
ECE 2400 Computer Systems Programming, Fall 2017

Programming Assignment Assessment Rubric

http://www.csl.cornell.edu/courses/ece2400
School of Electrical and Computer Engineering

Cornell University

revision: 2017-09-21-17-25

This document describes what students are expected to submit for the programming assignments,
and how their submissions will be evaluated. A handout is provided for each programming assign-
ment that describes the motivation for the assignment and provides background on the required
implementations, testing strategy, and evaluation. Each programming assignment requires you to
submit two major parts: the actual code itself (worth 70% of your grade) and a short report (worth
30% of your grade).

Any programmer can write code. Good programmers can write code for multiple implementations,
use a testing strategy to verify these implementations are correct, and evaluate the performance of
these implementations. Great programmers can do all of these things, but can also explain their how
their implementations work at a high level, justify the specific design choices used in their implemen-
tations, use an evidence-based approach to make a compelling argument that their code is correct,
and both qualitatively and quantitatively compare and contrast different implementations. Doing
well on the code means you are making progress towards being a good programmer. Doing well on
both the code and the report means you are making progress towards being a great programmer. By
the end of the semester, we hope every student will have evolved from simply being a programmer
to being a great programmer.

1. Programming Assignment Code Release

Initial code for each programming assignment will be released through GitHub, and students will
be using GitHub for all development related to the programming assignments. Every student will
have his or her own private repository for the first four programming assignments. Each group of
two students will have their own group repository for the last two programming assignments. All
of these repositories will be part of the cornell-ece2400 GitHub organization, and all development
must be done in these specific repositories. You should never fork your remote repository! If you
need to work in isolation then use a branch within your remote repository. The course instructors
will merge new code into the each of these remote repositories, and then students simply need to
pull these updates.

2. Programming Assignment Code Submission

The code will be submitted via GitHub. You just need to make sure that the final version of your code
is pushed to your remote repository on GitHub before the deadline. Automated scripts will clone
the master branch of each repository at 11:59pm on the due date, and then create an annotated tag to
unambiguously denote what version of the code was collected. If you are trying to push last minute
changes then it is likely our automated scripts may clone the wrong version. You should make sure
your final code is pushed to GitHub at least five minutes before the deadline.

You should browse the source on GitHub to confirm that the code in the remote repository is indeed
the correct version. Make sure all new source files are added, committed, and pushed to GitHub.

1



ECE 2400 Computer Systems Programming, Fall 2017 Programming Assignment Assessment Rubric

You should not commit the build directory or any generated content (e.g., object files, executable
binaries, unit test outputs). Including generated content in your submission will impact the grade for
the assignment. You should confirm that a clean clone of your programming assignment correctly
builds and passes all of the tests you expect to pass and also completes the evaluation using the
following process:

% mkdir -p ${HOME}/ece2400/submissions
% cd ${HOME}/ece2400/submissions
% rm -rf <repo>
% git clone git@github.com:cornell-ece2400/<repo>

% cd ${HOME}/ece2400/submissions/<repo>/<paname>
% mkdir -p build
% cd build
% ../configure
% make check

% cd ${HOME}/ece2400/submissions/<repo>/<paname>
% mkdir -p build-eval
% cd build-eval
% ../configure --enable-eval
% make eval

where <repo> is either your NetID for the first four programming assignments or your group repo for
the final two programming assignments, and <paname> is the name of the programming assignment
(e.g., pa1-math for the first assignment). If, for any reasons, the above steps do not work, then the
score for code functionality will be reduced. For example, students occasionally forget to commit
new source files they have created in which case these new files will not be in the remote repository
on GitHub.

We will be using TravisCI to grade the code functionality for the programming assignments. So in
addition to verifying that a clean clone works on the ecelinux machines, you should also verify
that all of the tests you expect to pass are passing on TravisCI by visiting the TravisCI page for your
repository:

• https://magnum.travis-ci.com/cornell-ece2400/<repo>

where <repo> is either your NetID for the first four programming assignments or your group repo
for the final two programming assignments. If your code is failing tests on TravisCI, then the score
for code functionality will be reduced. Keep in mind that in the final few hours before the deadline,
the TravisCI work queue can easily fill up. You should always make sure your tests are passing on
the ecelinux machines and not rely solely on TravisCI to verify which tests are passing and failing.

