
ECE 2400 Computer Systems Programming, Fall 2017
Programming Assignment 1: Math Functions

School of Electrical and Computer Engineering
Cornell University

revision: 2017-09-19-14-22

1. Introduction

The first programming assignment is a warmup assignment done individually that is designed to
give you experience with two important aspects of computer systems programming: software de-
sign and software verification. In this assignment, you will leverage the basic concepts from lecture,
ranging from variables and operators to conditional and iteration statements. More advanced con-
cepts such as recursion will also play a key role in optimizing the performance of your code.

You will design and implement the power and square root math functions twice: first using a simple
but naive implementation, and then using a more sophisticated algorithm that can potentially im-
prove performance by an order of magnitude. Throughout the assignment, you will carefully design
your code to be maintainable (“Will somebody else be able to understand my code and extend it?”).
We will conduct individual code reviews via GitHub to help you improve the quality of the code you
write. You will also use unit testing to carefully verify that your design is robust (“Will my code han-
dle all situations as intended?”). Just as in the tutorial, we will leverage the Criterion framework for
unit testing, TravisCI for continuous integration testing, and Codecov.io for code coverage analysis.

After your code is functional and verified, you will write a 2–4 page design report that describes
your design, discusses your testing strategy, and evaluates the performance (and other trade-offs) of
the baseline and alternative implementations. While the final code and report are all due at the end
of the assignment, we also require meeting an incremental milestone of pushing your baseline
implementations to GitHub on the date specified by the instructors.

This handout assumes that you have read and understand the course tutorials. To get started, log in
to an ecelinux machine, source the setup script, and clone your individual remote repository from
GitHub:

% source setup-ece2400.sh
% mkdir -p ${HOME}/ece2400
% cd ${HOME}/ece2400
% git clone git@github.com:cornell-ece2400/<netid>

Where <netid> should be replaced with your NetID. You should never fork your individual remote
repository! If you need to work in isolation then use a branch within your individual remote
repository. If you have already cloned your individual remote repository, then use git pull to
ensure you have any recent updates before running all of the tests. You can run all of the tests in the
lab like this:

% cd ${HOME}/ece2400/<netid>
% git pull --rebase
% mkdir -p pa1-math/build
% cd pa1-math/build
% ../configure
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% make check

All of the tests should fail since you have not implemented the programming assignment yet. For
this assignment, you will work in the pa1-math subproject, which includes the following files:

• configure – Configuration script to generate Makefile
• Makefile.in – Makefile template to run tests and eval

• src/pow-v1.c – Source code for baseline pow
• src/pow-v1.h – Header file for baseline pow
• src/pow-v1-test.c – Test cases for baseline pow
• src/pow-v1-eval.c – Evaluation program for baseline pow

• src/pow-v2.c – Source code for alternative pow
• src/pow-v2.h – Header file for alternative pow
• src/pow-v2-test.c – Test cases for alternative pow
• src/pow-v2-eval.c – Evaluation program for alternative pow

• src/sqrt-v1.c – Source code for baseline sqrt
• src/sqrt-v1.h – Header file for baseline sqrt
• src/sqrt-v1-test.c – Test cases for baseline sqrt
• src/sqrt-v1-eval.c – Evaluation program for baseline sqrt

• src/sqrt-v2.c – Source code for alternative sqrt
• src/sqrt-v2.h – Header file for alternative sqrt
• src/sqrt-v2-test.c – Test cases for alternative sqrt
• src/sqrt-v2-eval.c – Evaluation program for alternative sqrt

• src/pow.dat – Input dataset for pow evaluation
• src/sqrt.dat – Input dataset for sqrt evaluation
• scripts – Scripts for the build system and generating datasets

2. Design Description: Baseline Implementation

In this section, you will be implementing a simple but naive algorithm to compute the power and
square root math functions. The name of our power function will be pow, and the name of our square
root function will be sqrt.

