ECE 2400 Computer Systems Programming, Fall 2017
Prelim 2 Prep

revision: 2017-11-04-22-42

These problems are not meant to be exactly like the problems that will be on the prelim. These prob-
lems are instead meant to represent the kind of understanding you should be able to demonstrate
on the prelim.

In the following problems, we will explore two different data structures to track the directory hi-
erarchy in an operating system. The data hierarchy could be used to store metadata about each
directory in the system (e.g., number of files in each directory, access control for the directory), and
the operating system would provide an application level interface (API) to enable system-level soft-
ware to read and write the directory hierarchy. For example, the following commands will make
four directories and then display the directory hierarchy.

% mkdir foo

% mkdir foo/bar0

% mkdir foo/baril

% mkdir foo/barO/baz
% tree

LI N O N

The directory hierarchy is made up of directories where each parent directory can have one or more
child directories. So in the above example, foo is the parent of bar0 and bar1. Or equivalently, bar0
and bar1 are the children of foo.

We will explore two data structures to store the directory hierarchy. The data structures should
support making new directories and printing the full directory hierarchy. For this problem, you
can assume that the maximum number of directories in the system is 16 and that there are no more
than four child directories in any given parent directory. There are two common errors that we
might want our data structure to check:

* Directory Already Exists: The data structure should cause an error if the user attempts to
make a directory that already exists. For this problem you are required to correctly detect this error
and throw an std: :invalid_argument exception.

* Parent of Directory Does Not Exist: Ideally, the data structure should cause an error if the user
attempts to create a new directory where one or more of the parents of that directory do not
exist. To simplify the problem, you can assume the user never attempts to create a new directory unless
all of the parents of that directory already exist.



ECE 2400 Computer Systems Programming, Fall 2017 Prelim 2 Prep

Problem 1. Array-Based Directory Hierarchy Data Structure

Our first data structure simply uses an array to store all of the directories in the system. The class
declaration is as follows:

1 class DirList
2 {
s public:

5 DirList();
6 void mkdir( const std::string& path );

7 void print() const;

9  private:

10 size_t m_paths_sz;
1 std: :string m_paths[16];
12 };

The m_paths_sz variable is used to store how many directories are presently in the system.

Part 1.A Implementing DirList

Implement the constructor, mkdir, and print member functions in the DirList class. Your im-
plementation of mkdir should thrown an std::invalid_argument exception if the user attempts
to make a directory that already exists. You can assume you have the following private helper
member function

1 DirList::DirList()

2 : m_paths_sz(0)

s {1}

4

5 void DirList::mkdir( const std::string& path )
o 1

7 for ( size_t i = 0; i < m_paths_sz; i++ ) {
8 if ( m_paths[i] == path )

9 throw std::invalid_argument("dir already exists!");
10 }

11

12 m_paths [m_paths_sz] = path;

13 m_paths_sz++;

14 }



ECE 2400 Computer Systems Programming, Fall 2017 Prelim 2 Prep

1 void DirList::print() const

2 {

3 for ( size_t i = 0; i < m_paths_sz; i++ )
4 std::cout << m_paths[i] << std::endl;
5

Part 1.B Algorithm Analysis for DirList

For this analysis assume we wish to store N paths in the directory hierarchy. What is the best- and
worst-case time complexity for mkdir as a function of N? What is the space complexity of this
data structure as a function of N?

Each call to mkdir will need to do a linear search through all of the paths in the data structure to
verify that the path being added does not exist. This search will be O(N). The data structure
will have N entries in the m_paths array, so the space complexity is O(N). Note that this
analysis ignores the actual size in characters of each directory name which may or may not be
a reasonable assumption.



