ECE 2400 Computer Systems Programming
Fall 2021

Topic 7: Lists and Vectors

School of Electrical and Computer Engineering
Cornell University

revision: 2021-08-29-22-43

1 Lists 5
1.1. Singly Linked List Interface 5
1.2. Singly Linked List Implementation 6
1.3. Singly Linked Lists vs. Doubly Linked Lists 12

2 Vectors 13
2.1. Bounded Vector Interface 13
2.2. Bounded Vector Implementation 14
2.3. Bounded Vectors vs. Resizable Vectors 19

3 Comparing Lists and Vectors 20

zyBooks The zyBooks logo is used to indicate additional material included in the course
zyBook which will not be discussed in detail in lecture. Students are responsible for all
material covered in lecture and in the course zyBook.

Copyright © 2021 Christopher Batten. All rights reserved. This handout was prepared
by Prof. Christopher Batten at Cornell University for ECE 2400 / ENGRD 2140 Computer
Systems Programming. Download and use of this handout is permitted for individual
educational non-commercial purposes only. Redistribution either in part or in whole via
both commercial or non-commercial means requires written permission.

1

* An algorithm is a clear set of steps to solve any problem in a
particular problem class

def fib(n):

if (n==0): return O
if (n 1): return 1

return fib(n-1) + fib(n-2)

* A data structure is a structured way of storing data and the
operations that can be applied to the data
— chain of nodes each storing one integer
— array of elements each storing one integer

The fib algorithms do not involve a data structure

The chain and array data structures do not involve an algorithm
* Most interesting programs involve a combination of

algorithms and data structures

Think of algorithms as verbs and data structures as nouns
* Most interesting stories involve a combination of verbs and nouns

Topic 7: Lists and Vectors

Algorithms Data Structures

mul: iter, single step chain of nodes

sqrt: iter, recur array of elements

search: linear, binary list. vector
7

sort: insertion, selection,

l’l’lerge, quiCk, hybrid, bL'leet Stack’ queue’ Set’ map
set intersection, set union
tind path: DFS, BFS, Dijkstra tree, table, graph

¢ Simple algorithms do not use a non-trivial data structure

¢ Simple data structures do not provide non-trivial operations

¢ Many algorithms operate on a simple data structure

* Many data structures provide operations which are implemented
using an algorithm that operates on a simple data structure

* Sometimes our programs are more algorithm centric, sometimes
they are more data-structure centric, but they almost always use
both algorithms and data structures

Algorithm + Data Structure = Program

Topic 7: Lists and Vectors

¢ A data structure includes both an interface and an implementation

— The interface specifies the “what”
— The implementation specifies the “how”

* Separating interface from implementation is called data
encapsulation or information hiding

Gentrally Located

Instrument Display
High Technology Dual ir Bags Key Pad Enlry
Sofar Glass

Hidden Antenna All Compasite
Exlerior Panels:

Electrizally Convenience
Heated Windghield Charger

Cast Aluminum
Shack Towers

Regenerative Braking
with Drive Molar

Heat Eleciric Rear

Exchangers 4 Drum Brakes
Aluminum
Space-Frame

Lead-Acid Baltery Pack

Cast Magnesium

Seat Frame & Steering

Wheel Insert

Fiberplass-Reinforced Urethane
Instrument Panel

Low Rolling-Resistance Tires
Front-Wheel-Drive

Inductively Coupled . Day-Time ExiezeCant General Motors

Charge Port Aluminum Wheels

Hydraulic e

Rellector-Optics Lighting Climate Cantrol System Front Disc Brakes
ligh Beam

Higi

Brainstorm other non-programming examples of interfaces and
implementations. What are some reasons to separate the interface
from the implementation?

Topic 7: Lists and Vectors 4

1. Lists 1.1. Singly Linked List Interface

1.