The functionality of the first and second implementations is worth 40% of the grade for the program-
ming assignment. Verification quality is worth 20% and code quality is worth 10%. Overall, the code
portion is worth 70% of the grade for the programming assignment.

3. Programming Assignment Code Revision

We will be incorporating a new aspect into the programming assignment submission process this
year. After the deadline, the course instructors will branch your submission and create a pull request
on GitHub. The instructors will then commit the instructor tests and evaluation program into this

2



ECE 2400 Computer Systems Programming, Fall 2017 Programming Assignment Assessment Rubric

pull request which will trigger a TravisCI build. This will enable the instructors and the students to
immediately see how their submission does on both the student tests and the instructor tests. If the
student’s programming assignment fails some of the instructor tests, then the students are free to
fix bugs and commit these changes as part of the pull request. The students are encouraged to add
comments to the pull request indicating what they had to change to pass the instructor tests, and
why the student tests did not catch this bug. This code revision will not mitigate a reduction in the
code functionality score due to failing instructor tests, but it will enable the course staff to judge how
severe a penalty to access. If it turns out that after the students fix a very small mistake in their code,
their programming assignment now passes all of the tests then this will result in a small penalty. If
it turns out that the students have to fix a major mistake, then this will result in a larger penalty, but
at least the students will have figured out what is wrong. Such code revisions will need to be made
within a few days of the deadline.

4. Programming Assignment Report Submission

In addition to the actual code, we also require students to submit a programming assignment report.
The report offers an opportunity for students to convey the high-level implementation approach,
motivation for specific design decisions, evidence for a compelling testing strategy, and evaluation
of performance trade-offs. We would argue that the ability to convey this information via a technical
report is just as important, or potentially even more important, than simply writing code. The report
is worth 30% of the grade for the programming assignment.

The programming assignment report should be written assuming the reader is familiar with the lec-
ture material, but do not assume that the reader has read the programming assignment handout; thus you
might need to paraphrase some of the content in the handout in your own words to demonstrate
understanding. Details about the actual code should be in the code comments. The report should fo-
cus on the high-level design, implementation, verification, and evaluation aspects of the assignment.
All reports should include a title and the name(s) and NetID(s) of the student(s) which worked on
the assignnent at the top of the first page. Do not put this information on a separate title page. The
report should be written using a serif font (e.g., Times, Palatino), be single spaced, use margins in the
range of 0.5–1 in, and use a 10 pt font size. All figures must be legible. Avoid scanning hand-written
figures and do not use a digital camera to capture a hand-written figure. Clearly mark each section
with a numbered section header. You should include the following sections:

• Section 1. Introduction – Students must summarize the purpose of the programming assign-
ment. Why are we doing this assignment? How does it connect to the lecture material? There
are often many purposes. Think critically about how the assignments fits into the other pro-
gramming assignments. Students can paraphrase from the handout as necessary. Students
must describe their progress on the assignment. Did you complete the first implementation?
the second implementation? Students must include a sentence or two that describes at a very
high-level their implementations. Students must include a brief qualitative and quantitative
overview of the evaluation results (Which implementation performed best? By how much?
On which inputs?). Students must include some high-level conclusions they can draw from
their qualitative and quantitative evaluation. Do not over-generalize. The introduction should
be brief but still provide a good summary of the programming assignment.

• Section 2. First Implementation – Students must describe their first implementation. Think
critically about what are the key items to mention in order for the reader to understand how
the first implementation works. Recall that you cannot assume the reader has read the pro-
gramming assignment handout. You will likely need to summarize some information from

3



ECE 2400 Computer Systems Programming, Fall 2017 Programming Assignment Assessment Rubric

the handout in your own words. Examples are usually great to include here to illustrate
how the first implementation works. Students are highly encouraged to include pseudo-code
where appropriate. Do not include C code; your report should be at a higher level. Students
must explain why this implementation is interesting to study in the context of the program-
ming assignment. If the first implementation required some creativity, then students must
provide a balanced discussion of not just the implementation itself, but why you chose to
take this approach.

