
ECE 2400 Computer Systems Programming, Fall 2017
PA4: Polymorphic Data Structures and Algorithms

School of Electrical and Computer Engineering
Cornell University

revision: 2017-11-14-21-11

1. Introduction

The fourth programming assignment is designed to give you experience working across data struc-
tures and algorithms that are polymorphic. Polymorphism is a central concept in the object-oriented
programming design paradigm. In this assignment, you will synthesize what you have learned in
lecture including not only C++ basics (e.g., namespaces, references, dynamic allocation), but also
C++ object-oriented programming (e.g., data encapsulation, leveraging abstraction through inter-
faces, working with iterators, constructors, destructors, member functions, operator overloading).

Polymorphism is a powerful tool for concisely expressing your intent as a programmer by leveraging
the same code across many different types. Two fundamentally different forms of polymorphism
arise based on the timing of when the code is specialized for specific types. Static polymorphism
specializes at compile time and is commonly achieved through generic programming. Dynamic poly-
morphism specializes at run time and is commonly achieved through class inheritance. Both forms of
polymorphism have their strengths and weaknesses, and both forms are heavily leveraged through-
out computer systems programming to refactor code and concisely express programmer intent.

We previously designed data structures and algorithms that were restricted to a single type. In this
assignment, we will work with polymorphic data structures and polymorphic algorithms. Data
structures can be polymorphic over the types they contain. Member functions of polymorphic data
structures describe how to act on the object without yet knowing the object’s type. Similarly, algo-
rithms can be polymorphic over the data structures they work with and are capable of doing useful
work without knowing exactly how the data is stored underneath.

Specifically in this assignment, you will implement two polymorphic vector data structures (i.e., one
using dynamic polymorphism, and one using static polymorphism) as well as a simple polymorphic
algorithm that takes any container and data element and then searches the container to see if the
data element is present. You will evaluate the tradeoffs between the two polymorphic vector data
structures with respect to performance (e.g., "How fast can we access and execute on data? How fast
for different patterns of inputs?"), and also with respect to flexibility (e.g., "How easy is the container
to use? Are there restrictions on what can be held inside? What must I do to store new kinds of
data?"). Although we have switched to C++, we can continue to leverage the Criterion framework for
unit testing, TravisCI for continuous integration testing, and Codecov.io for code coverage analysis.

After your polymorphic implementations are functional and verified, you will write a 2–4 page de-
sign report that describes your design for each implementation, discusses your testing strategy, and
evaluates the performance and flexibility trade-offs between implementations. Note that there is no
incremental milestone for this assignment. The final code and report are all due at the end of the
assignment. You should consult the programming assignment assessment rubric for more infor-
mation about the expectations for all programming assignments and how they will be assessed.

This handout assumes that you have read and understand the course tutorials. To get started, log in
to an ecelinux machine, source the setup script, and clone your individual repository from GitHub:

1

ECE 2400 Computer Systems Programming, Fall 2017 PA4: Polymorphic Data Structures and Algorithms

% source setup-ece2400.sh
% mkdir -p ${HOME}/ece2400
% cd ${HOME}/ece2400
% git clone git@github.com:cornell-ece2400/<netid>

You should never fork your individual remote repository! If you need to work in isolation then
use a branch within your individual remote repository. If you have already cloned your individual
remote repository, then use git pull to ensure you have any recent updates before running all of
the tests. You can run all of the tests in the lab like this:

% cd ${HOME}/ece2400/<netid>
% git pull --rebase
% mkdir -p pa4-poly/build
% cd pa4-poly/build
% ../configure
% make check

Because we are encouraging an incremental design approach, we have commented out some neces-
sary code for compilation. This means that your initial build will not compile. For this assignment,
you will work in the pa4-poly subproject, which includes the following files:

• configure – Configuration script to generate Makefile
• Makefile.in – Makefile template to run tests and eval

• src/vector-dpoly.h – Header file for VectorDPoly
• src/vector-dpoly.cc – Source code for VectorDPoly
• src/vector-dpoly-test.cc – Test cases for VectorDPoly

• src/vector-spoly.h – Header file for VectorSPoly
• src/vector-spoly.inl – Source code for VectorSPoly
• src/vector-spoly-test.cc – Test cases for VectorSPoly

