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* An algorithm is a clear set of steps to solve any problem in a
particular problem class

def fib( n ):

if (n==0 ): return O
if (n 1 ): return 1

return fib( n-1 ) + fib( n-2 )

* A data structure is a structured way of storing data and the
operations that can be applied to the data
— chain of nodes each storing one integer
— array of elements each storing one integer

The fib algorithms do not involve a data structure

The chain and array data structures do not involve an algorithm
* Most interesting programs involve a combination of

algorithms and data structures

Think of algorithms as verbs and data structures as nouns
* Most interesting stories involve a combination of verbs and nouns
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Algorithms Data Structures

mul: iter, single step chain of nodes

sqrt: iter, recur array of elements

search: linear, binary list. vector
7

sort: insertion, selection,

l’l’lerge, quiCk, hybrid, bL'leet Stack’ queue’ Set’ map
set intersection, set union
tind path: DFS, BFS, Dijkstra tree, table, graph

¢ Simple algorithms do not use a non-trivial data structure

¢ Simple data structures do not provide non-trivial operations

¢ Many algorithms operate on a simple data structure

* Many data structures provide operations which are implemented
using an algorithm that operates on a simple data structure

* Sometimes our programs are more algorithm centric, sometimes
they are more data-structure centric, but they almost always use
both algorithms and data structures

Algorithm + Data Structure = Program
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¢ A data structure includes both an interface and an implementation

— The interface specifies the “what”
— The implementation specifies the “how”

* Separating interface from implementation is called data
encapsulation or information hiding
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Brainstorm other non-programming examples of interfaces and
implementations. What are some reasons to separate the interface
from the implementation?
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1. Lists 1.1. Singly Linked List Interface

1.

Lists

Recall our example of a chain of dynamically allocated nodes
Let’s combine this data structure with a few simple algorithms to
create a new data structure called a singly linked list

1.1. Singly Linked List Interface
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typedef struct
{

// implementation defined

}

slist_int_t;

void slist_int_construct ( slist_int_t* this );

void slist_int_destruct ( slist_int_t* this );

void slist_int_push_front ( slist_int_t* this, int v );
(

void slist_int_reverse slist_int_t* this );

void slist_int_construct( slist_int_t* this );

Construct slist initializing all fields in this s1list_int_t.
Undefined if this is NULL, or if call more than once on same slist.

void slist_int_destruct( slist_int_t* this );

Destruct slist by freeing any dynamically allocated memory used
by this slist_int_t. Undefined if this is NULL, or if call more than
once on same slist.

void slist_int_push_front( slist_int_t* this, int v );

Push a new value (v) at the front of this slist_int_t. Undefined if
this is NULL, or if call before construct or after destruct.

void slist_int_reverse( slist_int_t* this );
Reverse all values in this slist_int_t. Undefined if this is NULL, or
if call before construct or after destruct.
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1. Lists 1.2. Singly Linked List Implementation

Example of using list interface

1 int main( void )

2 {
3 slist_int_t 1st;
4 slist_int_construct ( &lst );

5 slist_int_push_front( &lst, 12 );
6 slist_int_push_front( &lst, 11 );
7 slist_int_push_front( &lst, 10 );

8 slist_int_reverse ( &lst );
9 slist_int_destruct ( &lst );
10 return 0;

un ¥

1.2. Singly Linked List Implementation

1 typedef struct _slist_int_node_t

2 {
3 int value;
4 struct _slist_int_node_t* next_p;

}

5
6 slist_int_node_t;
7

8 typedef struct

s {

10 slist_int_node_t* head_p;
11 }

12 slist_int_t;
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1. Lists 1.2. Singly Linked List Implementation

Approach for implementing functions

1. Draw figure to explore high-level approach
2. Develop pseudo-code to capture high-level approach
3. Translate the pseudo-code to actual C code

Pseudo-code for slist_int_construct

1 void slist_int_construct( slist_int_t* this )
2 set head ptr to NULL

Pseudo-code for slist_int_push_front

After push front of value 12

After push front of value 11
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1. Lists 1.2. Singly Linked List Implementation

After push front of value 10

1 void slist_int_push_front( slist_int_t* this, int v )
2 allocate new node

3 set new node’s value to v

4+ set new node’s next ptr to head ptr

5 set head ptr to point to new node

Pseudo-code for slist_int_destruct

Dellocate head node?

