

14 itrseq_destruct ( &itrseq );
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2. Iterable Sequence ADT 2.2. Iterable Sequence Implementation

2.2. Iterable Sequence Implementation

• List implementation

– itr_t is a pointer to a node
– itrseq_begin returns the head pointer
– itrseq_end returns the NULL pointer
– itrseq_next returns itr->next_p
– itrseq_get returns &(itr->value)
– Time complexity of all iterator operations is O(1)
– itrseq_insert/itrseq_remove can directly manipulate pointers in

doubly linked list thus time complexity is O(1) regardless of location

• Vector implementation

– itr_t is an index
– itrseq_begin returns 0
– itrseq_end returns size
– itrseq_next returns itr++
– itrseq_get returns &(m_data[itr])
– Time complexity of all iterator operations is O(1)
– itrseq_insert/itrseq_remove must shift up/down remaining elements

in vector (may need to shift all elements thus worst-case time is O(N))
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3. Stack ADT 3.2. Stack Interface

3. Stack ADT

• Imagine a stack of playing cards
• We can add (push) cards onto the top of the stack
• We can remove (pop) cards from the top of the stack
• Not allowed to insert cards into the middle of the deck
• Only the top of the stack is accessible
• Sometimes called last-in, first-out (LIFO)

3.1. Stack Interface

1 typedef struct { /* implementation defined */ } stack_t;
2 typedef /* any type */ item_t;
3

4 void stack_construct ( stack_t* this );
5 void stack_destruct ( stack_t* this );
6 void stack_push ( stack_t* this, item_t v );
7 item_t stack_pop ( stack_t* this );

Example of using stack interface

1 stack_t stack;
2 stack_construct ( &stack );
3 stack_push ( &stack, 6 );
4 stack_push ( &stack, 2 ); // stack now has 2 items
5

6 int a = stack_pop ( &stack ); // returns 2
7 stack_push ( &stack, 8 );
8 stack_push ( &stack, 3 ); // stack now has 3 items
9

10 int b = stack_pop ( &stack ); // returns 3
11 int c = stack_pop ( &stack ); // returns 8
12 int d = stack_pop ( &stack ); // returns 6
13

14 stack_destruct ( &stack );
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3. Stack ADT 3.2. Stack Implementation

3.2. Stack Implementation

• List implementation

– stack_push operates on back of list with list_push_back
– stack_pop also operates on back of list with list_pop_back
– Time complexity for both operations is O(1)

• Vector implementation

– stack_push operates on back of vector with vector_push_back
– stack_pop also operates on back of vector with vector_pop_back
– Amortized time complexity for both operations is O(1)

3.3. Stack Applications

• Parsing HTML document, need to track currently open tags

1 <html>
2 <head>
3 <title>Simple Webpage</title>
4 </head>
5 <body>
6 Some text
7 <b>Some bold text
8 <i>and bold italics
9 </i> just bold</b>

10 </body>
11 </html>

• Undo log in text editor or drawing program

– After each change push entire state of document on stack
– Undo simply pops most recent state of document off of stack
– Redo can be supported with a second stack
– When popping a state from undo stack, push that state onto redo stack
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4. Queue ADT 4.2. Queue Interface

4. Queue ADT

• Imagine a queue of people waiting for coffee at College Town Bagels
• People enqueue (enq) at the back of the line to wait
• People dequeue (deq) at the front of the line to get coffee
• People are not allowed to cut in line
• Sometimes called first-in, first-out (FIFO)

4.1. Queue Interface

1 typedef struct { /* implementation defined */ } queue_t;
2

3 typedef /* any type */ item_t;
4

5 void queue_construct ( queue_t* this );
6 void queue_destruct ( queue_t* this );
7 void queue_enq ( queue_t* this, item_t v );
8 item_t queue_deq ( queue_t* this );

Example of using queue interface

1 queue_t queue;
2 queue_construct ( &queue );
3 queue_enq ( &queue, 6 );
4 queue_enq ( &queue, 2 ); // queue now has 2 items
5

6 int a = queue_deq ( &queue ); // returns 6
7 queue_enq ( &queue, 8 );
8 queue_enq ( &queue, 3 ); // queue now has 3 items
9

10 int b = queue_deq ( &queue ); // returns 2
11 int c = queue_deq ( &queue ); // returns 8
12 int d = queue_deq ( &queue ); // returns 3
13

14 queue_destruct ( &queue );
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4. Queue ADT 4.2. Queue Implementation