Lists

Recall our example of a chain of dynamically allocated nodes
Let’s combine this data structure with a few simple algorithms to
create a new data structure called a singly linked list

1.1. Singly Linked List Interface

© ® N o U e W N e

typedef struct
{

// implementation defined

}

slist_int_t;

void slist_int_construct (slist_int_t* this);

void slist_int_destruct (slist_int_t* this);

void slist_int_push_front (slist_int_t* this, int v);
(

void slist_int_reverse slist_int_t* this);

void slist_int_construct(slist_int_t* this);

Construct slist initializing all fields in this s1list_int_t.
Undefined if this is NULL, or if call more than once on same slist.

void slist_int_destruct(slist_int_t* this);

Destruct slist by freeing any dynamically allocated memory used
by this slist_int_t. Undefined if this is NULL, or if call more than
once on same slist.

void slist_int_push_front(slist_int_t* this, int v);

Push a new value (v) at the front of this slist_int_t. Undefined if
this is NULL, or if call before construct or after destruct.

void slist_int_reverse(slist_int_t* this);
Reverse all values in this slist_int_t. Undefined if this is NULL, or
if call before construct or after destruct.

Topic 7: Lists and Vectors

1. Lists 1.2. Singly Linked List Implementation

Example of using list interface

1 int main(void)

2 {
3 slist_int_t 1st;
4 slist_int_construct (&lst);

5 slist_int_push_front(&lst, 12);
6 slist_int_push_front(&lst, 11);
7 slist_int_push_front(&lst, 10);

8 slist_int_reverse (&lst);
9 slist_int_destruct (&lst);
10 return 0;

un ¥

1.2. Singly Linked List Implementation

1 typedef struct _slist_int_node_t

2 {
3 int value;
4 struct _slist_int_node_t* next_p;

}

5
6 slist_int_node_t;
7

8 typedef struct

s {

10 slist_int_node_t* head_p;
11 }

12 slist_int_t;

Topic 7: Lists and Vectors 6

1. Lists 1.2. Singly Linked List Implementation

Approach for implementing functions

1. Draw figure to explore high-level approach
2. Develop pseudo-code to capture high-level approach
3. Translate the pseudo-code to actual C code

Pseudo-code for slist_int_construct

1 void slist_int_construct(slist_int_t* this)
2 set head ptr to NULL

Pseudo-code for slist_int_push_front

After push front of value 12

After push front of value 11

Topic 7: Lists and Vectors

1. Lists 1.2. Singly Linked List Implementation

After push front of value 10

1 void slist_int_push_front(slist_int_t* this, int v)
2 allocate new node

3 set new node’s value to v

4+ set new node’s next ptr to head ptr

5 set head ptr to point to new node

Pseudo-code for slist_int_destruct

Dellocate head node?

Dellocate head node’s next pointer?

Topic 7: Lists and Vectors 8

1. Lists 1.2. Singly Linked List Implementation

Need temporary pointer to point to next node!

1 void slist_int_destruct(slist_int_t* this)
2 while head ptr is not NULL

3 set temp ptr to head node’s next ptr
4 free head node
5 set head node ptr to temp ptr

Topic 7: Lists and Vectors 9

1. Lists 1.2. Singly Linked List Implementation

// Construct slist stack
void slist_int_construct(
slist_int_t* this)
{
this->head_p = NULL;
}

// Push value on front of slist
void slist_int_push_front(
slist_int_t* this,
int v)

slist_int_node_t* new_node_p
= malloc(sizeof(slist_int_node_t));

new_node_p->value = v;
new_node_p->next_p = this->head_p;
this->head_p = new_node_p;

}

// Destruct slist
void slist_int_destruct(
slist_int_t* this)
{
while (this->head_p != NULL) {
slist_int_node_t* temp_p
= this->head_p->next_p;
free(this->head_p);
this->head_p = temp_p;
¥ heap

}

// Main function

int main(void)

{
slist_int_t 1st;
slist_int_construct (&lst);
slist_int_push_front(&lst, 12);
slist_int_push_front(&lst, 11);
slist_int_push_front(&lst, 10);
slist_int_destruct (&lst);
return O;