Dellocate head node’s next pointer?
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1. Lists 1.2. Singly Linked List Implementation

Need temporary pointer to point to next node!

1 void slist_int_destruct( slist_int_t* this )
2 while head ptr is not NULL

3 set temp ptr to head node’s next ptr
4 free head node
5 set head node ptr to temp ptr
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1. Lists 1.2. Singly Linked List Implementation

// Construct slist stack
void slist_int_construct(
slist_int_t* this )
{
this->head_p = NULL;
}

// Push value on front of slist
void slist_int_push_front(
slist_int_t* this,
int v )

slist_int_node_t* new_node_p
= malloc( sizeof(slist_int_node_t) );

new_node_p->value = v;
new_node_p->next_p = this->head_p;
this->head_p = new_node_p;

}

// Destruct slist
void slist_int_destruct(
slist_int_t* this )
{
while ( this->head_p != NULL ) {
slist_int_node_t* temp_p
= this->head_p->next_p;
free( this->head_p );
this->head_p = temp_p;
¥ heap

}

// Main function

int main( void )

{
slist_int_t 1st;
slist_int_construct ( &lst );
slist_int_push_front( &lst, 12 );
slist_int_push_front( &lst, 11 );
slist_int_push_front( &lst, 10 );
slist_int_destruct ( &lst );
return O;

}
https://repl.it/@cbatten/ece2400-TO7-ex1
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1. Lists 1.2. Singly Linked List Implementation

Interface vs. Implementation

¢ Implementation details are exposed in slist_int_t
* A user can freely manipulate fields in slist_int_t
* C does not provide any mechanism to enforce encapsulation

Develop an algorithm for slist_int_reverse
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1. Lists 1.3. Singly Linked Lists vs. Doubly Linked Lists

1.3. Singly Linked Lists vs. Doubly Linked Lists

* When programmers say “list” they usually mean a doubly linked list

* We will use slist for singly linked list, and
just 1ist for a doubly linked list

* We will try and be explicit in the course about the kind of list
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2. Vectors 2.1. Bounded Vector Interface

2. Vectors

¢ Recall the constraints on allocating arrays on the stack, and the need

to explicitly pass the array size

* Let’s transform a dynamically allocated array along with its

maximum size and actual size into a data structure

2.1. Bounded Vector Interface

© ® N o U e W N e

typedef struct
{

// implementation defined
}

bvector_int_t;

void bvector_int_construct ( bvector_int_t* this, int maxsize );
void bvector_int_destruct ( bvector_int_t* this );

void bvector_int_push_front ( bvector_int_t* this, int v );

void bvector_int_reverse ( bvector_int_t* this );

® void bvector_int_construct( bvector_int_t* this,

int maxsize );

Construct the bvector initializing all fields in this bvector_int_t.
Undefined if this is NULL, or if call more than once on same bvector.

void bvector_int_destruct( bvector_int_t* this );

Destruct the bvector by freeing any dynamically allocated memory
used by this bvector_int_t. Undefined if this is NULL, or if call more
than once on same bvector.

void bvector_int_push_front( bvector_int_t* this, int v );
Push a new value (v) at the front of this bvector_int_t. Undefined to
push more than maxsize values. Undefined if this is NULL, or if call
before construct or after destruct.

Topic 7: Lists and Vectors 13



2. Vectors

2.2. Bounded Vector Implementation

e void bvector_int_reverse( bvector_int_t* this );

Reverse all values in this bvector_int_t. Undefined if this is NULL,

or if call before construct or after destruct.

Example of using vector interface

int main( void )

1

2 {

3 bvector_int_t vec;

4 bvector_int_construct (
5 bvector_int_push_front (
6 bvector_int_push_front (
7 bvector_int_push_front (
8 bvector_int_reverse (
9 bvector_int_destruct (
10 return O;

11 }

2.2. Bounded Vector Implementation

1 typedef struct

2 {

3 int* data;

4 int maxsize;
5 int size;

6

7 bvector_int_t;

* data is pointer to dynamically allocated array of maxsize elements
* maxsize is max number of elements we can store in bvector
* size is how many elements currently stored in bvector

&vec, 4 );
&vec, 12 );
&vec, 11 );
&vec, 10 );
&vec );
&vec );
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2. Vectors 2.2. Bounded Vector Implementation