4.2. Queue Implementation

• List implementation

– queue_enq operates on back of list with list_push_back
– queue_deq operates on front of list with list_pop_front
– Time complexity of both operations is O(1)

• Vector implementation

– queue_enq operates on back of vector with vector_push_back
(amortized time complexity is O(1))

– queue_deq operates on front of vector and always shifts down all
elements with vector_pop_front (time complexity is O(N)

• Vector implementation as circular buffer

– Keep head and tail indices
– queue_enq inserts item at tail index and increments tail index
– queue_deq removes item at head index and increments head index
– Indices are always incremented so that they “wrap around” buffer
– Can dynamically resize just like in the vector
– Amortized time complexity for both operations is O(1)
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4. Queue ADT 4.3. Queue Applications

4.3. Queue Applications

• Network processing

– Operating system provides queues for network interface to use
– Each network request is enqueued into the queue
– Operating system dequeues and processes these requests in order

• Some algorithms process work item, generate new work items

– Algorithm dequeues work item ...
– ... processes work item and enqueues new work items
– Algorithm repeats until queue is empty
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5. Priority Queue ADT 5.3. Priority Queue Interface

5. Priority Queue ADT

• Imagine we are managing an emergency room at a hospital
• Patients arrive and the triage nurse assigns each patient a priority
• The triage nurse inserts patients into the waitlist based on priority
• The emergency room doctor extracts patients from the waitlist based

on priority; highest priority is always seen first

5.1. Priority Queue Interface

1 typedef struct { /* implementation defined */ } pqueue_t;
2

3 typedef /* any type */ item_t;
4 typedef /* comparable type */ priority_t;
5

6 void pqueue_construct ( pqueue_t* this );
7 void pqueue_destruct ( pqueue_t* this );
8 void pqueue_insert ( pqueue_t* this, item_t v, priority_t p );
9 item_t pqueue_extract ( pqueue_t* this );

Example of using priority queue interface

1 pqueue_t pqueue;
2 pqueue_construct ( &pqueue );
3

4 pqueue_insert ( &pqueue, "bob", 5 );
5 pqueue_insert ( &pqueue, "cara", 7 );
6 pqueue_insert ( &pqueue, "alice", 1 );
7

8 char* a = pqueue_extract ( &pqueue ); // returns "alice"
9 char* b = pqueue_extract ( &pqueue ); // returns "bob"

10 char* c = pqueue_extract ( &pqueue ); // returns "cara"
11

12 pqueue_destruct ( &pqueue );
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5. Priority Queue ADT 5.2. Priority Queue Implementation

5.2. Priority Queue Implementation

• List implementation

– pqueue_insert scans list and inserts item to maintain sorted priority
order with highest priority item at front (may need to scan entire list thus
worst-case time complexity is O(N))

– pqueue_extract operates on the front of list with list_pop_front (time
complexity is O(1))

• Vector implementation

– pqueue_insert adds item to back of vector with vector_push_back
(amortized time complexity is O(1))

– pqueue_extract scans vector to find minimum priority item, then
removes that time and shifts remaining items down (may need to scan
entire vector thus worst-case time complexity is O(N))

5.3. Priority Queue Applications

• Job scheduling

– User gives each job a priority
– Operating system places jobs in priority queue
– Operating system schedules jobs on the machine based on priority

• Discrete-event simulation

– Events are given a timestamp that they should occur in the future
– Simulator places events into a priority queue
– Simulator always chooses highest priority event (i.e., event that is

supposed to happen next in time) to execute
– Each event might generate more events that go into priority queue

• Graph algorithms

– Dijkstra’s shortest path algorithm uses a priority queue
– Prim’s minimum spanning tree algorithm uses a priority queue
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6. Set ADT 6.1. Set Interface

6. Set ADT

• Imagine we are shopping at Greenstar with a friend
• Both of us have our own shopping bags
• As I go through the store, I add items to my shopping bag
• I might also remove items from my shopping bag
• I might need to see if my bag already contains an item
• We might want to see if we both have the same item (intersect)
• We might want to combine our bags before we checkout (union)
• We don’t care about the order of items in the bag

6.1. Set Interface

1 typedef struct { /* implementation defined */ } set_t;
2 typedef /* any type */ item_t;
3

4 void set_construct ( set_t* this );
5 void set_destruct ( set_t* this );
6 void set_add ( set_t* this, item_t v );
7 void set_remove ( set_t* this, item_t v );
8 int set_contains ( set_t* this, item_t v );
9 void set_intersect ( set_t* this, set_t* s0, set_t* s1 );

10 void set_union ( set_t* this, set_t* s0, set_t* s1 );

