ECE 2400 Computer Systems Programming
Fall 2017

Topic 10: Sorting Algorithms

School of Electrical and Computer Engineering
Cornell University

revision: 2017-10-18-17-51

Insertion Sort

1.1. Out-of-Place InsertionSort
1.2. In-Place Insertion Sort (forward search)
1.3. In-Place Insertion Sort (reversesearch)

14, Activityo

Selection Sort

2.1. Out-of-Place SelectionSort
2.2. In-Place SelectionSort,
23. Activity

Merge Sort
3.1. Hybrid Merge/InsertionSort

Quick Sort

4.1. Out-of-Place Quick Sort
4.2. In-Place QuickSort
4.3. In-Place QuickSort

10
10
12
15

16
19

4.4. Hybrid Quick/InsertionSort 25

45. Activity 25
Radix Sort 25
5.1. Out-of-Place RadixSort 25
52, Activity 25

1. Insertion Sort 1.1. Out-of-Place Insertion Sort

* We will explore three kinds of algorithms:

— Out-of-Place Algorithms: Gradually copy elements from input array into
a temporary array; by the end the temporary array is sorted; O(N) space
complexity

— In-Place Algorithms: Keep all elements stored in the input array; use
input array for intermediate results; no temporary storage is required;
O(1) space complexity

— Hybrid Algorithms: Initially use one algorithm, but switch to a different
algorithm sometime during the sorting process

* For each algorithm we will use

— Cards to build intuition behind algorithm
Pseudocode to make algorithm more concrete
Visual pseudocode to precisely illustrate algorithm

Complexity analysis

1. Insertion Sort

¢ Take elements out of input array and insert them into a sorted
output array such that the output array remains sorted

1.1. Out-of-Place Insertion Sort

1. Insertion Sort

1.1. Out-of-Place Insertion Sort

1
2
3
4
5
6
7
8
9

isort_op(a, size)

set tmp to an empty array of with size elements
for i in O to size-1 (inclusive) # iterate over input

temp = alil

for j in 0 to i-1 (inclusive)
if temp < tmp[j]
swap(temp, tmp[j])
tmp[i] = temp

return tmp

iterate over output

* Show contents of tmp for each iteration of outer loop

1. Insertion Sort 1.2. In-Place Insertion Sort (forward search)

e Space complexity is O(N) due to temporary array b
e Worst-case time complexity analysis
— Assume Cj is time spent in one iteration of outer loop
excluding any time spent in inner loop
— Assume Cj is time spent in one iteration of inner loop

1.2. In-Place Insertion Sort (forward search)

1. Insertion Sort 1.2. In-Place Insertion Sort (forward search)

1 isort_ip_fwd(a, size)

2 for i in O to size-1 (inclusive) # iterate over input
3 temp = ali]

4 for j in 0 to i-1 (inclusive) # iterate over sorted
5 if temp < aljl: # region

6 swap(temp, al[j])

7 ali] = temp

8 return a

* Show contents of a for each iteration of outer loop

1. Insertion Sort 1.3. In-Place Insertion Sort (reverse search)

e Space complexity is O(1), no temporary array
e Worst-case time complexity analysis
— Assume Cj is time spent in one iteration of outer loop
excluding any time spent in inner loop
— Assume Cj is time spent in one iteration of inner loop

1.3. In-Place Insertion Sort (reverse search)

1. Insertion Sort 1.3. In-Place Insertion Sort (reverse search)

1 isort_ip_rev(a, size)
2 for i in 1 to size-1 (inclusive)

3 for j in i-1 to O (inclusive)

; if alj+1] < alj]

5 swap(aljl, alj+1])

6 else # stop once new value

7 break # is in the right position

8 return a

e Space complexity is O(1), no temporary array
* Worst-case time complexity analysis
— Assume Cj is time spent in one iteration of outer loop
excluding any time spent in inner loop
— Assume Cj is time spent in one iteration of inner loop

* Best-case time complexity analysis
— Assume input array is already sorted

1. Insertion Sort

1.4. Activity

1.4. Activity

¢ Use in-place insertion sort
* Show contents of a for each iteration of outer loop

2. Selection Sort 2.1. Out-of-Place Selection Sort

2. Selection Sort

¢ Select minimum element from input array and add this element to
the end of the sorted output array such that the output array
remains sorted

2.1. Out-of-Place Selection Sort

10

2. Selection Sort 2.1. Out-of-Place Selection Sort

1 ssort_op(a, size)

2 set tmp to an empty array of with size elements

s for i in O to size-1 (inclusive)

4 min_value = al[0] # Find the minimum

5 min_idx =0

6 for j in O to size-i-1 (inclusive)

7 if min_value > al[j]

8 min_value = al[j]

9 min_idx =3

10 for j in min_idx to size-i-2 (inclusive) # Remove the minimum
1 aljl = a[j+1]

12 tmp[i] = min_value # Put minimum in output

13 return tmp

* Show contents of a and b for each iteration of outer loop

11

2. Selection Sort 2.2. In-Place Selection Sort

e Space complexity is O(N) due to temporary array b
e Worst-case time complexity analysis
— Assume Cj is time spent in one iteration of outer loop
excluding any time spent in inner loops
— Assume Cj is time spent in one iteration of first inner loop
— Assume C; is time spent in one iteration of second inner loop