Approach for implementing functions

1. Draw figure to explore high-level approach
2. Develop pseudo-code to capture high-level approach
3. Translate the pseudo-code to actual C code

Pseudo-code for bvector_int_construct

1 void bvector_int_construct( bvector_int_t* this, int maxsize )
2 allocate new array with maxsize elements

3 set bvector’s data to point to new array

4 set bvector’s maxsize to maxsize

5 set bvector’s size to zero

Pseudo-code for bvector_int_push_front

Initial state of bvector

After push front of value 9
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2. Vectors 2.2. Bounded Vector Implementation

After push front of value 8

Implement moving down all of the elements

1 void bvector_int_push_front( bvector_int_t* this, int v )
2 set prev value to v
3 for i in O to bvector’s size (inclusive)

4 set temp value to bvector’s datalil
5 set bvector’s datal[i] to prev value
6 set prev value to temp value

7 set bvector’s size to size + 1

Pseudo-code for bvector_int_destruct

1 void bvector_int_destruct( bvector_int_t* this )
2 free bvector’s data
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2. Vectors

2.2. Bounded Vector Implementation

// Comnstruct bvector
void bvector_int_construct(
bvector_int_t* this,
int maxsize )
{
this->data =
malloc( maxsize * sizeof (int) );
this->maxsize = maxsize;
this->size = 0;

}

// Push value on front of bvector
void bvector_int_push_front(
bvector_int_t* this, int v )
{
int prev_value = v;
for ( int i=0; i<=this->size; i++ ) {
int temp_value = this->datalil;
this->data[i] = prev_value;
prev_value = temp_value;
}
this->size += 1;

}

// Destruct bvector
void bvector_int_destruct(
bvector_int_t* this )
{
free( this->data );
}

// Main function

int main( void )

{
bvector_int_t vec;
bvector_int_construct ( &vec, 4 );
bvector_int_push_front( &vec, 12 );
bvector_int_push_front( &vec, 11 );
bvector_int_push_front( &vec, 10 );
bvector_int_destruct ( &vec );
return 0;

}

https://repl.it/@cbatten/ece2400-TO7-ex2

stack

heap
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2. Vectors 2.2. Bounded Vector Implementation

Interface vs. Implementation

¢ Implementation details are exposed in bvector_int_t
* A user can freely manipulate fields in bvector_int_t
* C does not provide any mechanism to enforce encapsulation

Develop an algorithm for bvector_int_reverse
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2. Vectors 2.3. Bounded Vectors vs. Resizable Vectors

2.3. Bounded Vectors vs. Resizable Vectors

* When programmers say “vector” they usually mean a resizable vector

¢ We will use bvector for bounded vector, and
just vector for a resizable vector

¢ We will try and be explicit in the course about the kind of vector
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3. Comparing Lists and Vectors

3. Comparing Lists and Vectors

* Many more functions are possible for both lists and vectors

1 void
2 void
3 void
4+ void
5

6 void
7 int
8§ 1int
9 int
10 void
11

12 void
13 void
14 void
15 void

ds_int_construct
ds_int_destruct
ds_int_push_front
ds_int_reverse

ds_int_push_back
ds_int_size
ds_int_at
ds_int_contains
ds_int_print

ds_int_insert
ds_int_remove
ds_int_insert
ds_int_remove

(
(
(
(

N AN~ A

~N N~~~

ds_int_tx*
ds_int_tx*
ds_int_tx*
ds_int_tx*

ds_int_tx*
ds_int_tx*
ds_int_tx*
ds_int_tx*
ds_int_tx*

ds_int_t*
ds_int_t*
ds_int_t*
ds_int_tx*

e The list and vector data structures ...

— have similar interfaces, but
— very different execution times, and

- very different space usage.

this );
this );
this, int v );
this );

this, int v );
this );

this, int idx );
this, int v );
this );

this, int idx, int v );
this, int idx );

this, ptr_t* ptr, int v );
this, ptr_t* ptr );
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3. Comparing Lists and Vectors

¢ Compare the execution time and space usage of the algorithms?

Execution Time Space Usage

()peraﬁorl slist bvector slist bvector

push_front

reverse

push_back

size

at

contains

print

insert w/ idx

remove w/ idx

insert w/ ptr

remove w/ ptr

* What about comparing a doubly linked list or a resizable vector?
* Compare the space usage of the data structure itself?
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