Example of using set interface

1 set_t set0;
2 set_construct ( &set0 );
3 set_add ( &set0, 2 );
4 set_add ( &set0, 4 );
5 set_add ( &set0, 6 );
6

7 if ( set_contains( &set0, 4 ) ) ...
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6. Set ADT 6.2. Set Implementation

1 set_t set1;
2 set_construct ( &set1 );
3 set_add ( &set1, 4 );
4 set_add ( &set1, 6 );
5

6 set_t set3;
7 set_union( &set3, &set0, &set1 );
8

9 set_destruct ( &set0 );
10 set_destruct ( &set1 );
11 set_destruct ( &set2 );

6.2. Set Implementation

• List implementation

– set_add need to search list first ...
– ... if not in list then add to back of list with list_push_back
– set_remove/set_contains also need to search list
– set_intersect for each element in one list, search other list
– set_union needs to iterate over both input lists

• Vector implementation

– set_add need to search vector first ...
– ... if not in vector then add to back of vector with vector_push_back
– set_remove needs to search vector, shift elements over
– set_contains needs to search vector
– set_intersect for each element in one vector, search other vector
– set_union needs to iterate over both input vectors

• Time complexity

– set_add, set_remove, set_contains may need to search the entire data
structure and thus worst-case time complexity is O(N)

– set_intersect is O(N × M)

– set_union is O(N × M) to avoid duplicates
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6. Set ADT 6.3. Set Applications

6.3. Set Applications

• Job scheduling

– Use a set to represent resources required by a job
– Can two jobs be executed at the same time? intersect
– Combined resources require by two jobs? union

• Some algorithms need to track processed items in a data structure

– Scan through sequence to find minimum element
– Copy minimum element to output sequence
– Use set to track which elements have been copied
– Next scan skips over elements that are also in set
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7. Map ADT 7.3. Map Interface

7. Map ADT

• Imagine we want a contact list mapping friends to phone numbers
• We need to be able to add a new friend and their number
• We need to be able to remove a friend and their number
• We need to be able to see if list contains a friend/number pair
• We need to be able to use a friend’s name to lookup a number
• We don’t care about the order of entries in the contact list

7.1. Map Interface

1 typedef struct { /* implementation defined */ } map_t;
2 typedef /* any type */ key_t;
3 typedef /* any type */ value_t;
4

5 void map_construct ( map_t* this );
6 void map_destruct ( map_t* this );
7 void map_add ( map_t* this, key_t k, value_t v );
8 void map_remove ( map_t* this, key_t k );
9 int map_contains ( map_t* this, key_t k );

10 value_t map_lookup ( map_t* this, key_t k );

Example of using map interface

1 map_t map;
2 map_construct ( &map );
3 map_add ( &map, "alice", 10 );
4 map_add ( &map, "bob", 11 );
5 map_add ( &map, "cara", 12 );
6 map_add ( &map, "bob", 13 );
7

8 if ( map_contains( &map, "bob" ) )
9 int x = map_lookup( &map, "bob" );

10

11 map_destruct ( &map );
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7. Map ADT 7.2. Map Implementation

7.2. Map Implementation

• List implementation

– Need new node type that can hold both key and value
– map_add need to search list first for key ...
– ... if key not in list then add to back of list with list_push_back
– map_remove needs to search list for key
– map_contains needs to search list for key
– map_lookup needs to search list for key return value

• Vector implementation

– Need new struct type that can hold both key and value
– Use an array of these structs
– map_add need to search vector first for key ...
– ... if key not in vector then add to back of vector with vector_push_back
– map_remove needs to search vector for key
– map_contains needs to search vector for key
– map_lookup needs to search vector for key return value

• Time complexity

– map_add, map_remove, map_contains, map_lookup all need to search the
data structure and thus worst-case time complexity is O(N)

7.3. Map Applications

• Tracking information about processes

– Map job IDs to usernames and other metadata

• Tracking information about flights

– Map flight numbers to route, time, carrier
– Map cities to list of departing flight numbers
– Map carriers to flight numbers
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8. ADT Implementation Summary

8. ADT Implementation Summary

Implementation

ADT List Vector

Binary
Search
Tree

Binary
Heap
Tree

Lookup
Table

Hash
Table

Indexed Seq 3 M

Iterable Seq M M

Stack M M

Queue M M

Priority Queue 3 3 M

Set 3 3 M M M

Map 3 3 M M M

Trees and Tables can also be used on their own as ADTs
Graphs are a new ADT with specialized implementations
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