2.2. In-Place Selection Sort

12

2. Selection Sort

2.2. In-Place Selection Sort

1 ssort_ip(a, size)

2
3
4
5
6
7
8
9

for i in O to size-1 (inclusive)

min_value =
min_idx =1

for j in i to size-1 (inclusive)
if min_value > al[j]

alj]

min_value
min_idx

swap(a[min_idx], ali])

return a

ali]

J

Find the minimum

Swap the minimum

* Show contents of a for each iteration of outer loop

13

2. Selection Sort 2.2. In-Place Selection Sort

e Space complexity is O(N) due to temporary array b
* Worst-case time complexity analysis
— Assume Cj is time spent in one iteration of outer loop
excluding any time spent in the inner loop
— Assume Cj is time spent in one iteration of inner loop

14

2. Selection Sort

2.3. Activity

2.3. Activity

* Use in-place selection sort
* Show contents of a for each iteration of outer loop

15

3. Merge Sort

3. Merge Sort

* Recursively partition input array into smaller partitions
* Base case is when one element is in a partition
* Merge two sorted partitions into a larger partition

1 msort_op(a, size)

2
3 if (size == 1)

4 return a

5

6 left_size = size/2

7 right_size = size - left_size

8 left = msort2_op(al[0:left_sizel, left_size)
9 right = msort2_op(al[left_size:size], right_size)

11 set tmp to an empty array of with size elements
12 left_idx = 0; right_idx = 0

14 for k in O to size-1 (inclusive)

16 # Done with left array

17 if (left_idx == left_size)

18 tmp[k] = right[right_idx]; right_idx += 1
19

20 # Done with right array

21 elif (right_idx == right_size)

2 tmp[k] = left[left_idx]; left_idx += 1

23

24 # Front of left is less than front of right
25 elif (left[left_idx] < right[right_idx])
26 tmp[k] = left[left_idx]; left_idx += 1

27

28 # Front of right is less than front of less
29 else:

30 tmp[k] = right[right_idx]; right_idx += 1

32 return tmp

16

3. Merge Sort

e Show contents of a for each recursive call
e Show contents of tmp for each merge

Uy gt

17

3. Merge Sort

* Worst-case time complexity analysis
— Assume Cj is time spent in one iteration of merge loop
— Assume Cj is time spent in base case

EEEHI T
0 B B
FHEEHEBHEE

OOoobooooogooooOood

* Space complexity analysis

EEEHI T
0 B B
FHEEHEBEE

OOoobooooogooooOood

18

3. Merge Sort 3.1. Hybrid Merge/Insertion Sort

3.1. Hybrid Merge/Insertion Sort

* Once array becomes small enough, use O(N?) sort

1 msort_hybrid(a, size)
2 if (size <= 4)
3 return isort_op(a, size)

4

19

3. Merge Sort 3.1. Hybrid Merge/Insertion Sort

* Worst-case time complexity analysis
— Assume Cj is time spent in one iteration of merge loop
— Assume C; is time spent in one iteration of isort inner loop

B

20

4. Quick Sort 4.1. Out-of-Place Quick Sort

4. Quick Sort
4.1. Out-of-Place Quick Sort

* Pick a pivot element to partition input array into two partitions
¢ All elements less than the pivot are in first partition

¢ All elements more than the pivot are in second partition

* Now know position of pivot

* Recursively sort each of the two partitions

1 gsort_op(a, size)
2

5 if (size <= 1)
4 return a

6 pivot = a[size-1]

8 left =0
9 left_size =0
10 right =[]

1 right_size = 0
12 for i in O to size-2 (inclusive)

13 if (ali] < pivot)
14 left.append(alil)
15 left_size += 1

16 else:

17 right.append(alil)
18 right_size += 1

20 left = gsort_op(left, left_size)
2 right = gsort_op(right, right_size)
2 return left + [pivot] + right

21

4. Quick Sort 4.1. Out-of-Place Quick Sort

22

4. Quick Sort 4.1. Out-of-Place Quick Sort

¢ Time complexity analysis

23

4. Quick Sort

4.2. In-Place Quick Sort

4.2. In-Place Quick Sort

1 partition(A, lo, hi)

pivot = alhi]
i=1o0 -1
for j in lo to hi-1 (inclusive)
if (alj] < pivot)
i=1+1
swap(aljl, alil)

if (alhi] < a[i+1])
swap(alhil, al[i+1])

return i + 1

gsort_ip_h(a, lo, hi)
if (1o < hi)
p = partition(a, lo, hi)
gsort_ip_h(a, lo, p - 1)
gsort_ip_h(a, p + 1, hi)

gsort_ip(a, size)
gsort_ip_h(a, 0, size-1)
return a

24

5. Radix Sort 5.2. Out-of-Place Radix Sort

5. Radix Sort
5.1. Out-of-Place Radix Sort

5.2. Activity

25

