
ECE 2400 Computer Systems Programming
Fall 2017

Topic 8: Algorithm Analysis

School of Electrical and Computer Engineering
Cornell University

revision: 2017-09-29-09-08

1 Analyzing Two Search Algorithms 2

1.1. Linear Search . 3

1.2. Binary Search . 4

1.3. Comparing Linear vs. Binary Search 7

2 Time and Space Complexity 9

3 Analysis of List and Vector Data Structures 12

1

1. Analyzing Two Search Algorithms 1.1. Linear Search

1. Analyzing Two Search Algorithms

• Assume we have a sorted input array of integers
• Consider algorithms to find if a given value is in the array
• The algorithm should return 1 if value is in array, otherwise return 0

• Let N be the size of the input array
• Let T be the execution time of an algorithm
• Let S be the additional storage (space) required by the algorithm
• Our goal is to derive equations for T and S as a function of N

• Our equations can be rough estimates
• Execution time can be measured in number of C statements
• Space requirements can be measured in number of C variables

2

1. Analyzing Two Search Algorithms 1.1. Linear Search

1.1. Linear Search

1 int find(int a[], size_t size, int v)
2 {
3 for (size_t i = 0; i < size; i++) {
4 if (a[i] == v)
5 return 1;
6 // else if (a[i] > v)
7 // return 0;
8 }
9 return 0;

10 }
11

12 int main(void)
13 {
14 int a[] = { 0, 2, 4, 6, 8, 10, 12, 14 };
15 int find4 = find(a, 8, 4);
16 int find0 = find(a, 8, 0);
17 int find20 = find(a, 8, 20);
18 return 0;
19 }

stack

3

1. Analyzing Two Search Algorithms 1.2. Binary Search

1.2. Binary Search

1 int find_h(int a[], size_t left,
2 size_t right, int v)
3 {
4 if (a[left] == v) return 1;
5 if (a[right] == v) return 1;
6 if ((right-left) == 1) return 0;
7

8 int middle = left + (right-left)/2;
9 if (a[middle] > v)

10 return find_h(a, left, middle, v);
11 else
12 return find_h(a, middle, right, v);
13 }
14

15 int find(int a[], size_t size, int v)
16 {
17 return find_h(a, 0, size-1, v);
18 }
19

20 int main(void)
21 {
22 int a[] = { 0, 2, 4, 6, 8, 10, 12, 14 };
23 int find4 = find(a, 8, 4);
24 int find0 = find(a, 8, 0);
25 int find20 = find(a, 8, 20);
26 return 0;
27 }

stack

4

1. Analyzing Two Search Algorithms 1.2. Binary Search

Annotating call tree with execution time

5

1. Analyzing Two Search Algorithms 1.2. Binary Search

Annotating call tree with space requirements

6

1. Analyzing Two Search Algorithms 1.3. Comparing Linear vs. Binary Search

1.3. Comparing Linear vs. Binary Search

Linear Search

Tb(N) = 3

Tw(N) = 2N + 2

Binary Search

Tb(N) = 3

Tw(N) = 8 log2(N) + 3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

7

1. Analyzing Two Search Algorithms 1.3. Comparing Linear vs. Binary Search

Linear Search

Sb(N) = 4

Sw(N) = 4

Binary Search

Sb(N) = 8

Sw(N) = 5 log2(N) + 4

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

8

2. Time and Space Complexity

2. Time and Space Complexity

• We want a way characterize algorithms at a high-level so we can
quickly compare and contrast the expected performance of two
algorithms as N grows large

• We want to gloss over low-level details

– Absolute time of each C statement
– Absolute storage requirementes for each C variable

• Big-Oh notation captures the asymptotic behavior of a function

f (x) is O(g(x))⇔ ∃x0, c. ∀x > x0. f (x) ≤ c · g(x)

• Formally: f (x) is O(g(x)) if there is some value x0 and some value c
such that for all x greater than x0, f (x) ≤ c · g(x)

• Informally: f (x) is O(g(x)) if g(x) captures the “most significant
trend” of f (x) as x becomes very large

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

9

2. Time and Space Complexity

Big-Oh Examples

f (x) is O(g(x))

3 is O(1)
2N is O(N)
2N + 3 is O(N)
4N2 is O(N2)
4N2 + 2N + 3 is O(N2)
4 log2(N) is O(log2(N))
N + 4 log2(N) is O(N)

• Constant factors do not
matter in big-oh notation

• Non-leading terms do not
matter in big-oh notation

• What matters is the general
trend as N becomes very
large

Big-Oh Classes

Class N = 100 requires

O(1) Constant Time 1 step
O(log2(N)) Logarithmic Time 6–7 steps
O(N) Linear Time 100 steps
O(N · log2(N)) Linearithmic Time 664 steps
O(N2) Quadratic Time 10K steps
O(N3) Cubic Time 1M steps
O(Nc) Polynomial Time
O(2N) Exponential Time 1e30 steps
O(N!) Factorial Time 9e157 steps

• Exponential and factorial time algorithms are considered intractable

• With one nanosecond steps, exponential time would require many
centuries and factorial time would require the lifetime of the
universe

10

2. Time and Space Complexity

Revisiting linear vs. binary search

Linear Tw(N) = 2N + 2 is O(N) linear time
Binary Tw(N) = 8 log2(N) + 3 is O(log2(N)) logarithmic time

Linear Sw(N) = 4 is O(1) constant space
Binary Sw(N) = 5 log2(N) + 4 is O(log2(N)) logarithmic space

• Does this mean binary search is always faster?

