ECE 2400 Computer Systems Programming
Fall 2021
Topic 9: Sorting Algorithms

School of Electrical and Computer Engineering
Cornell University

revision: 2021-08-29-22-43

Insertion Sort

1.1. Sorted Insert (Forward).
1.2. Sorted Insert (Reverse),
1.3. Out-of-Place InsertionSort

14. In-Place InsertionSort
Merge Sort

22. MergeSort
2.3. Hybrid Merge/InsertionSort

Quick Sort
3.1. Partition e
3.2. In-Place QuickSort

Comparing Sorting Algorithms

13

15
15
15

19

zyBooks The zyBooks logo is used to indicate additional material included in the course
zyBook which will not be discussed in detail in lecture. Students are responsible for all
material covered in lecture and in the course zyBook.

Copyright © 2021 Christopher Batten. All rights reserved. This handout was prepared
by Prof. Christopher Batten at Cornell University for ECE 2400 / ENGRD 2140 Computer
Systems Programming. Download and use of this handout is permitted for individual
educational non-commercial purposes only. Redistribution either in part or in whole via
both commercial or non-commercial means requires written permission.

Topic 9: Sorting Algorithms 2

* We will explore a variety of different kinds of algorithms:

Out-of-Place Algorithms: Gradually copy elements from input array into
a temporary array; by the end the temporary array is sorted; O(N) heap
space complexity

In-Place Algorithms: Keep all elements stored in the input array; use
input array for intermediate results; no temporary storage is required;
O(1) heap space complexity

Iterative Algorithms: Use iteration statements to implement an iterative
sorting strategy

Recursive Algorithms: Use recursion to implement a divide-and-conquer
sorting strategy

Hybrid Algorithms: Initially use one algorithm, but switch to a different
algorithm sometime during the sorting process

¢ For each algorithm, we will ...

start by exploring a helper function
use this helper function to implement a sorting function

¢ For each function, we will use ...

cards to build intuition behind algorithm
pseudocode to make algorithm more concrete
complexity analysis

zyBooks The course zyBook also introduces selection sort, which is a very simple

comparison sort, and radix sort, which is a non-comparison sort

Topic 9: Sorting Algorithms

Reminder about summation of finite series

Itz
I

0O+1+2... N-1+N

i=0+14+2... N-24+N-1 =

™M=z
Il

N-1

Y
i=1

Reminder about binary trees

/

N
4

1+24+3... N-1+N

f;/N\;V
N, e

~

1+24+3... N-24+N-1 =

N

N
1

%NZ - %N
%NZ — %N
%N2+ %N
%N2 - %N

Topic 9: Sorting Algorithms

1. Insertion Sort 1.2. Sorted Insert (Forward)

1. Insertion Sort

* sorted_insert helper function (forward and reverse variants)
¢ Call sorted_insert for every element in input array

1.1. Sorted Insert (Forward)

¢ Insert new element into sorted array such that array remains sorted
¢ Search array in the forward direction for correct location
¢ Once find correct location, insert value and push down rest of array

1 def sorted_insert_fwd(a, begin, end, v):
2 X =v

3 for i in begin to end:

4 if x < a[il:

5 swap(alil, x)

6 alend] = x

1.2. Sorted Insert (Reverse)

¢ Insert new element into sorted array such that array remains sorted
® Search array in the reverse direction

¢ Keep swapping until value is in the correct location

1 def sorted_insert_rev(a, begin, end, v):
2 alend] = v
3 for i in begin to end:

4 # ridx is the reverse index
5 ridx = begin + end - 1 - 1

6 if alridx+1] < alridx]:

7 swap(alridx+1], alridx])
8 else:

9 break

Topic 9: Sorting Algorithms 5

1. Insertion Sort 1.3. Out-of-Place Insertion Sort

1.3. Out-of-Place Insertion Sort

¢ For each element in input array, use sorted_insert to insert it into a
temporary output array

¢ Copy temporary array back into input array
* Can use either the forward or reverse version of sorted_insert

1 def insertion_sort_op(a, size):
3 set tmp to an empty array with size elements
4 for i in O to size:

5 sorted_insert_fwd(tmp, 0, i, ali])

7 for i in O to size:
8 ali]l = tmp[i]

Topic 9: Sorting Algorithms 6

1. Insertion Sort 1.4. In-Place Insertion Sort

1.4. In-Place Insertion Sort

* Divide input array into sorted and unsorted partitions
¢ Use sorted insert to insert elements from unsorted to sorted partition
* Can use either the forward or reverse version of sorted_insert

1 def insertion_sort_ip(a, size):
2 for i in O to size:
3 sorted_insert_rev(a, 0, i, al[i])

Topic 9: Sorting Algorithms 7

2. Merge Sort

2.2. Merge

2. Merge Sort

* merge helper function
* Recursively divide array into partitions, merge sorted partitions