The pow function takes two input arguments: (1) the base value (b), and (2) the exponent value
(e). The function returns the base raised to the power of the exponent (i.e., be). Specifically, the
corresponding C function has the following function signature:

double pow( double base, int exponent )

Notice that base is a floating-point double (i.e., a real number), exponent is an integer, and the re-
turned value is also a floating-point double. A basic implementation of the pow function expressed
in a mathematical formula is:

be =


1 if e = 0

b× b×
e
· · · × b if e > 0

1/(b× b×
|e|
· · · × b) if e < 0
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Your baseline implementation of the pow function should directly correspond to the above definition
and should use an iteration statement with a few carefully chosen conditional statements.
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In this assignment, we will allow certain cases in the implementation of pow to remain undefined:

• A base of 0 raised to a negative exponent is undefined
• A base of 0 raised to the 0th power is undefined
• Any cases involving overflowing a double are undefined

We will not test these cases when we grade the assignment, and students do not need to handle
these special cases in their implementation. Write your baseline implementation for pow inside of
src/pow-v1.c.

The sqrt function takes one input argument x and returns its square root (i.e.,
√

x). The correspond-
ing C function has the following function signature:

int sqrt( int x )

Notice that the variant of sqrt that we will use in this assignment takes an integer input and returns
another integer. The return value is the square root of x rounded down to the nearest integer. For
example, calling sqrt(5) will return 2. If x is a negative value, the sqrt function must return -1 to
report an invalid input.

The baseline implementation of the sqrt function should be implemented using an iteration state-
ment. Let i range from zero to x. For each i, compute i × i and compare the result with x. If i × i
is smaller than x, then i is less than the square root of x. If i × i is larger than x, then i is greater
than the square root of x. By gradually testing all values of i, you will be able to find the square
root of x rounded down to the nearest integer. Write your baseline implementation for sqrt inside
of src/sqrt-v1.c.

3. Design Description: Alternative Implementation

The algorithms used for the baseline implementations of pow and sqrt are simple but slow. In this
section, you will implement a more sophisticated algorithm for each of the two math functions, both
of which can potentially improve performance by an order of magnitude compared to their baseline
versions.

The baseline implementation of pow is particularly slow when the exponent is large because: (1) the
computer executes multiplication operations more slowly compared to simpler operations (e.g., ad-
dition, subtraction); and (2) the number of multiply operations increases linearly with e. We can
exploit structure in the baseline implementation to reduce the required number of multiply opera-
tions. Consider the following example.

38 = 3× 3× 3× 3× 3× 3× 3× 3

We can reduce the number of multiply operations by reusing intermediate results.

a = 3× 3

b = a× a

c = b× b

We first calculate 32 = 3× 3, and we can then reuse 32 to calculate 34 = (32)2, and we can then reuse
34 to calculate 38 = ((32)2)2. The baseline implementation would require seven multiply operations,
while the alternative implementation requires only three multiply operations. Here is the alternative
implementation expressed as a mathematical formula:
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be =


1 if e = 0
(b2)e/2 if e > 0 and e is even
b× be−1 if e > 0 and e is odd
1/(b|e|) if e < 0

Notice that this approach for computing pow has multiple recursive cases. Although an iterative
solution using loops is possible, we can more elegantly and concisely capture this algorithm using
a recursive helper function. Write your alternative implementation for pow inside of src/pow-v2.c.
You may add additional helper functions inside this file as needed.

The baseline implementation of sqrt is particularly slow when x is large because: (1) as mentioned
above, the computer executes multiplication operations more slowly compared to simpler operations
(e.g., addition, subtraction); and (2) the number of multiply operations increases linearly with x since
we are doing an exhaustive search. We can use a more sophisticated search to reduce the number of
multiply operations. Consider the situation when x is 144. We can divide the search space into two
ranges:

• Range of integers from 0 to ( x
2 − 1), which is [0, 71] when x is 144

• Range of integers from x
2 to x, which is [72, 144] when x is 144

We can quickly determine which half the square root of x lies in by squaring the midpoint (i.e.,
72× 72 = 5184) and comparing to x. Observing 5184 > 144 tells us that our guess of 72 was much
too high, so the answer must be in the lower half (i.e., somewhere in the range [0, 71]), which is
true since we know in this example that the square root is 12. We can continue applying the same
approach on the smaller range, dividing the search space into smaller and smaller ranges. Figure 1
illustrates an example execution when x is 144. This approach allows us to quickly "zero in" on the
square root of x. We can capture this algorithm iteratively, but a recursive solution is also possible
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• Split the range [0, 144] into [0, 71] and [72, 144]

• Choose the lower range

• Split the range [0, 71] into [0, 34] and [35, 71]

• Choose the lower range

• Split the range [0, 34] into [0, 16] and [17, 34]

• Choose the lower range

• Split the range [0, 16] into [0, 7] and [8, 16]

• Choose the upper range

• Split the range [8, 16] into [8, 11] and [12, 16]

• Choose the upper range

• Split the range [12, 16] into [12, 13] and [14, 16]

• Choose the lower range

• Search the range [12, 13]

• Identify the square root of 144 to be 12

Figure 1: Example of Alternative sqrt Algorithm – The range of integers that can contain the square
root is halved at each step.
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and may be more elegant and concise. The general approach of repeatedly halving the search space
is known as a binary search. We will learn more about this class of algorithms in the future. Write
your alternative implementation for sqrt inside of src/sqrt-v2.c. You may add additional helper
functions inside this file as needed.