• Does this mean linear search always require less storage?

• For very large N, but we don’t always know x0

– T can have very large constants
– T can have non-leading terms

• This analysis is for worst case complexity

– results can look very different for best case complexity (both O(1))
– results can look very different for typical/average complexity

• For reasonable problem sizes and/or different input data
characteristics, sometimes an algorithm with worse time (space)
complexity can still be faster (smaller)

11

3. Analysis of List and Vector Data Structures

3. Analysis of List and Vector Data Structures

Let’s analyze the time and space complexity of various operations on
the list and vector data structures.

Analysis of time and space complexity of list_insert

1 void list_push_front(list_t* list_p, int v)
2 allocate new node
3 set new node’s value to v
4 set new node’s next ptr to head ptr
5 set head ptr to point to new node
6

7 void list_insert(list_t* list_p, node_t* node_p, int v)
8 if list is empty
9 list_push_front(list_p, v)

10 else
11 allocate new node
12 set new node’s value to v
13 set new node’s next ptr to node’s next ptr
14 set node’s next ptr to point to new node

What is the time complexity for list_insert?

What is the space complexity for list_insert?

12

3. Analysis of List and Vector Data Structures

Analysis of time and space complexity of vector_insert

1 void vector_push_front(vector_t* vec_p, int v)
2 set prev value to v
3 for i in 0 to vector’s size (inclusive)
4 set temp value to vector’s data[i]
5 set vector’s data[i] to prev value
6 set prev value to temp value
7 set vector’s size to size + 1
8

9 void vector_insert(vector_t* vec_p, size_t idx, int v)
10 if vector is empty
11 vector_push_front(vec_p, v)
12 else
13 set prev value to v
14 for i in idx+1 to vector’s size (inclusive)
15 set temp value to vector’s data[i]
16 set vector’s data[i] to prev value
17 set prev value to temp value
18 set vector’s size to size + 1

What is the time complexity for vector_insert?

What is the space complexity for vector_insert?

13

3. Analysis of List and Vector Data Structures

Analysis of time and space complexity of list_sorted_insert

1 void list_sorted_insert(list_t* list_p, int v)
2 set prev node ptr to head ptr
3 set curr node ptr to head node’s next ptr
4

5 while curr node ptr is not NULL
6 if v is less than curr node’s value
7 list_insert(list_p, prev node ptr, v)
8 return
9

10 set prev node ptr to curr node ptr
11 set curr node ptr to curr node’s next ptr

What is the time complexity for list_sorted_insert?

What is the space complexity for list_sorted_insert?

Analysis of time and space complexity of vector_sorted_insert

1 void vector_sorted_insert(vector_t* vec_p, int v)
2 for i in 0 to vector’s size
3 if v is less than vector’s data[i]
4 vector_insert(vec_p, i-1, v)
5 return

What is the time complexity for vector_sorted_insert?

What is the space complexity for vector_sorted_insert?

14

3. Analysis of List and Vector Data Structures

Analysis of time and space complexity of list_sort_insert

1 void list_sort(list_t* list_p)
2 construct output list
3

4 set curr node ptr to input list’s head ptr
5 while curr node ptr is not NULL
6 list_sorted_insert(output list, curr node’s value)
7 set curr node ptr to curr node’s next ptr
8

9 destruct input list
10 set input list’s head ptr to output list’s head ptr

What is the time complexity for list_sort?

What is the space complexity for list_sort?

Analysis of time and space complexity of vector_sort_insert

1 void vector_sort(vector_t* vec_p)
2 construct output vector
3

4 for i in 0 to vector’s size
5 vector_sorted_insert(output vector, input vector’s data[i])
6

7 destruct input vector
8 set input vectors data ptr to output list’s data ptr

What is the time complexity for vector_sort?

What is the space complexity for vector_sort?

15

3. Analysis of List and Vector Data Structures

Time Complexity Space Complexity

Operation List Vector List Vector

insert

sorted_insert

sort

push_front

push_back

find

• Does this mean list_sort and vector_sort will have the same
execution time? absolutely not!

• If two algorithms have the same time complexity, the constants and
other terms are what makes the difference!

• This analysis is for worst case complexity

– results can look very different for best case complexity
– results can look very different for typical/average complexity

• In computer systems programming, we care about time and space
complexity, but we also care about absolute execution time and
absolute space requirements on a variety of inputs

16

