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1. Introduction

The second programming assignment is designed to give you experience working with two impor-
tant data structures in computer systems programming: lists and vectors. In this assignment, you will
leverage many of the concepts from lecture including types, pointers, arrays, and dynamic allocation.

You will implement basic functions to manipulate the 1list_t and vector_t data structure types.
These data structures both have the same high-level purpose of storing a sequence of values, but are
internally organized with different approaches that heavily impact their strengths and weaknesses.
Data structures are the building blocks of all software programs, so it is even more important now to
design your code to be both maintainable and robust. As in the previous assignment, we will leverage
the Criterion framework for unit testing, TravisCI for continuous integration testing, and Codecov.io
for code coverage analysis.

After your data structures are functional and verified, you will write a 2—4 page design report that
describes your design as well as each function, discusses your testing strategy, and evaluates the
performance and other trade-offs between the two data structures. Note that there is no incremental
milestone for this assignment. The final code and report are all due at the end of the assignment.
You should consult the programming assignment assessment rubric for more information about
the expectations for all programming assignments and how they will be assessed.

This handout assumes that you have read and understand the course tutorials. To get started, log in
to an ecelinux machine, source the setup script, and clone your individual remote repository from
GitHub:

% source setup-ece2400.sh

% mkdir -p ${HOME}/ece2400

% cd ${HOME}/ece2400

% git clone git@github.com:cornell-ece2400/<netid>

You should never fork your individual remote repository! If you need to work in isolation then
use a branch within your individual remote repository. If you have already cloned your individual
remote repository, then use git pull to ensure you have any recent updates before running all of
the tests. You can run all of the tests in the lab like this:

% cd ${HOME}/ece2400/<netid>
% git pull --rebase

% mkdir -p pa2-dstruct/build
% cd pa2-dstruct/build

% ../configure

% make check
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All of the tests should fail since you have not implemented the programming assignment yet. For
this assignment, you will work in the pa2-dstruct subproject, which includes the following files:

2.

configure — Configuration script to generate Makefile
Makefile.in — Makefile template to run tests and eval
src/list.h — Header file for list_t

src/list.c — Source code for list_t
src/list-test.c — Test cases for 1list_t

src/list-eval.c — Evaluation program for 1ist_t
src/vector.h — Header file for vector_t

src/vector.c — Source code for vector_t
src/vector-test.c — Test cases for vector_t
src/vector-eval.c — Evaluation program for vector_t
src/list.dat — Input dataset for 1ist_t evaluation
src/vector.dat — Input dataset for vector_t evaluation
scripts — Scripts for the build system and generating datasets

First Implementation: List Data Structure

In this section, you will implement the various functions for manipulating the list data structure
which is of type 1ist_t. Lists are composed of nodes. Each node is of type node_t and contains an
integer value and a pointer to the next node (see Figure 1). The pointer will be NULL if the node does
not point to any other node. A 1ist_t data structure organizes data by chaining together nodes to
create a sequence of values (see Figure 2). In this assignment, our list data structure is designed to
only hold a sequence of ints. However, we could potentially use this data structure to hold values of
any other type if we changed the type of the value field in the definition of node_t. We could revise
the data structure to store a sequence of doubles or even a sequence of other lists (i.e., a list of lists)!

typedef struct _node_t { nodet
int value; value | 11
struct _node_t* next; next 0——|

}

node_t;

Figure 1: Definition and Example of a node_t Struct — The example node_t struct has an integer
value of 11 and a next pointer which is pointing to NULL (i.e., does not point to any other node).

(Head Node) (Tail Node)
typedef struct { list_t Node 0 Node 1 Node 2
size_t size; size 3 value 11 value 12 value 13
node_t* head;
node_t* tail; head .\\E Q] next Q| next o
X tail .\\—/—/"
list_t;

Figure 2: Definition and Example of a 1ist_t Struct — The example list_t struct has a size of three
elements, a head pointer which is pointing to Node 0, and a tail pointer which is pointing to Node 2.
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Now that we know how to organize a sequence of integers as a list, we need to actually use the list.
For example, we might want to add an element to the list or to search the list for a value. Although
we could potentially re-write this code every time we want to use the list, it is better programming
practice to refactor common code into functions to capture each action we might like to perform:
construct, destruct, get, find, and push back. You are responsible for implementing each of the
following functions:

void list_construct ( list_t* list );
void list_destruct ( list_t* list );
int list_get ( list_t* list, size_t idx );
int 1list_find ( list_t* list, int value );
void list_push_back ( list_t* list, int value );