• Section 3. Second Implementation – Students must describe their second implementation.
Think critically about what are the key items to mention in order for the reader to understand
how the second implementation works. Recall that you cannot assume the reader has read
the programming assignment handout. You will likely need to summarize some information
from the handout in your own words. Examples are usually great to include here to illustrate
how the second implementation works. Students are highly encouraged to include pseudo-
code where appropriate. Do not include C code; your report should be at a higher level.
Students must explain why this implementation is interesting to study in the context of the
programming assignment. Students are encouraged to compare and contrast their implementations
to demonstrate understanding of various implementation trade-offs. If the second implementation
required some creativity, then students must provide a balanced discussion of not just the
implementation itself, but why you chose to take this approach.

• Section 4. Testing Strategy – Students must describe the overall testing strategy (e.g., unit test-
ing, directed testing, random testing, whitebox vs. blackbox testing, assertion-based testing,
integration testing). Simply saying the students used unit testing is not sufficient; be specific
and explain why you used a specific testing strategy (e.g., why use directed testing? why use
random testing?). Students must explain at a high-level the kind of directed tests cases they
implemented and why they used these test cases. Consider including a table with a test case
summary, or some kind of quantitative summary of the number of test cases that are passing.
Consider including results from code coverage analysis. Note that students are not required
to achieve 100% code coverage. Students are trying to provide a compelling, evidence-based
argument that their implementations are functionally correct. Code coverage is just one piece
of evidence which should be integrated with the types of evidence (e.g., number of tests, types
of tests) in this section. We recommend students start this section with a short paragraph that
provides an overview of your strategy for testing (so how all of the testing fits together). Then
you might have a short paragraph for each kind of testing. Each paragraph starts with the
"why" (why that kind of testing) and then goes on to the "what" (what did you actually test
using that kind of testing). Then you can end with a paragraph that pulls it all together and
tries to make a compelling case for why you believe your design is functionally correct. Do
not include the actual test code itself; your report should be at a higher level. Do not in-
clude the output from running the tests (we can see that on TravisCI). Remember to provide
a balanced discussion between how you tested your design and why you chose that testing
strategy and test cases.

• Section 5. Evaluation – Students must report their performance results using a table and (if
appropriate) a plot. Do not simply include the text output from running the evaluation pro-
grams. Format the data so it is appropriate for a report. You must explain how you collected
this data (number of subtrials? number of trials? what was the variance?) You must include
some kind of analysis of the results: Why is one implementation better or worse than another?
Can you predict how the results might change for other inputs? What can we learn from these
results? There is not a separate conclusion section, so the big picture summary should really

4



ECE 2400 Computer Systems Programming, Fall 2017 Programming Assignment Assessment Rubric

be in the evaluation. Remember to provide a balanced discussion between what the results
are and what those results mean.

It is also always great to include extra material to help demonstrate your understanding. You could
include an example of a stack frame diagram like we do in lecture for a small example. You could
implement a third implementation to gather additional data points to make for a richer comparative
analysis in the evaluation section. You could include a particularly clever test case and reference
it in the testing strategy section. If you used a new kind of testing technique then make sure you
highlight that in the testing strategy. You could try different evaluation inputs to illustrate a point.
Be sure to highlight "extra" work you did in your implementation, testing, or evaluation. There are
many creative things you can do to set your report apart!

Sections 1–5 (including the title and author list) should be two to four pages. The maximum is four
pages. We do not recommend including diagrams, plots, and tables throughout your discussion
since this means you will have less room for text (and puts pressure on making the diagrams, plots,
and tables too small). Instead, you can have an appendix at the end of you report which includes
all pseudocode, diagrams, plots, and tables. The appendix can be as many pages as you want. Be
sure to number your pseduocode, diagrams, plots, and tables and reference them throughout your
discussion.

Many students initially struggle with the idea of preparing the programming assignment report. In
previous courses, students often simply describe their code at a low level in a programming assign-
ment report. In this course, we are challenging students to prepare reports that better demonstrate
the student’s understanding of the course content. Before starting to write the report, we encourage
students to prepare a detailed outline. The outline should include one section for each of the five
sections that will eventually make up the report. Under each section, there should be one bullet for
each paragraph the student is planning to include in that section. This bullet should describe the
topic of the paragraph. Under each bullet there should be several sub-bullets, one for each topic to
be discussed in that paragraph. The outline should also explicitly include references to the figures,
tables, and plots the student plans to include in the report. This is called a structured approach to tech-
nical writing. Students are strongly discouraged from “just starting to write”. Just like we should
always plan our approach before starting to write our programs, we should plan our approach be-
fore writing the report. Students are encouraged to review their outline with the course staff several
days before the deadline.

