
ECE 2400 Computer Systems Programming, Fall 2017
Tutorial 1: Linux Development Environment

School of Electrical and Computer Engineering
Cornell University

revision: 2017-09-16-13-20

1 Introduction 3

2 ECE Computing Resources 3

2.1 The ecelinux Workstations in 314 Phillips Hall . 3

2.2 The ecelinux Servers . 3

2.3 Remote Login from CIT Windows Computing Lab in 318 Phillips Hall 4

2.4 Remote Login from Personal Windows Laptop/Workstation 4

2.5 Remote Login from Personal Mac Laptop/Workstation 4

2.6 Remote Login from Personal Linux Laptop/Workstation 5

2.7 Remote Login from Off-Campus Using the Cornell VPN 5

2.8 Testing X11 After Remote Login . 6

2.9 Personal Computing Resources . 6

3 The Linux Command Line 6

3.1 Hello World . 7

3.2 Manual Pages . 7

3.3 Create, View, and List Files . 7

3.4 Create, Change, and List Directories . 8

3.5 Copy, Move, and Remove Files and Directories . 11

3.6 Using wget to Download Files . 12

3.7 Using grep to Search Files . 13

3.8 Using find to Find Files . 14

3.9 Using tar to Archive Files . 15

3.10 Using top to View Running Processes . 15

3.11 Environment Variables . 15

3.12 Command Output Redirection . 16

3.13 Command Chaining . 17

3.14 Command Pipelining . 17

3.15 Aliases, Wildcards, Command History, and Tab Completion 18

4 Linux Text Editors 19

4.1 Nano . 19

1

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

4.2 Geany . 19

4.3 Emacs and Vim . 21

5 The Two-Window Linux Workflow 21

6 Course-Specific Linux Commands 23

6.1 Course Setup Script . 23

6.2 Using quota to Check Your Space Usage . 23

6.3 Using trash to Safely Remove Files . 24

7 Conclusion 24

2

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

1. Introduction

All of the programming assignments for this course are designed assuming you will be using a
Linux (or UNIX-like) operating system for development. Basic Linux knowledge is essential to suc-
cessfully complete these programming assignments and a more in-depth understanding enhances
productivity. This tutorial covers the computing resources to be used in the course and offers a brisk
introduction to the Linux operating system for first time users including some details specific to this
course.

To follow along with the tutorial, type the commands without the % character. In addition to working
through the commands in the tutorial, you should also try the more open-ended tasks marked with
the H symbol.

2. ECE Computing Resources

We will be using ecelinux workstations and servers for all of the programming assignments. The
ecelinux machines all run the Red Hat Enterprise Linux 7 operating system, and they all use an
identical setup. You do not need to do anything special to create an ecelinux account. You will be
using your NetID and Cornell password to login, and an ecelinux account will be automatically
created for you when you first login. Any student enrolled in any ECE class should automatically
be granted access to the ecelinux workstations and servers. Having said this, if you cannot login to
either the ecelinux workstations or the ecelinux servers, you should email the COE/CIS sysadmins
at itcoecis-help@cornell.edu.

There are three ways you can get access to the ecelinux workstations and servers: you can use the
ecelinux workstations in 314 Phillips Hall, you can remotely login to the ecelinux servers from the
CIT Windows Computing Lab in 318 Phillips Hall, or you can remotely login to the ecelinux servers
from your own personal workstation. Since we use open-source tools in this course, it should also be
possible for you to directly work locally on your own workstation without logging into the ecelinux
servers. This would require you to setup your own local development environment, so we cannot
really provide too much support for this option.

2.1. The ecelinux Workstations in 314 Phillips Hall

You can use the 24 brand new ecelinux workstations in 314 Phillips Hall to work on your program-
ming assignments. The ecelinux workstations are fast and have generous 27” monitors. You should
be able to access the lab using your keycard, although you might need to try swiping your card a few
times. You can login to the workstations using your NetID and Cornell password. Once you have
logged into an ecelinux workstation, you can open a terminal by choosing Applications > Favorites >
Terminal from the menu at the top of the desktop.

2.2. The ecelinux Servers

The department has a cluster of ecelinux servers dedicated for ECE instructional use. These servers
are setup in the exact same way as the ecelinux workstations in 314 Phillips Hall. There are four
servers named as follows:

• ecelinux-01.ece.cornell.edu
• ecelinux-02.ece.cornell.edu
• ecelinux-03.ece.cornell.edu
• ecelinux-04.ece.cornell.edu

3

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

We use the term ecelinux servers as short-hand to refer to this cluster of Linux servers. We do
not recommend students login to these servers directly, but they should instead simply log into the
following:

• ecelinux.ece.cornell.edu

Logging into this server will redirect you to one of the four servers which is lightly loaded. This
helps keep the load on any one server low.

2.3. Remote Login from CIT Windows Computing Lab in 318 Phillips Hall

Students can also use the 45 Windows workstations in 318 Phillips Hall to login to an ecelinux server
remotely. You should be able to access the lab using your keycard, and you can use your NetID and
Cornell password to login to the workstations. You can then use MobaXterm to login to an ecelinux
server. To start MobaXterm choose MobaXterm Educational Edition > MobaXterm Educational Edition
from the start menu. Once MobaXterm has loaded click on the button labeled "Start local terminal".
Then use the following command at the local terminal prompt to login to an ecelinux server:

% ssh -Y <netid>@ecelinux.ece.cornell.edu

Replace <netid> with your Cornell NetID in the command above. Do not type the % character. We
use the % character to indicate what commands we should enter on the command line. Executing the
command will prompt you to enter your Cornell password, and then you should be connected to the
ecelinux server. The -Y command line option enables X11 forwarding so that we can start a GUI
application like geany on the server yet have the actual GUI displayed on our local machine. You can
hide the sidebar by choosing View > Show/hide sidebar from the menu.