• src/types-dpoly.h – Header file for types used in dpoly
• src/types-dpoly.cc – Source code for types used in dpoly

• src/types-spoly.h – Header file for types used in spoly
• src/types-spoly.cc – Source code for types used in spoly

• src/algorithms.h – Header file with general algorithms
• src/algorithms-test.cc – Test cases for general algorithms

• src/vector-eval.cc – Evaluation program for VectorDPoly and VectorSPoly
• scripts – Scripts for the build system and generating datasets

2. Design Description: Dynamic Polymorphism through Inheritance

Dynamic polymorphism in C++ is commonly achieved through inheritance by using virtual func-
tions. In this section you will implement the member functions and associated free functions for the
VectorDPoly class, a vector container that stores IObject’s.

Many subclasses can inherit from IObject, but we define only three subclasses: Integer (a class that
stores an integer), Double (a class that stores a double), and Complex (a class that stores a complex
number). An object instantiated from any of these classes has an ”is a“ relationship with IObject.

Abstractly, a VectorDPoly object should have basic functionality to handle the following example:

2

ECE 2400 Computer Systems Programming, Fall 2017 PA4: Polymorphic Data Structures and Algorithms

• Construct a VectorDPoly object

• Push back “Double(1.0)”, “Integer(2)”, and “Complex(3.0, 4.0)” into the vector

• Index into the vector at position 1 and retrieve the “Integer(2)”

We already know from previous programming assignments that a vector maintains an internal array
to manage its data. This vector will store IObject’s, so it makes sense to imagine the internal array
will store IObject types. However, we also know that an IObject is an abstract base class and cannot
be instantiated as a concrete object. Also recall that each derived type (e.g., Complex) has an ”is-a“
relationship with IObject and that calling an IObject’s virtual functions will dynamically dispatch
to the correct version in the derived class.

A key design decision you must make is to decide what type to store inside of the internal array of
a VectorDPoly object. If you compile the code for this assignment, you will observe the following
compiler error message:

../src/vector-dpoly.h: error: ’XXXXXXXXX’ does not name a type
XXXXXXXXX m_data_p;

Your first task in this assignment is to open the interface of VectorDPoly in its corresponding header
file src/vector-dpoly.h, think carefully what type of data should be stored, and then replace the
XXXXXXXXX placeholders with the right type.

For the remainder of this section, you are responsible for filling in the implementation of the VectorDPoly
class, based on the interface declared in its header file. This will also include the contains and sort
member functions, which must each be implemented using the Vector::Itr iterator class. You will
write your implementations inside src/vector-dpoly.cc. Note that there are no code skeletons pro-
vided for you in the implementation file. If you are unsure about how to define a function, refer to
the lecture notes. Please make sure to comment your code to capture the high-level goal of your code
as you write.

Designing a dynamically polymorphic vector container from scratch can be a non-trivial effort. We
highly recommend approaching the implementation by starting with the simplest member functions
first. Then test these simple functions before incrementally moving on to implement the more com-
plex member functions (which depend on the simpler ones). To encourage incremental design, we
have made the following temporary changes to your code:

• Temporarily commented basic test cases. Only the basic test case for the constructor and destructor is
uncommented in the provided test file. After you pass the first basic test case (defining construc-
tors and a destructor), uncomment the next basic test case and begin working on implementing
push back and the index operator. Continue in this fashion, and eventually move on to adding
your own test cases.

• Temporarily commented iterator declarations. The iterator class and the iterator-related declarations
are temporarily commented out in the VectorDPoly header file. Iterators are not necessary for
working with the simplest member functions. When you turn your attention to the contains
and sort functions, you should uncomment these lines and implement the VectorDPoly::Itr
interface. Then you will use iterators to implement both the contains and sort functions.

We recommend taking the following order to implement VectorDPoly:

• Implement constructor and destructor

• Implement push back and the indexer operator[]

3

ECE 2400 Computer Systems Programming, Fall 2017 PA4: Polymorphic Data Structures and Algorithms

• Uncomment the iterator class and related member functions in the header

• Implement iterator class and related member functions

• Design the contains function

• Design the sort function

Note that each function may be very short and may be just a few lines of code! Many functions may
even be just a single line of code. Here is a brief specification for each function:

• VectorDPoly::VectorDPoly()
Construct the vector initializing all fields in the VectorDPoly. The maxsize must initialize to zero.