ECE 2400 Computer Systems Programming, Fall 2017

Part 1.C Storage Diagram for DirList

Consider the following usage of DirList. Draw
the storage diagram corresponding to the execu-
tion of this C program.

int main( void )

{
DirList dl; @
dl.mkdir( "foo" ); (»)
return 0O;

}

L N

Mma v stack

A‘-’_Mﬂf‘r“%‘
FARCS

iy

D o tor ovbrr
o
weone [ G4

\c.amwl— fron CArr

Y

\ @ Dvinr:: ak v

Prelim 2 Prep

static




ECE 2400 Computer Systems Programming, Fall 2017 Prelim 2 Prep

Problem 2. Tree-Based Director Hierarchy Data Storage

Our second data structure uses a tree. A tree is like a linked list, except every node can have more
than one “next node”. The class declaration is as follows:

1 class DirTree

2 q

s public:

5 DirTree() : m_root(Node()) { }

7 void mkdir( std::string path );

9 void print()

10 {

1 for ( size_t i = 0; i < m_root.children_size; i++ )
12 print_h( "", m_root.children[i] );

13 }

15 private:

17 class Node {

18 public:

19

2 Node( const std::string dir_ = "" )
21 : dir(dir_), children_size(0)

22 { }

23

2% std::string dir;

2 size_t children_size;

2% Nodex* children[4];

P };

28

» size_t split( std::string dirs[], std::string path )
30 {

31 size_t i = 0;

£ auto pos = path.find("/");

3 while ( pos != std::string::npos ) {
3 dirs[i] = path.substr(0,pos);

35 i++;

3 path.erase( 0, pos+l );

E% pos = path.find("/");

38 }

39 dirs[i] = path.substr(0,pos);

0 i++;

I return i;

42 }

43

4 void print_h( const std::string& prefix, Node* node_p );
45

16 Node m_root;

47

s };



ECE 2400 Computer Systems Programming, Fall 2017 Prelim 2 Prep

Part 2.A Implementing DirTree: :mkdir

Implement the mkdir member function. This function should iterate across the directories in the
path. For each directory, the function should check to see if that directory already exists and if
not, the function should dynamically allocate a new Node to represent that directory. The end
result should be a tree which represents the directory hierarchy. We have provided a private helper
function to split a path into an array of strings, with one string per directory in the path.

1 void DirTree::mkdir( std::string path )

2 {
3 std::string dirs[8];
4 size_t dirs_size = split( dirs, path );

1 // Search through parents

3 Node* node_p = &m_root;

4 for ( size_t i = 0; i < dirs_size-1; i++ ) {

5 for ( size_t j = 0; j < node_p->children_size; j++ ) {
6 if ( node_p->children[j]->dir == dirs[i] )

7 node_p = node_p->children[j];

8 }

9 }

1 // Make sure directory does not exist

13 for ( size_t j = 0; j < node_p->children_size; j++ ) {
14 if ( node_p->children[j]->dir == dirs[dirs_size-1] )
15 throw std::invalid_argument("dir already exists!");
16 }

17

18 // Create new node

19

20 Node* new_node_p = new Node(dirs[dirs_size-1]);

21 node_p->children[node_p->children_size] = new_node_p;
2 node_p->children_size += 1;

23 }



ECE 2400 Computer Systems Programming, Fall 2017 Prelim 2 Prep

Part 2.B Implementing DirTree: :print_h

Implement the print_h private helper member function. This should be a recursive function which
prints out the current path corresponding to the given Node pointer and then recursively processes
the current node’s children.

1 void DirTree::print_h( const std::string& prefix, Node* node_p )

o {

3 std::string new_prefix = prefix + "/" + node_p->name;
1 std::cout << new_prefix << std::endl;

2 for ( size_t i = 0; i < node_p->children_size; i++ ) {
3 print_h( new_prefix, node_p->children[i] );

4 X

5 3

Part 2.C Algorithm Analysis of DirTree

For this analysis assume we wish to store N paths in the directory hierarchy. What is the best-case
and worst-case time complexity for mkdir as a function of N? What is the space complexity of
this data structure as a function of N?

Each call to mkdir will need to search all the way through the tree from the root to one of
the leaves. We will need to do one comparison per node; we check to make sure the parents
exist as we go through the tree, and when we get to the end of the tree we check to make
sure that the new directory does not exist. In the worst case, every directory has exactly one
child, which means our directory “tree” is really a chain of nodes, and thus this search requires
O(N) comparisons. In the best case, every directory has exactly four children, and the search
requires only O(logsN) comparisons.

Every new path adds one node to the tree, so our tree has O(N) nodes and thus the space
complexity is also O(N). Note that this analysis ignores the actual size in characters of each
directory name which may or may not be a reasonable assumption. The tree-based approach
does exploit some redundancy in the way it stores paths, so this might warrant deeper analy-
sis.