Note that if your connection to an ecelinux server seems to be dropping, you may need to set the
SSH “keep alive signal”. Choose Settings > Configuration from the menu, select the SSH tab, and
make sure the SSH keepalive option is checked.

2.4. Remote Login from Personal Windows Laptop/Workstation

You can also login to an ecelinux server from your own personal Windows workstation. You will
need to download MobaXterm from here:

• http://mobaxterm.mobatek.net/download-home-edition.html

We recommend using the Installer Edition. Right click on the downloaded ZIP archive and choose
Extract all. Then double click on MobaXterm_installer, click Next to start the installation, agree to the
EULA and click Next, click Next to install in the default location, click Install to start the installation,
and click Finish to finish the installation. Then start MobaXterm by choosing MobaXterm > MobaXterm
from the start menu or double clicking the corresponding icon on your desktop. Then follow the
directions in Section 2.3.

2.5. Remote Login from Personal Mac Laptop/Workstation

To start, you need to open a local terminal by typing “terminal” into Spotlight. By default your
connection to an ecelinux server will be dropped if you are inactive for a certain amount of time. To
prevent this, you need to add some configuration information to a specific file. We will learn more
about the echo command and command output redirection later in the tutorial, but for now carefully
enter the following commands in the terminal.

4

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

% echo "Host *.ece.cornell.edu" >> ~/.ssh/config
% echo " ServerAliveInterval 180" >> ~/.ssh/config

Do not type the % character. We use the % character to indicate what commands we should enter on
the command line. You will need to install X11, although some older versions of Mac OS X have X11
installed by default, or you may have previously installed X11. To see if you have X11 installed, enter
the following command in the terminal.

% xclock

Again, do not type the % character. If your system cannot find xclock then you need to install X11.
The specific X11 window system you will want to use is called XQuartz, and it is available from here:

• http://xquartz.macosforge.org/landing

Use the DMG to install XQuartz and then try running xclock again. Once xclock works locally, then
use SSH to login to an ecelinux server as follows:

% ssh -Y <netid>@ecelinux.ece.cornell.edu

Replace <netid> with your Cornell NetID in the command above. Again, do not type the % character.
Executing the command will prompt you to enter your Cornell password, and then you should be
connected to the ecelinux server. The -Y command line option enables X11 forwarding so that we
can start a GUI application like geany on the server yet have the actual GUI displayed on our local
machine. Note that some students have noticed that using -Y to login from Mac OS X does not enable
running an X11 application, but they have had success using -Y instead of -Y. Using either command
line option is fine.

2.6. Remote Login from Personal Linux Laptop/Workstation

If you are using Linux you will likely know how to open a local terminal. By default your connection
to the an ecelinux server will be dropped if you are inactive for a certain amount of time. To prevent
this, you need to add some configuration information to a specific file. We will learn more about the
echo command and command output redirection later in the tutorial, but for now carefully enter the
following commands in the terminal.

% echo "Host *.ece.cornell.edu" >> ~/.ssh/config
% echo " ServerAliveInterval 180" >> ~/.ssh/config

Then use SSH as follows:

% ssh -Y <netid>@ecelinux.ece.cornell.edu

Replace <netid> with your Cornell NetID in the command above. Again, do not type the % character.
Executing the command will prompt you to enter your Cornell password, and then you should be
connected to the ecelinux server. The -Y command line option enables X11 forwarding so that we
can start a GUI application like geany on the server yet have the actual GUI displayed on our local
machine.

2.7. Remote Login from Off-Campus Using the Cornell VPN

Logging in remotely from your own personal laptop/workstation will work fine if you are connected
to the wired or wireless (e.g., RedRover) campus network. If you are off-campus, then you will need

5

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

to use the Cornell virtual private network (VPN) to access an ecelinux server. Simply follow the
instructions at the following link to install the Cisco VPN software for the appropriate operating
system running on your laptop/workstation, and to then connect to the Cornell VPN.

• https://it.cornell.edu/cuvpn
• https://it.cornell.edu/articles/topics/2605/all/822
• https://it.cornell.edu/articles/topics/2605/all/823

After connecting to the VPN, you can follow the above instructions to SSH into an ecelinux server.

2.8. Testing X11 After Remote Login

After remotely logging into an ecelinux server remotely using any of the above approaches, you
can verify that a GUI application (e.g., geany) will work by running the following command.

% xclock

Just to be very explicit, you want to execute the xclock command remotely after logging into an
ecelinux server via SSH (i.e., not locally on your Mac/Linux laptop/workstation). If you cannot
see the analog clock, there there is likely an issue with your X11 setup. You can also try the more
interesting xeyes.

% xeyes

2.9. Personal Computing Resources

While we strongly encourage students to use the ecelinux workstations and servers, more advanced
students are welcome to work directly on their own workstations without logging into an ecelinux
server. This is not too much work if your are using a UNIX-like system (e.g., Mac OS X, Linux). It
might require the student to install the GNU C/C++ compiler and the Criterion unit testing frame-
work. The course staff cannot offer too much support for this, and please remember that all pro-
gramming assignments must work on the ecelinux workstations and servers and also on TravisCI,
since that is where the course staff will be doing the assessment.