}
https://repl.it/@cbatten/ece2400-TO7-ex1

Topic 7: Lists and Vectors 10

1. Lists 1.2. Singly Linked List Implementation

Interface vs. Implementation

¢ Implementation details are exposed in slist_int_t
* A user can freely manipulate fields in slist_int_t
* C does not provide any mechanism to enforce encapsulation

Develop an algorithm for slist_int_reverse

Topic 7: Lists and Vectors 11

1. Lists 1.3. Singly Linked Lists vs. Doubly Linked Lists

1.3. Singly Linked Lists vs. Doubly Linked Lists

* When programmers say “list” they usually mean a doubly linked list

* We will use slist for singly linked list, and
just 1ist for a doubly linked list

* We will try and be explicit in the course about the kind of list

Topic 7: Lists and Vectors 12

2. Vectors 2.1. Bounded Vector Interface

2. Vectors

¢ Recall the constraints on allocating arrays on the stack, and the need

to explicitly pass the array size

* Let’s transform a dynamically allocated array along with its

maximum size and actual size into a data structure

2.1. Bounded Vector Interface

© ® N o U e W N e

typedef struct
{

// implementation defined
}

bvector_int_t;

void bvector_int_construct (bvector_int_t* this, int maxsize);
void bvector_int_destruct (bvector_int_t* this);

void bvector_int_push_front (bvector_int_t* this, int v);

void bvector_int_reverse (bvector_int_t* this);

® void bvector_int_construct(bvector_int_t* this,

int maxsize);

Construct the bvector initializing all fields in this bvector_int_t.
Undefined if this is NULL, or if call more than once on same bvector.

void bvector_int_destruct(bvector_int_t* this);

Destruct the bvector by freeing any dynamically allocated memory
used by this bvector_int_t. Undefined if this is NULL, or if call more
than once on same bvector.

void bvector_int_push_front(bvector_int_t* this, int v);
Push a new value (v) at the front of this bvector_int_t. Undefined to
push more than maxsize values. Undefined if this is NULL, or if call
before construct or after destruct.

Topic 7: Lists and Vectors 13

2. Vectors

2.2. Bounded Vector Implementation

e void bvector_int_reverse(bvector_int_t* this);

Reverse all values in this bvector_int_t. Undefined if this is NULL,

or if call before construct or after destruct.

Example of using vector interface

int main(void)

1

2 {

3 bvector_int_t vec;

4 bvector_int_construct (
5 bvector_int_push_front (
6 bvector_int_push_front (
7 bvector_int_push_front (
8 bvector_int_reverse (
9 bvector_int_destruct (
10 return O;

11 }

2.2. Bounded Vector Implementation

1 typedef struct

2 {

3 int* data;

4 int maxsize;
5 int size;

6

7 bvector_int_t;

* data is pointer to dynamically allocated array of maxsize elements
* maxsize is max number of elements we can store in bvector
* size is how many elements currently stored in bvector

&vec, 4);
&vec, 12);
&vec, 11);
&vec, 10);
&vec);
&vec);

Topic 7: Lists and Vectors

14

2. Vectors 2.2. Bounded Vector Implementation

Approach for implementing functions

1. Draw figure to explore high-level approach
2. Develop pseudo-code to capture high-level approach
3. Translate the pseudo-code to actual C code

Pseudo-code for bvector_int_construct

1 void bvector_int_construct(bvector_int_t* this, int maxsize)
2 allocate new array with maxsize elements

3 set bvector’s data to point to new array

4 set bvector’s maxsize to maxsize

5 set bvector’s size to zero

Pseudo-code for bvector_int_push_front

Initial state of bvector

After push front of value 9

Topic 7: Lists and Vectors 15

2. Vectors 2.2. Bounded Vector Implementation

After push front of value 8

Implement moving down all of the elements

1 void bvector_int_push_front(bvector_int_t* this, int v)
2 set prev value to v
3 for i in O to bvector’s size (inclusive)