2.1. Merge

* Merge two sorted input arrays into separate output array
Ensure output array is also sorted

def merge(c, a, begin0O, end0, b, beginl, endl):

size = (end0 - begin0O) + (endl - beginl)
assert len(c) == size

idx0 = beginO
idx1l = beginl

for i in O to size:

done with array a

if idx0 == endO:
c[i] = blidx1]
idx1l += 1

done with array b
elif idxl == endl:
cl[i]l = alidx0]

idx0 += 1

front of array a is less than front of array b
elif alidx0] < b[idx1]:

cl[i] = alidx0]

idx0 += 1

front of array by is less than front of array a
else:

c[i] = blidx1]

idxl += 1

Topic 9: Sorting Algorithms

2. Merge Sort 2.2. Merge Sort

2.2. Merge Sort

¢ Recursively partition input array into halves

* Base case is when a partition contains a single element
* After recursive calls return, use merge to merge sorted partitions

1 def merge_sort_h(a, begin, end):

2

3

4

5

size = end - begin
if size ==
return

mid = (begin + end) / 2
merge_sort_h(a, begin, mid)
merge_sort_h(a, mid, end)

set tmp to an empty array with size elements
merge(tmp, a, begin, mid, a, mid, end)

copy temporary array to input array
j=0
for i in begin to end:

alil = tmp[j]

j+=1

20 def merge_sort(a, size):

21

merge_sort_h(a, 0, size)

Topic 9: Sorting Algorithms

2. Merge Sort 2.2. Merge Sort

e Show contents of a for each recursive call
e Show contents of tmp for each merge

a (144 110{15) 20 |13)5[3|7]9[1]8[12[11]6
tmp

Uy gt

Topic 9: Sorting Algorithms 10

2. Merge Sort 2.2. Merge Sort

¢ Time complexity analysis

R
R
7T T TE T
PEEEEEEE

OooooooooooOondn

Topic 9: Sorting Algorithms 11

2. Merge Sort 2.2. Merge Sort

* Space complexity analysis

R
R
7T T TE T
PEEEEEEE

OooooooooooOondn

Topic 9: Sorting Algorithms 12

2. Merge Sort 2.3. Hybrid Merge/Insertion Sort

2.3. Hybrid Merge/Insertion Sort

* Once array becomes small enough, use O(N?) sort

1 merge_sort_hybrid_h(a, begin, end)
2 size = end - begin

3 if size <= 4:

4 return insertion_sort_op(a, begin, end)
5

tmp

Topic 9: Sorting Algorithms 13

2. Merge Sort 2.3. Hybrid Merge/Insertion Sort

* Worst-case time complexity analysis

A B

Topic 9: Sorting Algorithms 14

3. Quick Sort 3.2. Partition

3. Quick Sort

* Use partition helper function to recursively partition array

3.1. Partition

* Choose an element as the pivot and partition based on pivot
* Move all elements less than the pivot to front of the array

* Move all elements greater than the pivot to end of the array
* Pivot’s final location is in between these two partitions

1 def partition(a, begin, end):
2 pivot = alend-1]

3 idx = begin

4 for i in begin to end:

5 if a[i] <= pivot:
6 swap(alil, alidx])
7 idx += 1

8 return idx-1

3.2. In-Place Quick Sort

¢ Recursively partition input array using partition
¢ Base case is when a partition contains a single element

1 def quick_sort_h(a, begin, end):
2 size = end - begin

3 if size == 0 or size ==

4 return

5 p = partition(a, begin, end)

6 quick_sort_h(a, begin, p)

7 quick_sort_h(a, p, end)

9 def quick_sort(a, size):
10 quick_sort_h(a, 0, size)

Topic 9: Sorting Algorithms 15

3. Quick Sort 3.2. In-Place Quick Sort

return 0 1:2:3-4-5:¢:3:8-9-te-nn gt 3™ S|

l 4T S 3‘ ‘G(om U M5 s :L:_

13 ‘,5! Lg _}_‘giqiloi [v,z,.u.m.;

...... q e

Topic 9: Sorting Algorithms 16

3. Quick Sort 3.2. In-Place Quick Sort

* Best-case time complexity analysis

8/ \8
RN N
NN NN
AN A A

Topic 9: Sorting Algorithms

17

3. Quick Sort 3.2. In-Place Quick Sort

* Worst-case time complexity analysis

Topic 9: Sorting Algorithms 18

4. Comparing Sorting Algorithms

4. Comparing Sorting Algorithms

Time Complexity Space Complexity
Best Worst Avg Avg Case
Algorithm Case Case Case Stack Heap Cmp?

insertion (fwd)

insertion (rev)

selection

merge

quick

radix

Topic 9: Sorting Algorithms

19