3. The Linux Command Line

In this section, we introduce the basics of working at the Linux command line. Our goal is to get
you comfortable with commands required to complete the programming assignments. Before trying
the commands listed in this section, you will need to get access to the ECE computing resources as
described in the previous section.

The shell is the original Linux user interface which is a text-based command-line interpreter. The
default shell on the ecelinux machines is Bash. While there are other shells such as sh, csh, and
tcsh, for this course we will always assume you are using Bash. As mentioned above, we use the %
character to indicate commands that should be entered at the Linux command line, but you should
not include the actual % character when typing in the commands on your own. To make it easier to
cut-and-paste commands from this tutorial document onto the command line, you can tell Bash to
ignore the % character using the following command:

% alias %=""

6

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

Now you can cut-and-paste a sequence of commands from this tutorial document and Bash will not
get confused by the % character which begins each line.

3.1. Hello World

We begin with the ubiquitous “Hello, World” example. To display the message “Hello, World” we
will use the echo command. The echo command simply “echoes” its input to the console.

% echo "Hello, World"

The string we provide to the echo command is called a command line argument. We use command line
arguments to tell commands what they should operate on. Although simple, the echo command can
very useful for creating simple text files, displaying environment variables, and general debugging.

H To-Do On Your Own: Experiment with using the echo command to display different messages.

3.2. Manual Pages

You can learn more about any Linux command by using the man command. Try using this to learn
more about the echo command.

% man echo

You can use the up/down keys to scroll the manual one line at a time, the space bar to scroll down
one page at a time, and the q key to quit viewing the manual. You can even learn about the man
command itself by using man man. As you follow the tutorial, feel free to use the man command to
learn more about the commands we cover.

H To-Do On Your Own: Use the man command to learn more about the cat command.

3.3. Create, View, and List Files

We can use the echo command and a feature called command output redirection to create simple text
files. We will discuss command output redirection in more detail later in the tutorial. Command
output redirection uses the > operator to take the output from one command and “redirect” it to a
file. The following commands will create a new file named ece2400-tut1.txt that simply contains
the text “Computer Systems Programming”.

% echo "Computer Systems Programming" > ece2400-tut1.txt

We can use the cat command to quickly display the contents of a file.

% cat ece2400-tut1.txt

For larger files, cat will output the entire file to the console so it may be hard to read the file as it
streams past. We can use the less command to show one screen-full of text at a time. You can use
the up/down keys to scroll the file one line at a time, the space bar to scroll down one page at a time,
and the q key to quit viewing the file.

% less ece2400-tut1.txt

7

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

You can use the ls command to list the filenames of the files you have created.

% ls

We can provide command line options to the ls command to modify the command’s behavior. For
example, we can use the -1 (i.e., a dash followed by the number one) command line option to list
one file per line, and we can we can use the -l (i.e., a dash followed by the letter l) command line
option to provide a longer listing with more information about each file.

% ls -1
% ls -l

You should see the newly created ece2400-tut1.txt file along with some additional directories or
folders. We will discuss directories in the next section. Use the following commands to create a few
more files using the echo command and command output redirection, and then list the files again.

% echo "Application" > ece2400-tut1-layer1.txt
% echo "Algorithm" > ece2400-tut1-layer2.txt
% ls -1

H To-Do On Your Own: Create a new file named ece2400-tut1-layer3.txt which contains the third
layer in the computing systems stack (i.e., programming language). Use cat and less to verify
the file contents.

3.4. Create, Change, and List Directories

Obviously, having all files in a single location would be hard to manage effectively. We can use
directories (also called folders) to logically organize our files, just like one can use physical folders to
organize physical pieces of paper. The mechanism for organizing files and directories is called the
file system. When you first login to an ecelinux machine, you will be in your home directory. This
is your own private space on the server that you can use to work on the programming assignments
and store your files. You can use the pwd command to print the directory in which you are currently
working, which is known as the current working directory.

% pwd
/home/<netid>

You should see output similar to what is shown above, but instead of <netid> it should show your
actual NetID. The pwd command shows a directory path. A directory path is a list of nested directory
names; it describes a “path” to get to a specific file or directory. So the above path indicates that there
is a toplevel directory named home that contains a directory named <netid>. This is the directory
path to your home directory. As an aside, notice that Linux uses a forward slash (/) to separate
directories, while Windows uses a back slash (\) for the same purpose.

We can use the mkdir command to make new directories. The following command will make a new
directory named ece2400 within your home directory.

% mkdir ece2400

8

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

We can use the cd command to change our current working directory. The following command will
change the current working directory to be the newly created ece2400 directory, before displaying
the current working directory with the pwd command.

% cd ece2400
% pwd
/home/<netid>/ece2400

Use the mkdir, cd, and pwd commands to make another directory.

% mkdir tut1
% cd tut1
% pwd
/home/<netid>/ece2400/tut1

We sometimes say that tut1 is a subdirectory or a child directory of the ece2400 directory. We might
also say that the ece2400 directory is the parent directory of the tut1 directory.