The specification for these functions is as follows:

® void list_construct( list_t* list );
Construct the list initializing all fields in the given 1ist_t. The head and tail pointers should be
initialized to NULL to indicate that they do not point to any node.

e void list_destruct( list_t* list );
Destruct the list by freeing any dynamically allocated memory used by the list and also by any of
the nodes in the list.

e int list_get( list_t* list, size_t idx );
Return the value at the given index (idx) of the list by iterating through the list using the next
pointers (i.e., "following the arrows") and returning the value of the node that is at the given
index. If the given index (idx) is out-of-bounds, the implementation should stop the program by
using an assertion.

e int list_find( list_t* list, int value );

Search the list for the given value (value) and return 1 if the value is found and 0 if it is not.

¢ void list_push_back( list_t* list, int value );
Push a new element with the given value (value) at the end of the list (the tail end). You will
need to dynamically allocate a new node_t, set its value, and correctly update the next pointer in
the tail node in order to add the new node to the end of the list. You will also need to correctly
update the head and tail fields in 1ist_t. You can assume your implementation will never run
out of memory (i.e., malloc will never return NULL).

The functions vary in complexity, and some may require just a few lines of code to implement.

Notice that each function takes as its first argument a pointer to a 1ist_t. This tells the function
which 1list_t to operate on. In general, you will first declare a 1ist_t and then use your functions
by passing in a pointer to your list. To give you an idea of how this works, here is a simple function
that constructs a list, pushes back three values, gets the middle value, and then destructs the list:

void simple() {

list_t mylist; // Declare a list_t on the stack
list_construct( &mylist ); // Construct mylist
list_push_back( &mylist, 11 ); // Push back 11

list_push_back( &mylist, 12 ); // Push back 12

list_push_back( &mylist, 13 ); // Push back 13

int a = list_get( &mylist, 1 ); // int a now has 12
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list_destruct( &mylist ); // Destruct mylist
}

The definitions for 1ist_t and node_t are provided for you in src/list.h. Write your implementa-
tion of each function inside src/list.c.

3. Second Implementation: Vector Data Structure

In this section, you will implement the various functions for manipulating the vector data structure
which is of type vector_t. A vector_t data structure organizes data sequentially as a continuous
chunk of memory (see Figure 3). Notice that as in a list, there is a size field to indicate how many
elements are in the vector. However, a vector also has a maxsize field to indicate how big the con-
tiguous chunk of memory is. The example vector in Figure 3 can hold five integers in a contiguous
chunk of memory (i.e., maxsize is 5) but is only occupying the first three spaces (i.e., size is 3). If
more than five integers need to be held, we must find a new and larger contiguous chunk of memory!

Now that we know how to organize a sequence of integers as a vector, we again want to actually
use the vector. We can capture each action we want to perform into individual functions: construct,
destruct, get, find, and push back. Notice that these provide the same functionality for vectors as
our list provides. You are responsible for implementing each of the following functions:

void vector_construct ( vector_t* vec, size_t maxsize );
void vector_destruct ( vector_t* vec );

int vector_get ( vector_t* vec, size_t idx );
int vector_find ( vector_t* vec, int value );
void vector_push_back ( vector_t* vec, int value );

The specification for these functions is as follows:

e void vector_construct( vector_t* vec, size_t maxsize );

Construct the vector by initializing all fields in the vector_t. Notice that vector_construct ()
takes a parameter maxsize, which you will use to dynamically allocate space for the internal
array. You can assume that maxsize is always “reasonable” and is never so large as to cause the
machine to run out of memory (i.e., malloc will never return NULL).

e void vector_destruct( vector_t* vec );

Destruct the vector by freeing any dynamically allocated memory used by the vector.

vector_t a\
typedef struct { size[ 3 ap)[ 11
size_t size;
size_t maxsize; maxsize | 5 i 12 contiguous
int* array; array O a[2]| 13 chunk of
} al3] o memory
vector_t;
a[4] ? <« uninitialized
values

Figure 3: Definition and Example of a vector_t Struct — The example vector_t struct has a size of
three elements, a maxsize of five elements, and a pointer to an internal array that holds the data.
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® int vector_get( vector_t* vec, size_t idx );

Return the value at the given index (idx) of the vector by accessing the internal array and return-
ing the value at that index. If the given index (idx) is out-of-bounds, the implementation should
stop the program by using an assertion.

e int vector_find( vector_t* vec, int value );

Search the vector for the given value (value) and return 1 if the value is found and 0 if it is not.

