
ECE 2400 Computer Systems Programming
Fall 2017

T02 C Recursion

School of Electrical and Computer Engineering
Cornell University

revision: 2017-09-10-22-52

1 Computing Factorial Using Iteration and Recursion 2

2 Computing Fibonacci Using Iteration and Recursion 5

3 Writing a Recursive Function 9

1

1. Computing Factorial Using Iteration and Recursion

• Recursion is when the algorithm is defined in terms of itself
• No new syntax or semantics
• Understanding recursion simply involves applying what we have

already learned with respect to functions, conditionals, iteration

1. Computing Factorial Using Iteration and Recursion

Recall from mathematics, the factorial of a number (n!) is:

n! =

{
1 if n = 0
n × (n – 1)! if n > 0

So in other words:

0! = = 1

1! = = 1

2! = 1 × 2 = 2

3! = 1 × 2 × 3 = 6

4! = 1 × 2 × 3 × 4 = 24

5! = 1 × 2 × 3 × 4 × 5 = 120

We can write a function to calculate factorial using a for loop:

1 int factorial(int n) {
2 int result = 1;
3 for (int i = 1; i <= n; i++)
4 result = result * i;
5 return result;
6 }

2

1. Computing Factorial Using Iteration and Recursion

• The loop implementation does not really resemble the original
mathematical formulation

• The mathematical formulation is inherently recursive

• Can we implement factorial more directly using recursion?

n! =

{
1 if n = 0
n × (n – 1)! if n > 0

3

1. Computing Factorial Using Iteration and Recursion

We can use the exact same
“by-hand” execution approach we
learned in the previous topic to
understand recursion.

1 int factorial(int n)
2 {
3 // base case
4 if (n == 0) {
5 return 1;
6 }
7 // recursive case
8 if (n > 0) {
9 return n *

10 factorial(n-1);
11 }
12 }
13

14 int main()
15 {
16 factorial(3);
17 return 0;
18 }

Questions:

• What if n is negative?

• What if the execution arrow
reaches end of a non-void
function without encountering a
return statement?

4

2. Computing Fibonacci Using Iteration and Recursion

2. Computing Fibonacci Using Iteration and Recursion

Recall from mathematics, the Fibonacci number is:

fib(n) =


0 if n = 0
1 if n = 1
fib(n – 1) + fib(n – 2) if n > 1

So in other words:

fib(0) = = 0

fib(1) = = 1

fib(2) = 0 + 1 = 1

fib(3) = 1 + 1 = 2

fib(4) = 1 + 2 = 3

fib(5) = 2 + 3 = 5

fib(6) = 3 + 5 = 8

fib(7) = 5 + 8 = 13

fib(8) = 8 + 13 = 21

We can write a function to calculate the nth

Fibonacci number using a for loop:

1 int fib(int n) {
2

3 // base cases
4 if (n == 0) return 0;
5 if (n == 1) return 1;
6

7 int fib_minus2 = 0;
8 int fib_minus1 = 1;
9 int result = 0;

10

11 for (int i=2; i<=n; i++) {
12

13 result = fib_minus1
14 + fib_minus2;
15

16 fib_minus2 = fib_minus1;
17 fib_minus1 = result;
18

19 }
20 return result;
21 }

5

2. Computing Fibonacci Using Iteration and Recursion

This page intentionally left blank.

6

2. Computing Fibonacci Using Iteration and Recursion

• The loop implementation does not really resemble the original
mathematical formulation

• The mathematical formulation is inherently recursive

• Can we implement factorial more directly using recursion?

fib(n) =


0 if n = 0
1 if n = 1
fib(n – 1) + fib(n – 2) if n > 1

7

2. Computing Fibonacci Using Iteration and Recursion

Illustrating call tree for fib

8

3. Writing a Recursive Function

3. Writing a Recursive Function

Write pseudo-code for a recursive function which draws the tick marks
on a vertical ruler. The middle tick mark should be the longest and
mark the 1/2 way point, slightly shorter tick marks should mark the
1/4 way points, even slightly shorter tick marks should mark the 1/8
way points and so on. The recursive function should take three
arguments: the index of the top tick mark, the index of the bottom tick
mark, and the height of the middle tick mark. Assume the number of
tick marks is always a power of two (e.g., 2, 4, 8, 16, etc). Use printf to
display the tick marks.

ruler(0,16,4)

0

1 -
2 --
3 -
4 ---
5 -
6 --
7 -
8 ----
9 -

10 --
11 -
12 ---
13 -
14 --
15 -
16

void ruler(int top, int bottom, int height) {

9

3. Writing a Recursive Function

• Step 1: Work an example yourself
• Step 2: Write down what you just did

– What is the base case?
– What is the recursive case?

• Step 3: Generalize your steps
• Step 4: Test your algorithm
• Step 5: Translate to code

Think about the recursive call tree?

Manually work through example ruler

10