There are some important shortcuts that we can use with the cd command to simplify navigating
the file system. The special directory named . (i.e., one dot) always refers to the current working
directory. The special directory named .. (i.e., two dots) always refers to the parent of the current
working directory. The special directory named ~ (i.e., a tilde character) always refers to your home
directory. The special directory named / (e.g., single forward slash) always refers to the highest-
level root directory. The following commands illustrate how to navigate up and down the directory
hierarchy we have just created.

% pwd
/home/<netid>/ece2400/tut1
% cd .
% pwd
/home/<netid>/ece2400/tut1
% cd ..
% pwd
/home/<netid>/ece2400
% cd ..
% pwd
/home/<netid>
% cd ece2400/tut1
% pwd
/home/<netid>/ece2400/tut1
% cd
% pwd
/home/<netid>
% cd /
% pwd
/
% cd ~/ece2400
% pwd
/home/<netid>/ece2400

9

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

Notice how we can use the cd command to change the working directory to another arbitrary direc-
tory by simply using a directory path (e.g., ece2400/tut1). These are called relative paths because the
path is relative to your current working directory. You can also use an absolute path which always
starts with the root directory to concretely specify a directory irrespective of the current working di-
rectory. A relative path is analogous to directions to reach a destination from your current location
(e.g., How do I get to the coffee shop from my current location?), while an absolute path is analogous
to directions to reach a destination from a centralized location (e.g., How do I get to the coffee shop
from the center of town?).

% pwd
/home/<netid>/ece2400
% cd /home/<netid>/ece2400/tut1
% pwd
/home/<netid>/ece2400/tut1
% cd
% pwd
/home/<netid>

This example illustrates one more useful shortcut. The cd command with no command line argu-
ments always changes the current working directory to your home directory. We can use the ls
command to list files as well as directories. Use the following commands to create a new file and
directory in the ece2400/tut1 subdirectory, and then list the file and directory.

% cd ~/ece2400/tut1
% echo "Computer Systems Programming" > ece2400-tut1.txt
% mkdir dirA
% ls -1

You should see both the dirA subdirectory and the newly created ece2400-tut1.txt file listed. Feel
free to use the cat command to verify the file contents of the newly created file. We can use the tree
command to recursively list the contents of a directory. The following commands create a few more
directories before displaying the directory hierarchy.

% cd ~/ece2400/tut1
% mkdir -p dirB/dirB_1
% mkdir -p dirB/dirB_2
% mkdir -p dirC/dirC_1
% cd ~/ece2400/tut1
% tree
.
+-- dirA
+-- dirB
| |-- dirB_1
| ‘-- dirB_2
|-- dirC
| ‘-- dirC_1
‘-- ece2400-tut1.txt

Note that we are using the -p command line option with the mkdir command to make multiple
nested directories in a single step.

10

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

H To-Do On Your Own: Experiment with creating additional directories and files within the
ece2400/tut1 subdirectory. Try creating deeper hierarchies with three or even four levels of
nesting using the -p option to the mkdir command. Experiment with using the . and .. special
directories. Use the tree command to display your newly created directory hierarchy.

3.5. Copy, Move, and Remove Files and Directories

We can use the cp command to copy files. The first argument is the name of the file you want to copy,
and the second argument is the new name to give to the copy. The following commands will make
two copies of the files we created in the previous section.

% cd ~/ece2400/tut1
% cp ece2400-tut1.txt ece2400-tut1-a.txt
% cp ece2400-tut1.txt ece2400-tut1-b.txt
% ls -1

We can also copy one or more files into a subdirectory by using multiple source files and a final
destination directory as the arguments to the cp command.

% cd ~/ece2400/tut1
% cp ece2400-tut1.txt dirA
% cp ece2400-tut1-a.txt ece2400-tut1-b.txt dirA
% tree

We can use the -r command line option to enable the cp command to recursively copy an entire
directory.

% cd ~/ece2400/tut1
% tree
% cp -r dirA dirD
% tree

If we want to move a file or directory, we can use the mv command. As with the cp command, the
first argument is the name of the file you want to move and the second argument is the new name of
the file.

% cd ~/ece2400/tut1
% mv ece2400-tut1.txt ece2400-tut1-c.txt
% ls -1

Again, similar to the cp command, we can also move one or more files into a subdirectory by using
multiple source files and a final destination directory as the arguments to the mv command.

% cd ~/ece2400/tut1
% tree
% mv ece2400-tut1-a.txt dirB
% mv ece2400-tut1-b.txt ece2400-tut1-c.txt dirB
% tree

We do not need to use the -r command line option to move an entire directory at once.

11

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

% cd ~/ece2400/tut1
% tree
% mv dirD dirE
% tree

The following example illustrates how we can use the special . directory to move files from a subdi-
rectory into the current working directory.

% cd ~/ece2400/tut1
% tree
% mv dirE/ece2400-tut1.txt .
% tree

We can use the rm command to remove files. The following command removes a file from within the
ece2400/tut1 subdirectory.

% cd ~/ece2400/tut1
% ls -1
% rm ece2400-tut1.txt
% ls -1

To clean up, we might want to remove the files we created in your home directory earlier in this
tutorial.

% cd
% rm ece2400-tut1.txt
% rm ece2400-tut1-layer1.txt
% rm ece2400-tut1-layer2.txt
% rm ece2400-tut1-layer3.txt

We can use the -r command line option with the rm command to remove entire directories, but please
be careful because it is relatively easy to permanently delete many files at once. See Section 6.3 for
a useful command that you might want to use instead of the rm command to avoid accidentally
deleting important work.