To help students understand our expectations, we have prepared a rough outline for a report for the
first programming assignment. It is available on the public course webpage here:

• http://www.csl.cornell.edu/courses/ece2400/handouts/ece2400-pa1-outline.txt

Students do not need to follow this outline, nor should students expect a similar outline for future
programming assignments. Keep in mind that any outline will evolve as you start writing the re-
port. This outline is simply meant as an example to demonstrate our expectations and our suggested
approach for writing great reports; which ultimately will enable students to become great program-
mers.

5. Programming Assignment Assessment Rubric

The programming assignment assessment is divided into five criteria weighted as follows:

• Code: First Impl Functionality 20%
• Code: Second Impl Functionality 20%
• Code: Verification Quality 20%

5



ECE 2400 Computer Systems Programming, Fall 2017 Programming Assignment Assessment Rubric

• Code: Code Quality 10%
• Report 30%

The assessment for the report is further divided into the following six subcriteria:

• Report: Introduction (×1)
• Report: First Implementation (×2)
• Report: Second Implementation (×2)
• Report: Testing Strategy (×2)
• Report: Evaluation (×2)
• Report: Writing Quality (×1)

In other words, the introduction and writing quality subcriteria are worth half as much as the other
report subcriteria. As discussed in the syllabus, each criteria/subcriteria is scored on a scale from
0 (nothing) to 4.25 (exceptional work). The functionality of the implementations is assessed based
on the number of test cases that pass in both the student and instructor test suites in combination
with the severity of any errors. The verification quality is based on the judgment of the instructor in
terms of how well the students’ test cases actually test the design. The code quality is based on: how
well the code follows the course coding guidelines; inclusion of comments that clearly document the
structure, interfaces, and implementation; following the naming conventions; decomposing compli-
cated monolithic expressions into smaller sub-expressions to increase readability. Overall, good code
quality means little work is necessary to figure out how the code works and how we might improve
or maintain the design.

The following table illustrates a couple different scenarios. In scenario (a), the student did not add
any new tests, but (surprisingly) the code still passes all of the instructor tests. The student’s code
quality is quite poor, and the student did not turn in the report. The final grade is a C/C-. In scenario
(b), the student still has not added any new tests, but now the code quality is much improved. The
final grade is a C. In scenario (c), the student has added a nice selection of tests but still did not turn
in a report. The final grade is a B. In scenario (d), the student completes all parts of the programming
assignment, and the report is average. The final grade is an A/A-. In scenario (e), the student
completes all parts of the programming assignment, and the report is above average. The final grade
is an A. Scores of 4 on the report are relatively rare and are usually reserved for exceptional work.

Criteria Weight (a) (b) (c) (d) (e)

Code: First Impl Functionality 20% 4.25 4.25 4.25 4.25 4.25
Code: Second Impl Functionality 20% 4.25 4.25 4.25 4.25 4.25
Code: Verification Quality 20% 0 0 4.00 4.00 4.00
Code: Code Quality 10% 1.00 4.00 4.00 4.00 4.00
Report 30% 0 0 0 3.50 3.50

Score 1.80 2.10 2.90 3.80 3.95
Grade C/C- C B A/A- A

6. GitHub and Academic Integrity Violations

Students are explicitly prohibited from sharing their code with anyone that is not within their group
or on the course staff. This includes making public forks or duplicating this repository on a different
repository hosting service. Students are also explicitly prohibited from manipulating the Git history
or changing any of the tags that are created by the course staff. The course staff maintain a copy of all

6



ECE 2400 Computer Systems Programming, Fall 2017 Programming Assignment Assessment Rubric

repositories, so we will easily discover if a student manipulates a repository in some inappropriate
way. Normal users will never have an issue, but advanced users have been warned.

Sharing code, manipulating the Git history, or changing staff tags will be considered a violation of
the Code of Academic Integrity. A primary hearing will be held, and if found guilty, students will
face a serious penalty on their grade for this course. More information about the Code of Academic
Integrity can be found here:

• http://theuniversityfaculty.cornell.edu/dean/the-rules/academic-integrity

7