• VectorDPoly:: VectorDPoly()
Destruct the vector by dynamically deallocating any heap space used by the object.

• VectorDPoly::Itr VectorDPoly::begin() const
Return a VectorDPoly::Itr that corresponds to the beginning element of the vector.

• VectorDPoly::Itr VectorDPoly::end() const
Return a VectorDPoly::Itr that corresponds to one place beyond the final element of the vector.

• bool VectorDPoly::contains(const IObject& item)
Use iterators to search the container. Return true if the item is in the container, else return false.

• void VectorDPoly::push_back(const IObject& item)
Push back the item into the vector and increment the m_size. If the internal array is out of space,
the m_maxsize should double and new space dynamically allocated for the internal array. The
virtual clone member function of an IObject is available if a deep copy of the item is needed.

• void VectorDPoly::sort()
Use iterators to implement a forward insertion sort. The implementation can use the standard
library std::swap function to swap elements in the vector.

• IObject*& VectorDPoly::operator[](size_t idx) const
Return the element at position idx in the internal array.

• VectorDPoly::Itr::Itr(XXXXXXXXX obj_pp, size_t idx)
Construct the iterator and initialize all fields.

• void VectorDPoly::Itr::next()
Increment the index of the iterator to point to the next element in the internal array.

• IObject*& VectorDPoly::Itr::get() const
Return the element in the internal array currently pointed to (which is idx positions away from
m_itr_p).

• bool VectorDPoly::Itr::eq(const Itr& rhs) const
Returns true is the iterator points to the same object as this iterator, else returns false.

• void operator++(VectorDPoly::Itr& itr)
Syntactic sugar for calling next() on an Itr.

• IObject*& operator*(const VectorDPoly::Itr& itr)
Syntactic sugar for calling get() on an Itr.

• bool operator!=(const VectorDPoly::Itr& lhs, const VectorDPoly::Itr& rhs)

4

ECE 2400 Computer Systems Programming, Fall 2017 PA4: Polymorphic Data Structures and Algorithms

Syntactic sugar for comparing iterators with eq(). Return true if not equal and false otherwise.

3. Design Description: Static Polymorphism through Generic Programming

Static polymorphism in C++ is commonly achieved through generic programming using templates.
In this section you will implement the member functions for the VectorSPoly<T> class template, a
vector container that stores any type T, and not just IObject’s.

Abstractly, a VectorSPoly<T> object should have similar basic functionality as a VectorDPoly as
shown in the following example:

• Construct a VectorSPoly<T> object

• Push back multiple T’s into the vector

• Index into the vector and retrieve the T at position 2

Classes based on class templates have several unique features that set them apart from dynamically
polymorphic containers. Note that although T can be any type, at the exact moment we choose what
the type T represents for a specific container instance, we can henceforth only store objects of type T
in that container. We cannot store an integer, a double, a string, and a complex value all in the same
VectorSPoly<T> container. You may also notice by inspecting the header file in src/vector-spoly.h
that a VectorSPoly<T> container can store objects of type T directly and contiguously in the internal
array. Convince yourself that this is okay and why it may be preferable compared to how data is
stored in a VectorDPoly object.

In this section, you are responsible for filling in the implementation of the VectorSPoly<T> class tem-
plate, based on the interface declared in its header file. You will write your implementations inside
src/vector-spoly.inl. Note that there are no code skeletons provided for you in the implemen-
tation file src/vector-spoly.inl. If you are unsure about how to define class template functions,
refer to the lecture notes. Notice that the definitions for the class template member functions must be
written in a .inl file included in the header. You may treat this file as you would a normal .cc file.

Designing a statically polymorphic vector container using template programming from scratch is
again a non-trivial task. We highly recommend taking an incremental testing approach similar
to that described for VectorDPoly. The specifications for the class template member functions in
VectorSPoly<T> are analogous to those for VectorDPoly.