% cd ~/ece2400/tut1
% ls -1
% rm -r dirA dirB dirC dirE
% ls -1

H To-Do On Your Own: Creating additional directories and files within the ece2400/tut1 subdirec-
tory, and then use the cp, mv, and rm commands to copy, move, and remove the newly created
directories and files. Use the ls and tree commands to display your file and directory organiza-
tion.

3.6. Using wget to Download Files

We can use the wget command to download files from the internet. For now, this is a useful way to
retrieve a text file that we can use in the following examples.

12

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

% cd ~/ece2400/tut1
% wget http://www.csl.cornell.edu/courses/ece2400/overview.txt
% cat overview.txt

3.7. Using grep to Search Files

We can use the grep command to search and display lines of a file that contain a particular pat-
tern. The grep command can be useful for quickly searching the contents of the source files in your
programming assignment. The command takes the pattern and the files to search as command line
arguments. The following command searches for the word “programming” in the overview.txt file
downloaded in the previous section.

% cd ~/ece2400/tut1
% grep "programming" overview.txt

You should see just the lines within the overview.txt file that contain the word “programming”. We
can use the ––line-number and ––color command line options with the grep command to display
the line number of each match and to highlight the matched word.

% cd ~/ece2400/tut1
% grep --line-number --color "programming" overview.txt

We can use the -r command line option to recursively search all files within a given directory hier-
archy. In the following example, we create a subdirectory, copy the overview.txt file, and illustrate
how we can use the grep command to recursively search for the word “programming”.

% cd ~/ece2400/tut1
% mkdir dirA
% cp overview.txt dirA
% grep -r --line-number --color "programming" .

Notice how we specify a directory as a command line argument (in this case the special . direc-
tory) to search the current working directory. You should see the three lines from both copies of the
overview.txt file. The grep command also shows which file contains the match.

As another example, we will search two special files named /proc/cpuinfo and proc/meminfo.
These files are present on every modern Linux system, and they contain information about the
processor and memory hardware in that system. The following command first uses the less com-
mand so you can browse the file, and then uses the grep command to search for processor in the
/proc/cpuinfo file. Recall that with the less command, we use the up/down keys to scroll the file
one line at a time, the space bar to scroll down one page at a time, and the q key to quit viewing the
file.

% cd ~/ece2400/tut1
% less /proc/cpuinfo
% grep "processor" /proc/cpuinfo

It should be pretty clear that you are using a system with multiple processors. You can also search to
find out which company makes the processors and what clock frequency they are running at:

% cd ~/ece2400/tut1
% grep "vendor_id" /proc/cpuinfo

13

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

% grep "cpu MHz" /proc/cpuinfo

We can find out how much memory is in the system by searching for MemTotal in the /proc/meminfo
file.

% cd ~/ece2400/tut1
% grep "MemTotal" /proc/meminfo

H To-Do On Your Own: Try using grep to search for the words “computer” and “systems” in the
overview.txt file.

3.8. Using find to Find Files

We can use the find command to recursively search a directory hierarchy for files or directories
that match a specified criteria. While the grep command is useful for searching file contents, the
find command is useful for quickly searching the file and directory names in your programming
assignments. The find command is very powerful, so we will just show a very simple example.
First, we create a few new files and directories.

% cd ~/ece2400/tut1
% mkdir -p dirB/dirB_1
% mkdir -p dirB/dirB_2
% mkdir -p dirC/dirC_1
% echo "test" > dirA/file0.txt
% echo "test" > dirA/file1.txt
% echo "test" > dirB/dirB_1/file0.txt
% echo "test" > dirB/dirB_1/file1.txt
% echo "test" > dirB/dirB_2/file0.txt
% tree

We will now use the find command to find all files named "file0.txt". The find command takes
one command line argument to specify where we should search and a series of command line options
to describe what files and directories we are trying to find. We can also use command line options
to describe what action we would like to take when we find the desired files and directories. In
this example, we use the ––name command line option to specify that we are searching for files with
a specific name. We can also use more complicated patterns to search for all files with a specific
filename prefix or extension.

% cd ~/ece2400/tut1
% find . -name "file0.txt"

Notice that we are using the special . directory to tell the find command to search the current
working directory and all subdirectories. The find command always searches recursively.

H To-Do On Your Own: Create additional files named "file2.txt" in some of the subdirectories we
have already created. Use the "find" command to search for files named "file2.txt".

14

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

3.9. Using tar to Archive Files

We can use the tar command to “pack” files and directories into a simple compressed archive, and
also to “unpack” these files and directories from the archive. This kind of archive is sometimes
called a tarball. Most open-source software is distributed in this compressed form. It makes it easy
to distribute code among collaborators and it is also useful to create backups of files. We can use
the following command to create an archive of our tutorial directory and then remove the tutorial
directory.

% cd ~/ece2400
% tar -czvf tut1.tgz tut1
% rm -r tut1
% ls -l

Several command line options listed together as a single option (-czvf), where c specifies we want
to create an archive, z specifies we should use “gzip” compression, v specifies verbose mode, and f
specifies we will provide filenames to archive. The first command line argument is the name of the
archive to create, and the second command line argument is the directory to archive. We can now
extract the contents of the archive to recreate the tutorial directory. We also remove the archive.

% cd ~/ece2400
% tar -xzvf tut1.tgz
% rm tut1.tgz
% tree tut1

Note that we use the x command line option with the tar command to specify that we intend to
extract the archive.

