ECE 2400 Computer Systems Programming, Fall 2017
Prelim 1 Prep

revision: 2017-09-29-17-49

These problems are not meant to be exactly like the problems that will be on the prelim. These prob-
lems are instead meant to represent the kind of understanding you should be able to demonstrate
on the prelim.

In the following problems, we will explore two different data structures with similar interfaces
but very different implementations. These data structures could be used in an operating system
to manage programs running on a server. Every program is given a unique process ID, and every
program is also associated with the username of the user running the program. For example, the
following commands will display your username and the process IDs of all programs you are
current running on ecelinux:

% whoami
cb535
% ps

PID TTY TIME CMD
16734 pts/0 00:00:00 bash
17018 pts/0 00:00:00 ps

N N N

We will explore data structures to store the username and process ID for each program currently
running on a system. The data structures should support queries by the operating system. The
operating system should be able to query which user is running the program with a given process
ID, and the operating system should also be able to list all process IDs associated with a given
username. For this problem, you can assume process IDs range from zero to 31.

Problem 1. List-Based Program Info Data Structure

Our first data structure will be similar in spirit to the list data structure discussed in lecture. The
data structure is named pinfo_list, since it is a list meant to store information about programs.
We are using a list-based instead of a vector-based implementation, because we anticipate needing
to frequently insert and remove entries as programs are started and then finish. The interface for
pinfo_list is as follows.

typedef struct _entry_t
{

typedef struct
{

1 1

2 2

3 int pid; 3 entry_t* head_p;
4 char* uname; 4 entry_t* tail_p;
5 struct _entry_t* next_p; 5}

6 F ¢ pinfo_list_t;

7 entry_t;

void pinfo_list_construct (pinfo_list_t* pinfo_p);

void pinfo_list_destruct (pinfo_list_t* pinfo_p);
void pinfo_list_add (pinfo_list_t* pinfo_p, int pid, char unamel[]);
void pinfo_list_remove (pinfo_list_t* pinfo_p, int pid);

char* pinfo_list_get_uname (pinfo_list_t* pinfo_p, int pid);
void pinfo_list_print_pids (pinfo_list_t* pinfo_p, char uname[]);

A WM e W N =

ECE 2400 Computer Systems Programming, Fall 2017 Prelim 1 Prep

Part 1.A Implementing pinfo_list_add

The implementation for the pinfo_list_construct and pinfo_list_add functions are shown be-
low. Notice that we always add the new entry to the end of the linked list. Draw the stack frame
and heap diagram that correspond to the execution of this C program.

void pinfo_list_construct(pinfo_list_t* pinfo_p)
{ .

pinfo_p->head_p = NULL;

pinfo_p->tail_p = NULL;
}

void pinfo_list_add(pinfo_list_t* pinfo_p,
int pid, char uname[])

e o N o w e W N =

{
10 entry_t* new_entry_p
1 = malloc(sizeof(entry_t));
12 new_entry_p->pid = pid;
13 new_entry_p->uname = uname;
1 new_entry_p->next_p = NULL;
15
16 // Handle case where list is empty
1 if (pinfo_p->tail_p == NULL) {
18 pinfo_p->head_p = new_entry_p;
19 pinfo_p->tail_p = new_entry_p;
20 } S
21
2 // Handle case where list is not empty
P else { N
% pinfo_p->tail_p->next_p = new_entry_p;
2% pinfo_p->tail_p = new_entry_p;
2% }
27 }
28
» int main(void)
0 {

3 pinfo_list_t pinfo;
2 pinfo_list_construct(&pinfo); (Z)

N char u0[] = "cfb";
s pinfo_list_add(&pinfo, 1, u0);@)

Y char ui[] = "clt";
8 pinfo_list_add(&pinfo, 31, ul);CE)

) return O;

ECE 2400 Computer Systems Programming, Fall 2017

Prelim 1 Prep

ECE 2400 Computer Systems Programming, Fall 2017 Prelim 1 Prep

Part 1.B Implementing pinfo_list_get_uname

Develop an implementation for pinfo_list_get_uname function. The function should return the
username corresponding to the given process ID (pid). If the pid is not present in the data structure,
then the function should return a NULL pointer to indicate an error.

s 3 Pto_ WST_ ge T urAMe (fivdo st pdo_p , 1 p-b)
j - f

1

ooty A ok evivy_p = QMFO—P——DHMA..p';

Wuile (owh.,.,p l= e) f
F (ovtd_pspd == o)
AT VR 'Q\fr‘rj,,‘)—-?uﬂAM!'
@q’r‘r»j-‘p < 9.,4‘4-1_?—» ,Jex-h.?;.

