ECE 2400 Computer Systems Programming
Fall 2017

Topic 17: Trees

School of Electrical and Computer Engineering
Cornell University

revision: 2017-11-19-23-43
1 Tree Concepts
2 Binary Trees

3 Binary Search Trees

1. Tree Concepts

1. Tree Concepts

2. Binary Trees

2. Binary Trees

¢ Object-oriented binary tree which stores ints
¢ Could also use dynamic or static polymorphism to store any type
* Could add iterators to improve data encapsulation

1 class BinaryTreelnt
2 {
3 public:

5 BinaryTreeInt();

6 “BinaryTreeInt () ;

7

8 void insert_root(int v);

9 void insert_left(Node* node_p, int v);
10 void insert_right(Node* node_p, int v);
11

12 struct Node

13 {

14 Node(int v);

15 int value;

16 Nodex left_p;

17 Node* right_p;

18 };

19

20 Node* m_root_p;

a };

2. Binary Trees

¢ Implementation of member functions
* Let’s defer implementing the destructor for now

1 BinaryTreelInt::Node::Node(int v)

2 : value(v), left_p(nullptr), right_p(nullptr)
s {2

4

5 BinaryTreelnt::BinaryTreelInt ()

¢ ¢ m_root_p(nullptr)

7 {3

8

o void BinaryTreelnt::insert_root(int v)
10 {

1 m_root_p = new Node(v);

12 }

11+ void BinaryTreeInt::insert_left(Node* node_p, int v)
15 {

16 node_p->left_p = new Node(v);

17 }

18

19 void BinaryTreelnt::insert_right(Node* node_p, int v)
20 {

21 node_p->right_p = new Node(v);

22 }

2. Binary Trees

int main(void)

{

BinaryTreelnt bt;
bt.insert_root(10);

typedef BinaryTreelnt::Node Node;
Node* r = bt.m_root_p;
bt.insert_left (r, 11);
bt.insert_right(r, 12);
bt.insert_left (r->left_p, 13);

return 0;

heap

stack

2. Binary Trees

Recursive member function to print tree

1 void BinaryTreeInt::print_h(Node* node_p) {

Recursive function to delete tree

1 void BinaryTreelInt::clear_h(Node* node_p) {

3. Binary Search Trees

3. Binary Search Trees

* Recall that set ADTs provide add and contains member functions
¢ Consider implementing a set ADT with a linked list vs. vector

add contains

list

list (sorted)

vector

vector (sorted)

binary search tree

* A binary search tree is a binary tree with the following invariant:

For any node in the tree with value v,
all values to the left of that node are less than v and
all values to the right of that node are greater than v.

¢ We can use a binary search tree to achieve O(log,(IN)) time
complexity for both add and contains

¢ This time complexity bound Assumes binary tree is balanced which
may or may not be a reasonable assumption

3. Binary Search Trees

BST invariant is true BST invariant is not true

¢ Let’s begin by implementing a recursive member function to find
which node contains a give value in the tree

¢ Function should return a pointer to the node with the given value

¢ For now assume given value is always in the tree

3. Binary Search Trees

Recursive member function to find node with given value in tree

1 Node* BinaryTreelInt::find _h(Node* node_p, int v) {

* Now assume given value is not in the tree

* Modify your algorithm to return a pointer to the node which
would be the parent of where we could insert a new node with the
new value

3. Binary Search Trees

Member function to search for value in tree

1 bool BinaryTreelnt::contains(int v) {

Member function to add value to tree

1 void BinaryTreeInt::add(int v) {

10