H To-Do On Your Own: Create an example directory within the ece2400/tut1 subdirectory. Copy
the overview.txt file and rename it to add example files to your new directory. Use the tar
command to create and extract an archive of just this one new directory.

3.10. Using top to View Running Processes

You can use the top command to view what commands are currently running on the Linux system
in realtime. This can be useful to see if there are many commands running which are causing the
system to be sluggish. When finished you can use the q character to quit.

% top

The first line of the top display shows the number of users currently logged into the system, and the
load average. The load average indicates how “overloaded” the system was over the last one, five, and
15 minutes. If the load average is greater than the number of processors in the system, it means your
system will probably be sluggish. You can always try logging into a different server in the cluster.

3.11. Environment Variables

In the previous sections, we have been using the Bash shell to run various commands, but the Bash
shell is actually a full-featured programming language. One aspect of the shell that is similar in
spirit to popular programming languages, is the ability to write and read environment variables. The

15

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

following commands illustrate how to write an environment variable named ece2400_tut1_layer1,
and how to read this environment variable using the echo command.

% ece2400_tut1_layer1="application"
% echo ${ece2400_tut1_layer1}

Keep in mind that the names of environment variables can only contain letters, numbers, and under-
scores. Notice how we use the ${} syntax to read an environment variable. There are a few built-in
environment variables that might be useful:

% echo ${HOSTNAME}
% echo ${HOME}
% echo ${PWD}

We often use the HOME environment variable in directory paths like this:

% cd ${HOME}/ece2400

The PWD environment variable always holds the current working directory. We can use environment
variables as options to commands other than echo. A common example is to use an environment
variable to “remember” a specific directory location, which we can quickly return to with the cd
command like this:

% cd ${HOME}/ece2400/tut1
% TUT1=${PWD}
% cd
% pwd
/home/<netid>
% cd ${TUT1}
% pwd
/home/<netid>/ece2400/tut1

H To-Do On Your Own: Create a new environment variable named ece2400_tut1_layer2 and write
it with the second layer in the computer systems stack (i.e., algorithm). Use the echo com-
mand to display this environment variable. Experiment with creating a new subdirectory within
ece2400/tut1 and then using an environment variable to “remember” that location.

3.12. Command Output Redirection

We have already seen using the echo command and command output redirection to create simple
text files. Here is another example:

% cd ${HOME}/ece2400/tut1
% echo "Application" > computing-stack.txt
% cat computing-stack.txt

The > operator tells the Bash shell to take the output from the command on the left and overwrite the
file named on the right. We can use any command on the left. For example, we can save the output
from the pwd command or the man command to a file for future reference.

16

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

% cd ${HOME}/ece2400/tut1
% pwd > cmd-output.txt
% cat cmd-output.txt
% man pwd > cmd-output.txt
% cat cmd-output.txt

We can also use the >> operator which tells the Bash shell to take the output from the command on
the left and append the file named on the right. We can use this to create multiline text files:

% cd ${HOME}/ece2400/tut1
% echo "Algorithm" > computing-stack.txt
% echo "Programming Language" >> computing-stack.txt
% echo "Operating System" >> computing-stack.txt
% cat computing-stack.txt

H To-Do On Your Own: Add the remaining levels of the computing stack (i.e., gate-level, circuits,
devices, technology) to the computing-stack.txt text file. Use the cat command to verify that
the file contents.

3.13. Command Chaining

We can use the && operator to specify two commands that we want to chaining together. The second
command will only execute if the first command succeeds. Below is an example.

% cd ${HOME}/ece2400/tut1 && cat computing-stack.txt

H To-Do On Your Own: Create a single-line command that combines creating a new directory with
the mkdir command and then immediately changes into the directory using the cd command.

3.14. Command Pipelining

The Bash shell allows you to run multiple commands simultaneously, with the output of one com-
mand becoming the input to the next command. We can use this to assemble “pipelines”; we “pipe”
the output of one command to another command for further actions using the | operator.

The following example uses the grep command to search the special proc/cpuinfo file for lines
containing the word “processor” and then pipes the result to the wc command. The wc command
counts the number of characters, words, or lines of its input. We use the -l command line option
with the wc command to count the number of lines.

% grep processor /proc/cpuinfo | wc -l

This is a great example of the Linux philosophy of providing many simple commands that can be
combined to create more powerful functionality. Essentially the pipeline we have created is a com-
mand that tells us the number of processors in our system.

As another example, we will pipe the output of the last command to the grep command. The last
command lists the names of all of the users that have logged into the system since the system was

17

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

rebooted. We can use grep to search for your NetID and thus quickly see how when you previously
have logged into this system.

% last | grep <netid>

We can create even longer pipelines. The following pipeline will report the number of times you
have logged into the system since it was rebooted.

% last | grep <netid> | wc -l

H To-Do On Your Own: Use the cat command with the overview.txt file and pipe the output to the
grep command to search for the word “memories”. While this is not as fast as using grep directly
on the file, it does illustrate how many commands (e.g., grep) can take their input specified as a
command line argument or through a pipe.

3.15. Aliases, Wildcards, Command History, and Tab Completion

In this section, we describe some miscellaneous features of the Bash shell which can potentially be
quite useful in increasing your productivity.

Aliases are a way to create short names for command sequences to make it easier to quickly execute
those command sequences in the future. For example, assume that you frequently want to change to
a specific directory. We can create an alias to make this process take just two keystrokes.