4 set temp value to bvector’s datalil
5 set bvector’s datal[i] to prev value
6 set prev value to temp value

7 set bvector’s size to size + 1

Pseudo-code for bvector_int_destruct

1 void bvector_int_destruct(bvector_int_t* this)
2 free bvector’s data

Topic 7: Lists and Vectors 16

2. Vectors

2.2. Bounded Vector Implementation

// Comnstruct bvector
void bvector_int_construct(
bvector_int_t* this,
int maxsize)
{
this->data =
malloc(maxsize * sizeof (int));
this->maxsize = maxsize;
this->size = 0;

}

// Push value on front of bvector
void bvector_int_push_front(
bvector_int_t* this, int v)
{
int prev_value = v;
for (int i=0; i<=this->size; i++) {
int temp_value = this->datalil;
this->data[i] = prev_value;
prev_value = temp_value;
}
this->size += 1;

}

// Destruct bvector
void bvector_int_destruct(
bvector_int_t* this)
{
free(this->data);
}

// Main function

int main(void)

{
bvector_int_t vec;
bvector_int_construct (&vec, 4);
bvector_int_push_front(&vec, 12);
bvector_int_push_front(&vec, 11);
bvector_int_push_front(&vec, 10);
bvector_int_destruct (&vec);
return 0;

}

https://repl.it/@cbatten/ece2400-TO7-ex2

stack

heap

Topic 7: Lists and Vectors

17

2. Vectors 2.2. Bounded Vector Implementation

Interface vs. Implementation

¢ Implementation details are exposed in bvector_int_t
* A user can freely manipulate fields in bvector_int_t
* C does not provide any mechanism to enforce encapsulation

Develop an algorithm for bvector_int_reverse

Topic 7: Lists and Vectors 18

2. Vectors 2.3. Bounded Vectors vs. Resizable Vectors

2.3. Bounded Vectors vs. Resizable Vectors

* When programmers say “vector” they usually mean a resizable vector

¢ We will use bvector for bounded vector, and
just vector for a resizable vector

¢ We will try and be explicit in the course about the kind of vector

Topic 7: Lists and Vectors 19

3. Comparing Lists and Vectors

3. Comparing Lists and Vectors

* Many more functions are possible for both lists and vectors

1 void
2 void
3 void
4+ void
5

6 void
7 int
8§ 1int
9 int
10 void
11

12 void
13 void
14 void
15 void

ds_int_construct
ds_int_destruct
ds_int_push_front
ds_int_reverse

ds_int_push_back
ds_int_size
ds_int_at
ds_int_contains
ds_int_print

ds_int_insert
ds_int_remove
ds_int_insert
ds_int_remove

(
(
(
(

N AN~ A

~N N~~~

ds_int_tx*
ds_int_tx*
ds_int_tx*
ds_int_tx*

ds_int_tx*
ds_int_tx*
ds_int_tx*
ds_int_tx*
ds_int_tx*

ds_int_t*
ds_int_t*
ds_int_t*
ds_int_tx*

e The list and vector data structures ...

— have similar interfaces, but
— very different execution times, and

- very different space usage.

this);
this);
this, int v);
this);

this, int v);
this);

this, int idx);
this, int v);
this);

this, int idx, int v);
this, int idx);

this, ptr_t* ptr, int v);
this, ptr_t* ptr);

Topic 7: Lists and Vectors

20

3. Comparing Lists and Vectors

¢ Compare the execution time and space usage of the algorithms?

Execution Time Space Usage

()peraﬁorl slist bvector slist bvector

push_front

reverse

push_back

size

at

contains

print

insert w/ idx

remove w/ idx

insert w/ ptr

remove w/ ptr

* What about comparing a doubly linked list or a resizable vector?
* Compare the space usage of the data structure itself?

Topic 7: Lists and Vectors

21