¢ void vector_push_back( vector_t* vec, int value );
Push a new element with the given value at the end of the vector. If there is not enough allocated
contiguous space (i.e., check the size and maxsize), then you should (1) double the maxsize, (2)
dynamically allocate space for the larger maxsize integers, (3) copy the data from the old space
into the new space with a loop, and finally (4) free the memory in the old space. You can assume
your implementation will never run out of memory (i.e., malloc will never return NULL).

The functions vary in complexity, and some may require just a few lines of code to implement.

Each function takes as its first argument a pointer to a vector_t. This tells the function which
vector_t to operate on. For reference, here is a simple function that constructs a vector, pushes
back three values, gets the middle value, and then destructs the vector:

void simple() {

vector_t myvec; // Declare a vector_t on the stack
vector_construct( &myvec, 5 ); // Construct myvec with maxsize 5
vector_push_back( &myvec, 11 ); // Push back 11

vector_push_back( &myvec, 12 ); // Push back 12

vector_push_back( &myvec, 13 ); // Push back 13

int a = vector_get( &myvec, 1 ); // int a now has 12
vector_destruct( &myvec ); // Destruct myvec

}

The definition for vector_t is provided for you in src/vector.h. Write your implementation of each
function inside of src/vector.c.

4. Testing Strategy

As in the first programming assignment, you will need to develop an effective testing strategy and
write tests systematically so that you can give a compelling argument for the robustness of your
code. We have provided basic tests for each of the functions you will implement. You will need to
add more directed tests and random tests. Writing tests is one of the most important and challenging
aspects of software programming. Designers often spend far more time designing tests than they do
designing the actual program.

Design your directed tests to stress various common cases but also to capture cases that you as a
programmer suspect may be challenging for your functions to handle. For example, what happens
if you double the maxsize of a vector when maxsize is 0? Convince yourself that your functions for
the two data structures are robust by carefully developing a testing strategy.

Random testing will be particularly useful in this programming assignment to grow your lists and
vectors to arbitrary lengths, get values from random indices, and find random values that may or
may not be present inside your data structure. Ensure that your random tests are repeatable by
calling the srand function once at the top of your test case with a constant seed (e.g., srand (0)).
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You should include assertions in your code to check for errors and to detect exceptional situations.
One assertion has been provided for you that detects calling the get function with an index that is
out-of-bounds. You can write tests that purposely fail assertions as part of your testing strategy. You
can use Criterion to test for the abort signal as shown in discussion section.

5. Evaluation

Once you have verified the functionality of the list and vector implementations, you can evaluate
their performance. We provide you a performance analysis harness for each implementation. You
can build and run these evaluation programs like this:

% cd ${HOME}/ece2400/<netid>

% mkdir -p pa2-dstruct/build-eval

% cd pa2-dstruct/build-eval

% ../configure --enable-eval

% make list-eval && ./list-eval

% make vector-eval && ./vector-eval

We are working in a separate build-eval build directory, and we are using the --enable-eval com-
mand line option to the configure script. This tells the build system to create optimized executables
without any extra debugging information. You can build and run all of the evaluation programs in a
single step like this:

% cd ${HOME}/ece2400/<netid>/pa2-dstruct/build-eval
% make eval

The evaluation program pushes back 2500 inputs into your data structure, starts the timer, and then
uses your data structure’s £ind () function to search your data structure for 5000 inputs (each re-
turning whether or not the value is present in your data structure) before stopping the timer and
reporting the total wall-clock run time. Note that of the 5000 inputs, half are present in your data
structure and half are not present in your data structure. The inputs are not sorted in any order.

This harness will enable you to compare the performance between the list and vector data structures.
Which data structure do you think will perform the find function more quickly? In addition to per-
formance, also consider the impact of your design decisions on the space occupied in memory. For
example, a vector that is constructed with a large initial maxsize may never need to incur the perfor-
mance costs of out-growing its allocated space, but at the same time, how much memory would it
occupy and potentially “waste”?

The evaluation programs also ensure that your implementations are producing the correct results,
however, you should not use the evaluation programs for testing. If your implementations fail dur-
ing the evaluation, then your testing strategy is insufficient. You must add more unit tests to effec-
tively test your program before returning to performance evaluation.
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