% alias ct="cd ${HOME}/ece2400/tut1"
% ct
% pwd
/home/academic/<netid>/ece2400/tut1

If you always want this alias to be available whenever you login to the system, you can save it in
your .bashrc file. The .bashrc is a special Bash script that is run on every invocation of a Bash shell.

% echo "alias ct=\"cd ${HOME}/ece2400/tut1\"" >> ${HOME}/.bashrc

The reason we have to use a back slash (\) in front of the double quotes is to make sure the echo
command sees this command line argument as one complete string.

Wildcards make it easy to manipulate many files and directories at once. Whenever we specify a file
or directory on the command line, we can often use a wildcard instead. In a wildcard, the asterisk
(*) will match any sequence of characters. The following example illustrates how to list all files that
end in the suffix .txt and then copies all files that match the wildcard from one directory to another.

% cd ${HOME}/ece2400/tut1
% ls *.txt
% cp dirA/file*.txt dirB
% tree

The Bash shell keeps a history of everything you do at the command line. You can display the
history with the history command. To rerun a previous command, you can use the ! operator and
the corresponding command number shown with the history command.

18

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

% history

You can pipe the output of the history command to the grep command to see how you might have
done something in the past.

% history | grep wc

If you press the up arrow key at the command line, the Bash shell will show you the previous com-
mand you used. Continuing to press the up/down keys will enable you to step through your history.
It is very useful to press the up arrow key once to rerun your last command.

The Bash shell supports tab completion. When you press the tab key twice after entering the be-
ginning of a filename or directory name, Bash will try to automatically complete the filename or
directory name. If there is more than one match, Bash will show you all of these matches so you can
continue narrowing your search.

4. Linux Text Editors

You will need to use a text editor to edit source files in Linux. There are two kinds of text editors:
graphical and non-graphical. The non-graphical text editors work by opening files through the com-
mand line and then using the keyboard to navigate files, execute commands, etc. The graphical text
editors work by providing a GUI so that the user can use a mouse to interact with the editor.

4.1. Nano

Nano is a very simple non-graphical text editor installed on the ecelinux machines. The editor is
easy to learn and use. You can start Nano by typing the command nano in the terminal and optionally
specifying the filename you want to view and edit.

% cd ${HOME}
% nano ~/ece2400/tut1/overview.txt

Use the arrow keys to move the cursor position. Notice that the editor specifies most of the useful
commands at the bottom of the terminal screen. The symbol ˆ indicates the CONTROL key. To type
any text you want, just move the cursor to the required position and use the keyboard. To save your
changes press CONTROL+O and press the <ENTER> key after specifying the filename you want to save
to. You can exit by pressing CONTROL+X.

H To-Do On Your Own: Use Nano to make some changes to the overview.txt text file and then save
your edits to your home directory. View the new file using the cat command from the command
line and then delete the file using the rm command.

4.2. Geany

Geany (pronounced like “genie”) is a simple graphical text editor in Linux. Actually, Geany can also
be used as an integrated development environment, but in this course we will only be using it as a
text editor. You can start Geany by typing the command geany in the terminal.

% cd ${HOME}
% geany &

19

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

File
Browser

Tab to
display

file
browser

Tabs for
opened

files

Arrows
to show

more
tabs

Figure 1: Geany Window

This should open a new GUI window. If you get an error about your display, you probably do not
have your X11 server setup correctly (see Section 2). Navigating, editing, and saving files is very
simple in Geany. Note that we have added a & symbol at the end of the command. This special
symbol starts the graphical program in the background enabling you to continue to use the terminal.

See Figure 1 for a screenshot of a typical Geany session. Geany has a relatively straight-forward GUI.
You can open and save files using the File menu or toolbar. We recommend you take the following
steps to configure Geany for use in this course:

• Make sure View > Show message window is unchecked. We will not need the message window in
this course.

• Choose Edit > Preferences from the menu, then Editor > Features, and set the Line breaking column
to be 74. Then click OK.

• Choose Edit > Preferences from the menu, then Editor > Indentation, and set the Width to be two
and the Type to be Spaces. Then click OK.

• Choose Tools > Plugin Manager from the menu, and make sure File Browser and Split Window are
checked. Then click Close.

20

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

• Choose Edit > Preferences from the menu, then Interface > Interface, and set the font family and size
next to Editor based on your own personal preference (or leave the default for now).

After completing these configuration step, the side panel includes an integrated file browser. You
can display the file browser by clicking on the Files tab at the top of the sidebar. If the Files tab is not
visible, you may need to click on the small right/left arrows at either side of the tabs (see Figure 1).
Double-clicking on a file in the file browser will open the file in a new tab. Notice how two tabs
are opened: one for the C header file and the other for the C source file. Also notice how Geany
automatically performs syntax highlighting for various programming languages.

Geany has a nice feature where it can enable splitting the window into two side-by-side panels with
different files opened in each panel. To turn on split windowing, choose Tools > Split Window > Side
by Side from the menu. Then click on the small downward arrow in the right-hand panel and choose
an open file to display in this extra panel. Having both a test harness and the design under test open
at the same, side-by-side, can be very powerful.

H To-Do On Your Own: Use Geany to first open and then make some changes to the overview.txt
text file. Save your edits to your home directory. View the new file using the cat command from
the command line and then delete the file using the rm command.