3

fletourn Null '

s

ECE 2400 Computer Systems Programming, Fall 2017 Prelim 1 Prep

Part 2.A Implementing pinfo_lut_add C L MAA o stack

The implementation for the pinfo_lut_construct and
pinfo_lut_add functions are shown below. Notice that we
explicitly initialize all entries in the pid2uname array to be
NULL. We will use a NULL pointer to indicate whether or
not the corresponding entry is valid. Draw the stack frame
and heap diagram that correspond to the execution of this
C program.

ko polmam
ool —

void pinfo_lut_construct(pinfo_lut_t* pinfo_p)

{

for (size_t i = 0; i < 32; i++)
pinfo_p->pid2uname([i] = NULL;

void pinfo_lut_add(pinfo_lut_t* pinfo_p,
int pid, char uname[])

1
2
3
4
I
6
7
8
9

{

10 pinfo_p->pid2uname[pid] = uname;
u ¥

12

13 int main(void)

14 {

15 pinfo_lut_t pinfo;

16 pinfo_lut_construct(&pinfo); @
17

18 char u0[] = "cfb";

19 pinfo_lut_add(&pinfo, 1, u0);@
20

2 char ui[] = "clt";

» pinfo_lut_add(&pinfo, 31, ul);@

/’/"’

% return O;

ECE 2400 Computer Systems Programming, Fall 2017

Prelim 1 Prep

Problem 2. Lookup-Table Program Info Data Structure

Our second data structure uses a new technique called a lookup table. A lookup table is an array
where we can transform what we are searching for into an array index; then we can directly use the
array index to access the corresponding entry. The data structure is named pinfo_lut; lut stands

for lookup-table. The interface for pinfo_lut is as follows.

1
2
3
4
5
6
7
8
9

10
n
12
13

typedef struct

{
// This is an array of 32 char pointers
char* pid2uname[32];

}

pinfo_lut_t;

void pinfo_lut_construct (pinfo_lut_t*
void pinfo_lut_destruct (pinfo_lut_t*
void pinfo_lut_add (pinfo_lut_t*
void pinfo_lut_remove (pinfo_lut_t*

char* pinfo_lut_get_uname (pinfo_lut_t*
void pinfo_lut_print_pids (pinfo_lut_t*

pinfo_p);
pinfo_p);

pinfo_p,
pinfo_p,
pinfo_p,
pinfo_p,

int pid, char uname[]);
int pid);

int pid);

char uname[]);

ECE 2400 Computer Systems Programming, Fall 2017 A Prelim 1 Prep

Part 2.B Implementing pinfo_lut_get_uname

Develop an implementation for pinfo_lut_get_uname function. The function should return the
username corresponding to the given process ID (pid). If the pid is not present in the data structure,
then the function should return a NULL pointer to indicate an error.

CUdn o PiFo o (UT- GeT. urame (!).,.Jo, (vttf pefo_p, ~r Oo)

7
¢

4

TP prfo_p - PID ZVvant E(NB]

Part 2.C Implementing pinfo_lut_print_pids

Develop an implementation for pinfo_lut_print_pids function. The function should use print£
to print every process ID corresponding to the given username (uname). You can use the strcmp
function from the C standard library to compare to strings. Note that this function returns zero if
the strings are equal.

\
Vo el _(ut. Pm{ypsps(Orda_or £ 3 ()w‘b,p: Cuh— u»mmm)

{'D~ (Siet (co : be FL (42) %
\f' (9rrc~\P(, ‘pwfo,p—vpmlwam I:i]:u.amw,) :-:o)
pfl-’”{ (* ?oo&\h"’, c),

%

Z

ECE 2400 Computer Systems Programming, Fall 2017 Prelim 1 Prep

Problem 3. Comparative Analysis

In this problem, you should perform a comparative analysis of the two implementations explored
in Problems 1 and 2, with the ultimate goal of making a compelling argument for which design
will perform better across a large number of workloads. While you are free to use whatever
approach you like, we recommend you structure your response in several paragraphs. The first
paragraph might discuss the performance of both implementations using time complexity analy-
sis. Remember that time complexity analysis is not the entire story; it is just the starting point for
performance analysis. The second paragraph might discuss the space requirements of both im-
plementations using space complexity analysis. Remember that space complexity analysis is not
the entire story; it is just the starting point for storage requirement analysis. The third paragraph
might discuss other qualitative metrics such as generality, maintainability, and design complexity.
The final paragraph can conclude by making a compelling argument for which implementation
will perform better in the general case, or if you cannot strongly argue for either implementation
explain why.