Notice, however, that the header file for VectorSPoly<T> has no contains function declaration. In-
stead of implementing this function as a member function of a VectorSPoly<T>, you will instead
implement a polymorphic contains algorithm inside the src/algorithms.h header file. This func-
tion has the following function signature:

template <typename C, typename T>
bool contains(const C& container, const T& item)

This polymorphic algorithm seamlessly accepts any container C that implements iterators and any
data type T, unifying the dynamically polymorphic VectorDPoly container and the statically poly-
morphic VectorSPoly<T> container. The function searches for an element of any type T inside the
container of any type C and returns whether it is present or not. You are required to implement the
polymorphic contains function, thereby unifying a single implementation of an algorithm across
your two polymorphic data structures. You are required to use iterators in your implementation.
You are required to write tests for the polymorphic contains that successfully executes across
both VectorDPoly and VectorSPoly<T> containers.

5

ECE 2400 Computer Systems Programming, Fall 2017 PA4: Polymorphic Data Structures and Algorithms

Here is an example basic test. Notice how the template typenames C and T are automatically inferred
by the compiler based on the types of myvec and Integer(2).

Test(algorithms_basic, basic_dpoly_contains, .timeout=10)
{

VectorDPoly myvec; // Construct..
myvec.push_back(Integer(2)); // Push a value..
bool found = contains(myvec, Integer(2)); // Check for the value..
cr_assert_eq(found, true); // Verify..

}

The contains function is admittedly simple. You are also encouraged to implement a polymorphic
sort function (also in src/algorithms.h) that works across both VectorDPoly and VectorSPoly<T>
containers. Accomplishing this requires a deep understanding of how dynamic polymorphism and
static polymorphism work and of C++ language constructs. You may need to declare and define new
member functions for additional functionality. Implementing this function is not required. However,
it is a natural extension to the assignment that can significantly help to solid your understanding.

4. Testing Strategy

As in the previous programming assignments, you will develop an effective testing strategy and
write tests systematically so that you can give a compelling argument for the robustness of your
code. We have provided basic tests for several key member functions for both VectorDPoly and
VectorSPoly<T>. However, we do not provide basic tests for other member functions or operator
overloads. You will need to add enough tests to provide enough evidence that your code works as
intended.

Although the context is slightly different, you are encouraged to look back to your tests used in pre-
vious programming assignments to test these polymorphic data structures and algorithms. Design
your directed tests and random tests to stress new cases that arise from polymorphism. For example,
can you store multiple types in the same container? What happens when you sort such a container?
Similarly, convince yourself that your algorithm implementations are robust across different data
types, and potentially across different containers.

Random testing can help stress-test your polymorphic data structures and algorithms with large
amounts of data. Ensure that your random tests are repeatable by calling the srand function once at
the top of your test case with a constant seed (e.g., srand(0)).

You may use the std::swap() C standard library function, which accepts two arguments by refer-
ence and swaps their values.

5. Evaluation

Once you have verified the functionality of your polymorphic data structures and algorithms, you
can evaluate their performance against each other. You can build and run the evaluation program
like this:

% cd ${HOME}/ece2400/<netid>
% mkdir -p pa4-poly/build-eval
% cd pa4-poly/build-eval
% ../configure --enable-eval

6

ECE 2400 Computer Systems Programming, Fall 2017 PA4: Polymorphic Data Structures and Algorithms

% make eval

We are working in a separate build-eval build directory, and we are using the --enable-eval com-
mand line option to the configure script. This tells the build system to create optimized executables
without any extra debugging information.

The evaluation program runs the sort member function on a VectorDPoly object holding 10,000
random Integer’s and similarly on a VectorSPoly<int> object holding 10,000 random ints.

When analyzing the performance results, think carefully about how the internal storage organization
can impact the tradeoff between the two styles of polymorphism with respect to performance. Both
containers hold the same data. If there is a difference in performance, what additional operations
may account for the extra execution time?

Besides performance, also consider the impact of flexibility in terms of ease of use. Does one style of
polymorphism enable use cases that the other does not allow? When or why might the traits of each
style of polymorphism be useful?

Acknowledgments

This programming assignment was created by Christopher Batten and Christopher Torng as part of
the ECE 2400 Computer Systems Programming course at Cornell University.

7