4.3. Emacs and Vim

While nano and geany editors are easy to learn, students that anticipate using Linux in the future
beyond this course might want to use a more powerful editor such as emacs or vim. Both also have
GUI equivalents. By default emacs will start the GUI, while using the -nw command line option will
enable non-graphical mode. vim is purely non-graphical, but gvim is the graphical equivalent. It is
beyond the scope of this tutorial to teach you the usage of these editors, but most advanced Linux
users use one of these more powerful text editors for development.

5. The Two-Window Linux Workflow

Some students use a one-window workflow. They use various commands at the command line and
whenever they want to edit a file they launch a text editor (e.g., geany), edit and save the file, exit
the text editor, and then return to working at the command line. This can be a tedious process and
involve many keystrokes and/or mouse clicks to simply edit a file and see the corresponding effect.

We strongly encourage students to use a two-window workflow regardless of how they are accessing the
ECE computing resources and which text editor they are using. A two-window workflow involves
always having two windows side-by-side. The window on the left will be a terminal at the command
line, while the window on the right will be a text editor. The student should be able to switch back-
and-forth between the two windows using the keyboard although this is not strictly necessary. By
using two windows, the student can work at the command line, quickly switch to edit/save a file,
and then quickly switch back to see the corresponding effect.

Figure 2 illustrates an example two-window workflow on the workstations in the ECE Linux Com-
puting Lab in 314 Phillips Hall. A terminal is on the left and geany is on the right. Notice that the
generous 27” monitors in 314 Phillips Hall enable using a side-by-side split within Geany such that
a terminal and two files are all visible at the same time. You can use the ALT-TAB keyboard combi-
nation to quickly switch back-and-forth between the two windows. Figure 3 illustrates an example
two-window workflow on the workstations in the CIT Windows Computing Lab in 318 Phillips Hall.

21

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

Figure 2: Recommended Two-Window Workflow for Linux

Figure 3: Recommended Two-Window Workflow for Windows

22

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

MobaXterm is on the left and geany is on the right. Again, you can use the ALT-TAB keyboard com-
bination to quickly switch back-and-forth between the two windows. Both RHEL7 and Windows
have nice features where if you drag a window off the left or right side of the screen it will automat-
ically make the window fill just the left or right half of the screen. The key is to be able to be able
to see the command line and your text editor at the same time, and to also be able to quickly switch
back-and-forward between the command line and your text editor.

6. Course-Specific Linux Commands

In this section, we describe various aspects of the development environment that are specific to the
severs used in the course.

6.1. Course Setup Script

Once you are logged into an ecelinux machine, as explained in Section 2, you will need to setup the
working environment with the following command in order to work on the course lab assignments.

% source setup-ece2400.sh

The source command executes the commands in the given file. Running the command will display
some information about what the setup script is doing. Since we always need to source the setup
script, we can add this to our .bashrc file as follows.

% echo "source setup-ece2400.sh -q" >> ${HOME}/.bashrc

The extra -q command line option prevents the script from displaying its output every time we login
to an ecelinux machine. With these modifications to our .bashrc, we know that the environment
will be correctly setup every time we login.

If for any reason running the setup script prevents you from using tools for another course, you will
need to run the setup script manually every time you want to work on a programming assignment
for this course.

6.2. Using quota to Check Your Space Usage

Students are allocated 10GB of storage on the servers. You can use the following command to show
much space you are using:

% quota

The blocks column is how much data you are using, and the quota column is your quota. If you
have exceed the 10GB quota, you can browse your home directory and list the size of files and the
contents of directories with the du command:

% cd ${HOME}
% du -sh *

By recursively changing directories and examining the sizes of files and directories you can figure
out what you need to delete. We can pipe the output of du to the sort and head commands to find
the top 20 largest files and directories like this:

% cd ${HOME}

23

ECE 2400 Computer Systems Programming, Fall 2017 Tutorial 1: Linux Development Environment

% du -xak . | sort -nr | head --lines=20

Or just use the following to generate a human readable summary of the size of files/directories in the
current working directory. Note that it can take 20–30 seconds for this command to finish, so please
be patient.

6.3. Using trash to Safely Remove Files

We have installed a simple program called trash which moves files you wish to delete into a special
subdirectory of your home directory located at ${HOME}/tmp/trash. The following commands create
a file and then deletes it using trash.

% cd ${HOME}
% echo "This file will be deleted." > testing.txt
% trash testing.txt
% echo "This file will also be deleted." > testing.txt
% trash testing.txt
% ls ${HOME}/tmp/trash

If you look in ${HOME}/tmp/trash you will see subdirectories organized by date. Look in the subdi-
rectory with today’s date and you should two files corresponding to the two files you deleted. We
highly recommend always using the trash command instead of rm since this avoids accidentally
deleting your work.

7. Conclusion

This tutorial hopefully helped you become familiar with Linux and how to use it for working on the
labs. You have gained some experience working at the command line and also working with either
a graphical or non-graphical text editor. We have introduced the two-window Linux workflow and
some Linux commands specific to the course. There are many more resources online for learning
Linux, and keep in mind that learning to work productively using the Linux operating system can
pay dividends in many other contexts besides this course.

Acknowledgments

This tutorial was developed for the ECE 4750 Computer Architecture, ECE 5745 Complex Digi-
tal ASIC Design, and ECE 2400 Computer Systems Programming courses at Cornell University by
Shreesha Srinath, Christopher Torng, and Christopher Batten.

24