When squaring large integers, it is possible to exceed the maximum value an integer type can hold.
This is called integer overflow and can corrupt the data in your program. This won’t happen in the
baseline implementation since we gradually increase the values we are squaring until we reach x.
The alternative implementation can easily square larger integers as it uses the binary search to nar-
row the search space. It is relatively straight-forward to detect overflow before it happens. We have
provided a short helper function named detect_overflow_before_squaring that takes an integer
and returns 1 if x2 will cause overflow and returns 0 if it will not. Please use this helper function
before squaring integers to avoid corrupting the data in your program.

While you are required to implement the alternative implementations described in this section, stu-
dents should also feel free to experiment with additional implementations. These implementations
should be kept separate by using pow-v3 and sqrt-v3 prefixes. Students will have to modify the
Makefile accordingly, and they will also need to ensure that any additional implementations are
both tested and evaluated.

4. Testing Strategy

You are responsible for developing an effective testing strategy to ensure all implementations are
correct. We provide one or two basic directed tests for each function, but you will need to add more
directed test and random tests. Writing tests is one of the most important and challenging aspects of
software programming. Designers often spend far more time designing tests than they do designing
the actual program.

As you design your implementations, pay careful attention to corner cases and unexpected inputs
(e.g., negative inputs) that break the functionality of your code. When you encounter such a case,
capture the situation with a test case and a helpful error message and improve your code. Carefully
read the design specification (i.e., the inputs, the outputs, and the behavior), so you know how your
program should respond in all possible scenarios. Convince yourself that your implementations are
robust by carefully developing a testing strategy.

In addition to writing directed tests, you should also add random tests. You can randomly generate
inputs using the rand function in the standard C library (include stdlib.h). Use the srand function
to initialize the random seed to a deterministic value to ensure your random tests are repeatable. You
can use the pow and sqrt functions in the standard C library (include math.h) as golden reference
models to generate correct reference outputs which you can then compare to the results from your
own implementations. Note that you are not allowed to use the pow and sqrt functions in the stand-
arc C library for your implementation, only for verification.

When testing the pow function, note that the result can vary by very small amounts because of
precision errors that build up as the computer performs arithmetic on real numbers. This is com-
monly solved by comparing relative amounts (i.e., checking that the two numbers are within at
least 99.99% of each other). An example test written in this fashion has been provided for you in
src/pow-v1-test.c and src/pow-v2-test.c. If precision error becomes a problem, please compare
numbers relatively.
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5. Evaluation

Once you have verified the functionality of the baseline and alternative implementations, you can
then start to evaluate the performance of these implementations. We provide you a performance
analysis harness for each implementation. You can build and run these evaluation programs like
this:

% cd ${HOME}/ece2400/<netid>
% mkdir -p pa1-math/build-eval
% cd pa1-math/build-eval
% ../configure --enable-eval
% make pow-v1-eval && ./pow-v1-eval
% make sqrt-v1-eval && ./sqrt-v1-eval
% make pow-v2-eval && ./pow-v2-eval
% make sqrt-v2-eval && ./sqrt-v2-eval

Note how we are working in a separate build-eval build directory, and that we are using the
--enable-eval command line option to the configure script. This tells the build system to cre-
ate optimized executables without any extra debugging information. You can build and run all of
the evaluation programs in a single step like this:

% cd ${HOME}/ece2400/<netid>/pa1-math/build-eval
% make eval

The evaluation programs apply your math functions to 1000 inputs and report the total wall-clock
run time. This will enable you to compare the performance between the baseline and alternative al-
gorithms. The evaluation programs also ensure that your implemenations are producing the correct
results, however, you should not use the evaluation programs for testing. If your implementations
fail during the evaluation, then your testing strategy is insufficient. You must add more unit tests to
effectively test your program before returning to performance evaluation.
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